
Proceedings of RoCHI 2021

 - 82 -

Usability evaluation methodology for scalable multiuser
games

Bogdan-Ioan Oros
Technical University Of Cluj-

Napoca
oros.bogdan.ioan@gmail.com

Victor Ioan Bâcu
Technical University Of Cluj-

Napoca
victor.bacu@cs.utcluj.ro

Dorian Gorgan
Technical University Of Cluj-

Napoca
dorian.gorgan@cs.utcluj.ro

ABSTRACT
The aim of this paper is to propose means for objective
evaluation metrics in case of multiuser online games and to
offer a viable solution with a scalable architecture for the
coordination services for this specific type of games. This
paper presents a covering analysis on the high usability of
such a solution with justification based on objective usability
metrics, reusable for different game designs and scenarios.
The article justifies the need of switching to a set of proposed
metrics as means to usability evaluation instead of relying
strictly on user feedback based on empirical analysis of the
game.

Author Keywords
Usability; HCI; human computer interaction; scalable;
computer games; multiuser; multiclient;

ACM Classification Keywords
Human computer interaction (HCI)

General Terms
Human Factors; Design; Measurement.

DOI: 10.37789/rochi.2021.1.1.13

1. INTRODUCTION
It is widely known that computer games have seen a major
increase in the number of users and studios preoccupied with
the development of such applications. Among computer
games, the ones that support online functionality with
multiple users and coordination of a central system are the
most promising in the aspects of continuous communication,
interaction and socialization among the users due to its
nature.

The development of such a solution encapsulates careful
design decisions from multiple perspectives such as
scalability concerns both on the client application as well as
the server, performance and availability, lack of
technological support and most importantly the ability to
satisfy given usability constraints for a high adoption among
the users.

The research performed in the writing of this paper has
focused on exploring a possible solution that responds to the
above mentioned development difficulties. The evaluation
will feature several relevant metrics in order to justify its
compliance to meet high usability thresholds.

This paper will be structured as following: The first section
presents an introduction to the domain of online games
together with current difficulties in the domain, the second
section will present related work with focus on existing
architectures for such games, techniques and methods used
for implementation and evaluation, the third section will put
emphasis on an overview of the evaluated game, the forth
section will feature the proposed architecture for this specific
scenario, the fifth section will list the experimental results
and validation of the solution and finally a section with the
conclusions and future improvements.

2. RELATED WORK
This section will contain existing work in the domain of
development of large scale games with a central highly
available architecture that interacts with multiple clients. It
will cover findings related to the evaluation means for
computer games based on user experience heuristics.

The paper [1] focuses on the application of known methods
for usability evaluation to computer game design. It presents
the concerns associated with development of computer
games (the increasing game quality over time, the fact that
costs have to be reduced and furthermore the fact that the
game has to be adaptable to more genres) as a justification
for incorporating usability evaluation in the development
lifecycle.

The above mentioned paper targets key usability heuristics
such as:

• Tasks should be taught appropriately, referring to
the idea that actions that can be taken in a given
game state should be intuitive and the user should
be assisted with appropriate metaphors that he can
recognize

• Tasks should be logical and consistent,
highlighting the idea that the same action should be
performed with the same user input independent of
the rest of the environment of the game

• Aspects of the game world should be
distinguishable, meaning that the user should be
aware at all times what objects from the scene the
user can interact with and which are static objects.
The important idea of this heuristic is that dynamic
objects in the scene should be observable over
static ones.

Proceedings of RoCHI 2021

 - 83 -

The work highlighted in the papers [2], [3] and [4] reflects
the methodology required for implementing a game
following the main steps (topic selection, game
specifications, prototyping, scenario and task description,
implementation and evaluation). It can be observed that the
paper [4] highlights the full implementation of a game and
evaluation for it according to certain hardware specifications.
It follows a functionality test, as well as a heuristic test. The
visibility of the system status, the user control and freedom,
design consistency and standards, error prevention and
guidance for error resolution, as well as flexibility and
efficiency of use.

