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ABSTRACT 
Taking into account the increase in the number of cars and, 
implicitly, the traffic problems, an automatic license plate 
recognition (ALPR) system becomes a significant task in 
smart surveillance and transportation. The interest for the 
implementation and integration of ALPR technology into the 
daily security operations is visible, although there are still 
insufficiently resolved issues. They are based on either the 
help of image processing techniques or deep learning 
techniques. More precisely, they are using object detection 
algorithms such as You Only Look Once (YOLO). In order 
to obtain a system capable of detecting the license plates, we 
propose a method using YOLOv4. This system achieved 
impressive frames per second, the results show that we are 
talking about a method that is relatively insensitive to 
background variations. 
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INTRODUCTION 
Annually, the number of cars increases rapidly (e.g., between 
2015 and 2019, the Europe’s car fleet increased by about 8 
million units). Consequently, car monitoring systems should 
be widely implemented, being able to automate processes 
that normally depend on a worker [11]. Moreover, this would 
discourage acts that are against the law, such as: leaving the 
scene of an accident, kidnapping, car theft etc. [22]. 
Automatic License Plate Recognition (ALPR), invented in 
1976 by the UK’s Police Scientific Development Branch 
[14], represents a field that acquired importance to many 
traffic related applications such as road traffic monitoring 
[2]. In fact, ALPR plays a major role in monitoring of traffic 
rules and maintaining law enforcement on public roads [17] 
by their number-plates using recognition techniques [6; 12]. 
We know too well that cars can be monitored based on their 
license plates. Delays, traffic jams, thefts, etc. could be 
prevented if the control entities (e.g., police) were equipped 
with intelligent systems for detecting and recognizing 
registration numbers [16]. The legitimate research question 
of this paper intends to answer: How does automatic license 

plate recognition improve public safety? The main focus of 
this work is to build and implement a real time system, 
assisted by YOLOv4, able to automate surveillance 
processes in Romania. In fact, the computational limitations 
could be attained easily, as the application only requires a 
machine to run on and the media files to examine, given in 
the form of either images or video streams. No matter how 
well we choose the right algorithms, a successful ALPR 
system deployment may require additional hardware to 
maximize its accuracy. The rest of paper is organized as 
follows: Section 2 presents a short overview of license plate 
systems very useful in the control traffic and other ways (e.g., 
criminality detection), while Section 3 describes the new 
system based on YOLOv