The workshop [5] presents the problems in the evaluation of
games, among which the lack of a standard for evaluating
games, what factors of game experience should be measured
and the methods for measuring them, common concepts and
methods used in the industry, and was later detailed in [7].
As such, Bernhaupt identifies multiple key heuristics in for
tabletop type games:

• Cognitive workload: the idea that the cognitive
workload not connected to the game play should be
minimal

• Challenge: the game should be designed in such a
way that it satisfies the preconditions and the target
group

• Reach: the game should be designed in such a way
that the players can easily adapt and satisfy the
requirements of the gameplay

• Examinability: The players should not be limited in
the exploration of the area of the game play

• Adaptability: the system should adapt to various
players and their setup

• Interaction: the interaction method should be
intuitive, satisfy the expectations of the players and
follow a consistent game logic

• Level of automation: All the actions relevant to the
game should not be automated and the user should
be able to perform them by themselves

• Collaboration and communication: interpersonal
communication should be supported if possible
throughout the game

• Feedback: The system should provide relevant
feedback in case of possible errors and provide
further guidance to performing a valid operation in
a given context

• Comfort of the physical setup: the way of setting
up the environment to be comfortable affect the
user experience of the game directly

The work highlighted in [6] presents an example of an online
game architecture similar to industry standard architecture

for low latency real-time online games with a massive
number of players. The advantage of this type of architecture
is mainly the performance. In figure 1 it is presented a
possible concrete architecture based on the design decisions
according to [6]. In this type of architecture there is a server
that communicates with the database. Game servers
communicate with this server in order to perform periodical
backup of the player state. The state of the player is kept in
the memory of the process associated with the game server
throughout the interaction period of the client with the game
server, authentication server and player chat server. The
authentication server is responsible for validating the identity
of the player, it is decoupled from the rest of the game servers
for security purposes, a player who is not authenticated
cannot determine the network address of the game server.
Lastly, there is a communication server for the players, the
communication server does not require database access and
it does not log messages across the network. It serves as a
mean for players to communicate in the virtual world.

Figure 1: Low latency online game architecture

Networking latency issues that are concerns of [8], that is
processing delay, transmission delay, queuing delay and
propagation delay are addressed by this architecture in the
sense that queuing time is minimal, there are multiple game
servers supporting a specific region of the virtual world, the
rest are implementation independent latency factors.

The work in paper [6] presents the fact that the game servers
are responsible for coordination and keeping the state. In this
sense the paper proposes region based locking and object
locking. Locking has an important significance because it
enables transactional operations.

As compared to [1] and [5] we plan to use measureable
results over empirical analysis in order to prove the fact that
the game satisfies minimal usability requirements. As such,
the chosen metrics focus on multiple aspects of the game in
order to obtain the final indicator for usability.

Proceedings of RoCHI 2021

 - 84 -

Figure 2: Conceptual representation of the multiuser game

3. GAME PRESENTATION
The setup of the proposed game (Figure 2) focuses on an
adversarial multiplayer game with the rendering performed
on the client machines. Each player will be represented by an
avatar with a unique name in the virtual world. By issuing
different commands the user can control the different actions
for the avatar he or she controls. The scene contains different
obstacles and boundaries in order to restrict movement and
encourage strategic planning.

It encourages player communication, socialization and
interaction by the means of allowing chat as well as
cooperation in order to eliminate a common enemy, overall
by means of human computer interaction we enable means
of establishing a virtual human to human interaction.

Figure 3: Representation of a user as an avatar in the virtual

world

Figure 3 shows the representation of a user in the virtual
world in the form of an avatar with a unique name. Other
users can view the changes in animation of the respective
avatar when the user who is controlling it triggers an action.

The user interacts with the game world by issuing commands
via the mouse and keyboard, the mouse being used for
controlling the position and zoom factor of the camera and
the keyboard being used to trigger movement commands,
entering chat messages and initialing attacks.

The communication between the client and the server takes
place using binary packets over text encoded messages as to
reduce the bandwidth required to the minimum. The
communication language is defined in such a way as to
satisfy the game requirements, but prevent irrelevant
information from being sent. Each game client application
has to be gathered by each user individually. This application
contains the executable as well as the graphics contents
required: the scenes of objects, the models for the avatars,
the corresponding animations, fonts and particle effects,
sounds, etc. The graphics content is not streamed during the
gameplay session to other users nearby in order to avoid
traffic, only a minimal sized packet identified by its type and
additional information is sent.

Due to the fact that this type of games requires massive
amounts of users in order for them to be enjoyable, usability
is a primary concern, as the higher the usability of the game
the higher the user base of the game will become.

4. MULTIUSER DEVELOPMENT SOLUTION
The main consideration when designing multiuser online
games is the fact that the central architecture has to offer
performance while scaling according to the number of
connected users. The architecture focuses on being ACID
(atomicity, consistency, isolation, durability) compliant in
order to provide a more general scope for any kind of game
that can implement it.

Proceedings of RoCHI 2021

 - 85 -

The client performs the graphical processing for the game
from rendering objects to animation control of the characters
in the scene. The avatars that are displayed require
information coming from the server. The server side is
responsible for broadcasting information for players within
your radius and their movement and animation start or end
actions. For this we require that the client can be notified
asynchronously from the server.

The continuous bidirectional communication is assured by
means of a keep-alive TCP connection. As known the TCP
protocol is a networking protocol that assures ordering of
packets, guaranteed delivery of packets, retransmission of
data and error checking capabilities. Due to the fact that the
connection can fail, the client maintains multiple connections
similar to this, but only uses one of these at a time. In order
to retrieve the list of server IP addresses to use for load-
balancing the client can query a DNS server and get a list of
associated game server servers. A domain name server
(DNS) is a decentralized solution that offers domain name to
IP address mapping services.

The game servers are responsible not only for the continuous
communication with the players, but they are responsible for
triggering periodical tasks in order to generate events,
perform certain business logic and communicate the results
to the players. As an example we could consider the use of
AI controlled avatars. At a certain interval the agent would
need to perform an action. In order to trigger this task we use
task schedulers and once the task is performed connected
users will be notified, as well as the rest of the game servers.
Game servers communicate between each other in order to
be aware of which server is handing what players.

Another layer of load balancing is then introduced for the
handling of the business logic. The framework we propose is
independent of the business logic of the game, as a result we
should be able to allow any number of complex tasks to run
smoothly on the architecture. This stateless automatically
scalable layer is a layer consisting of microservices that scale
according to the workload automatically. The fact that these
units of work do not hold any state of the game object is
relevant because they can be turned off or on at any moment.
Elasticity is an important matter due to the high volumes of
users that can be expected in such a game. As a result it is
not cost efficient to run a large number of units at all times.

Finally, in the design we proposed for the server part the
database consists of a relational database that is ACID
compliant. In the design we favor consistency over
availability. The relational database implements sharding
capabilities in order to scale. It is accessed using a common
interface by the stateless processing units.

5. EXPERIMENTAL RESULTS AND VALIDATION
In order to accurately validate the model we are required to
integrate existing metrics with the multiuser game model and
applying an aggregation of these metrics in order to obtain
the final score for the usability of the multiuser game. The
metrics featured will be the performance measured by means
of average bandwidth, average throughput and average
latency of the user input according to varying amounts of
stateless processing units and varying amounts of users, the
synchronization between the positions of the avatars at two
clients and between a client and the server, the frame rate
with a varying amount of users in the viewing volume for a
single client instance, as well as the interactiveness and
responsiveness measured by means of user feedback.

Figure 4: Architecture overview for multiuser online game with acid compliance for full transactional operation

Proceedings of RoCHI 2021

 - 86 -

5.1 Performance

Performance is one of the most important factors in online
applications as it is mandatory for the game to be responsive.
In order to assure high performance even at an increased
amount of users in the same scene we have resorted to server
replication.

In order to measure performance we have several key
indicators for our communication language. We validate the
performance by means of measuring latency, bandwidth,
throughput in several scenarios.

The bandwidth shown in the following table is measured as
an average between both the client to server and server to
client communication during active game play.

In order to obtain relevant results we have used dummy
clients without rendering capabilities such as not to include
in our measurements the time required for graphical
processing.

The latency measured refers to the latency for enqueuing a
message at client side. Due to the fact latency is dependent
on the location of the server and client it is irrelevant to
measure the latency of a packet transmission.

The system throughput is measured as a sum of operation
during the time unit of one second at all endpoints
responsible for processing (stateless processing units). In
terms of evaluation, the average throughput should scale
linearly with the amount of users and with the amount of
processing units.

The cumulative difference obtained by summing the
deviation (measured in percentages) from the linearly scaled
values represents the performance loss associated with the
system. In our case, for each of the following: average
bandwidth consumption, average throughput and average
latency, we would sum up the differences between the
estimated values for these metrics (the estimations are
obtained by linearly scaling based on the first value) and the
actual values obtained in the experiments. A cumulative
difference of lower than 5% will be assigned a score of 10
for evaluation, while a cumulative difference of over 50%
will be assigned a 1.

5.2 Synchronization

It is relevant that clients perceive the same state of the virtual
world at the same point in time, the same would apply
between the state of the game at server side and at a random
client. As such we have defined an aggregated difference
between the positions on the three axis of the Cartesian
system.

	SyncFactor = C (C1". X-C2". X)
#
"$% + (C1". Y-C2". Y) +

(C1". Z-C2". Z)

where K1&	 represents the position of avatar k on the client
application of the first application instance considered for
measurements, and K2&	 represents the position of avatar k
on the client application of the second instance, similarly the
formula can be applied for a client and the avatar instances
on the server.

In order to perform these experiments we have created a
remote query server that will query any of the two clients
client, respective one client and the total synchronization
factor for various numbers of avatars.

The data gathered indicates the synchronization factors
between 2 random clients from the instance pool, as well as
the comparison between the game state available at the
server side and a random client. It is noticeable in figure 3
that the synchronization factors scale linearly with the
amount of instances assuming similar latency to the server
and a constant number of stateless processing units of three.

Table 2 outlines the fact that server validation for player state
is more appropriate compared to clients cross validation due
to a smaller error of position between avatar instances in the
two game states.

 Table 1. Performance indicators based on various number of
users and processing units

In figure 3, it can be seen that the synchronization factor in
the case of the measurement between the game state on the
server and the game state on a client is not exactly twice as
large as the client to client synchronization factor because the
synchronization factor is dependent on multiple factors such
as the load on the server at that point, the network latency
which is not consistent, as well as the individual latency until
the message is sent to the server from the client generated by
the amount of resources allocated to the client application.

In figure 5, it can be seen that the synchronization factor in
the case of the measurement between the game state on the
server and the game state on a client is not exactly twice as
large as the client to client synchronization factor because the
synchronization factor is dependent on multiple factors such
as the load on the server at that point, the network latency
which is not consistent, as well as the individual latency until

Stateless
processing

units

Amount
of users

Average
bandwidth

consumption

Average
Throghput

Average
Latency

1 10 412 bytes/sec 124op/sec <1ms

1 50 394 bytes/sec 321op/sec <1ms

1 100 390 bytes/sec 333op/sec <1ms

3 10 427 bytes/sec 115op/sec <1ms

3 50 399 bytes/sec 514op/sec <1ms

3 100 388 bytes/sec 889op/sec <1ms

Proceedings of RoCHI 2021

 - 87 -

the message is sent to the server from the client generated by
the amount of resources allocated to the client application.

Amount
of avatar
instances

Client 1
average
ping
latency

Client 2
average
ping
latency

Server
averag
e ping
latency

Syncroniz
ation
factor
(between
clients)

Syncroni
zation
factor
(between
client and
server)

10 2.3 ms
2.431
ms

2.11

ms
0.54

0.23

25 2.3 ms
2.431
ms

2.11

ms
0.74

0.33

50 2.3 ms
2.431
ms

2.11

ms
0.94

0.45

75 2.3 ms
2.431
ms

2.11

ms
1.15

0.61

100 2.3 ms
2.431
ms

2.11

ms
1.43

0.73

150 2.3 ms
2.431
ms

2.11

ms
1.67

0.9

Table 2. Syncronization factors between two clients and
between a client and the server for a varying amount of avatar

instances

Figure 5. Syncronization factors of game world state at

different targets

The theoretical upper bound for the synchronization factor is
limited by the size of the scene, in our case a scene of 1024
by 1024 virtual meters (default measurement unit for space
as considered in Unity [10]) and the theoretical lower bound
is 0 in case of perfect synchronization between the two game
states.

5.3 Frame rate

The experiments were performed using a client that has
constant graphical processing and CPU capabilities. We have
experimented by creating multiple scenarios with different
number of dummy game clients in order to measure the
frame rate at this client which is performing the rendering.
The tests were perfomed with the following configuration:
Nvidia GTX 1050 Ti graphics card, Ryzen 3600 CPU, 16
gigabytes of random access memory.

In table 3, the frame rate for the client scales inverse
proportionally to the amount of avatars, as avatars are
represented using three dimensional objects formed out of
polygons, the number of polygons will increase as the
number of instances increasing, resulting in higher
computational needs to compute a frame, resulting in a lower
frame rate. The matchmaking procedure can split the users
into different instances of the same scene, with a maximum
amount of avatar instances in order to satisfy a target frame
rate, in our implementation we targeted 150 players within
the same scene instance and had an output of approximately
30 frames per second, which is the industry standard for
acceptable frame rate.

The values for the frame rate will be considered within the
range 0 to 60. During evaluation, 60 frames per second will
be assigned as score of 10 and a frame rate between 0 and 5
will be assigned a score of 1.

Amount
of avatar
instances

Rendering
frame rate

10 60

25 60

50 60

75 58

100 49

150 29

Table 3. Frame rate based on amount of avatar instances
present within the viewing range for a single rendering client

5.4 Interactiveness and responsiveness

The interactivity of the game is increased as players can
communicate with each other, observe each other in the

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

0 50 100 150
Syncronization factor between clients

Syncronization factor between a client and a
server

Proceedings of RoCHI 2021

 - 88 -

visual world and attack each other or collaborate towards
eliminating a common perceived enemy. These actions
translate to a set of commands that form the communication
language. The communication language is complete,
consistent and flexible. It holds commands that allow for:

• Broadcasting rotation and scaling changes
for an object in world space coordinates

• Broadcasting movements as a set of two
points with the current target and
destination, used on the client side for
linear interpolation in order to obtain a
smooth movement

• Broadcasting movements relative to other
identifiable objects in the scene

• Broadcasting movements relative to other
avatars in the scene

• Broadcasting chat messages
• Broadcasting attacks messages
• Broadcasting system signals (such as the

start of a round, the end of a round, a player
being eliminated)

The completeness of the language refers to offering full
support for translations, rotations and scaling in absolute
world coordinates as well as relative to other objects or
avatars in the scene. The language contains collaborative
support as well as adversarial actions in the form of chat and
attack messages respectively. In brief, the language allows
for full transformation control of the avatars as well as
allowing communication support and support for
collaborative or adversarial actions in order to change the
state of the avatar and the game world.

Responsiveness is highly depended on the frequency of
movement corrections on the server side. Since the
interpolation takes place on the client side, we can assume
different duration for the movement to complete on the client
side based on the rendering capabilities and on the server
side. Considering the rendering delay and the network delay,
we can assume that once the movement has completed and
the user has reached the destination point a cross validation
is performed on the server side. In case the avatar lies outside
the area that is defined by a certain margin of error, the user
will be forcefully teleported (figure 6) to the destination
point calculated on the server side. Given high network
latency, the frequency of the teleports or movement
corrections will be directly proportional with the network
characteristics and it will in turn be increased, resulting in
jittering and reduced responsiveness.

The responsiveness will be evaluated based on
questionnaires offered to a different group of users that can
assign a grade from 1 to 10 for the responsiveness and
different interactivity elements.

Figure 6. Server side position validation and correction

5.5 Usability

We define the usability as the weighted average (with the
weights assigned accordingly in relation to the focus of the
game design, if one metric is more important it should be
assigned a higher weight) of the above presented metrics in
order to obtain a final evaluation for this type of game. It is
important to consider that the network latency plays an
important factor in the responsiveness of the application.
Even though the application was designed in such way as not
to block the execution of the game awaiting a server reply,
an action that awaits a response tends to confuse the user.
Increased performance by means of scalability is a secondary
factor as limitations on the number of instances the server
and a client instance can hold significantly affects the
playability of the game. Furthermore, in abstraction the
networking, the client the 2D interface available for the user,
as well as the metaphors available in the 3D space to operate
the avatar in the scene were designed by keeping in mind the
usability engineering principles under [9].

Proceedings of RoCHI 2021

 - 89 -

!"#$%&%'(=

*+,-.,/#0+10.,+ ∗ 31 + 1(607#0'., ∗ 32

w1 + w2 + w3 + w4	
	

+

=+">.6"%?+6+"" ∗ 33 + 7,#/+,#'+10.,+ ∗ 34

w1 + w2 + w3 + w4	

6. CONCLUSION AND FUTURE IMPROVEMENTS
The usability evaluation methodology proposed n this paper
puts emphasis on the importance of having quantifiable
metrics for evaluating and validating a software design for a
larger system where several users globally distributed
interact by means of coordination from a central server and
it presents a general architecture that enables any number of
implementations regardless of the theme of the game.

The contribution that this paper brings to the field consists of
proposing an original solution for handling large volumes of
users and processing tasks over a distributed system, as well
as validating the solution by means of an original set of
usability metrics.

Future work involved would imply expanding the set of
metrics and providing a more general framework to evaluate
any possible reference game in order to compare and contrast
different implementation with the intent of improving
usability for human users of said computer games.
Development of automated agents that operate the game
client application could be developed and a server side
solution to identify this software agents would prove useful
as the model evolves and the game would gain popularity.

REFERENCES
1. Brown, Michael. (2008). Evaluating Computer Game

Usability: Developing Heuristics Based on User
Experience.

2. Al-Doori Rami, Blaga B.C.Z., Gorgan D., Exploring
Solutions for the Development Methodology of the
Video Game DABABAT, Proceedings of the RoCHI
2018 Conference, ISSN 2501-9422, pp. 119-126,
(2018).

3. Morar A.G., Gorgan D., Experiments on Computer
Game Development Methodology, Proceedings of the
RoCHI 2018 Conference, ISSN 2501-9422, pp. 127-
134, (2018).

4. Blaga B.C.Z, Gorgan D., Game Development and
Evaluation of the EvoGlimpse Video Game, Romanian
Journal of Human-Computer Interaction, Vol.11(1),
ISSN 1843-4460, pp.40-62, (2018).

5. Bernhaupt, Regina & Eckschlager, Manfred &
Tscheligi, Manfred. (2007). Methods for evaluating
games: How to measure usability and user experience
in games?. 309-310. 10.1145/1255047.1255142.

6. Marios Assiotis & Velin Tzanov.(2006). A
Distributed Architecture for MMORPG

7. Bernhaupt, Regina .(2010).Evaluating User Experience
in Games

8. Josh Glazer, Sanjay Madhav. (2015). Multiplayer
Game Programming: Architecting Networked Games.

9. J. Nielsen, Usability Engineering: Morgan Kaufmann
Publishers Inc., 1993.

10. Unity game engine.(2021). https://unity.com/

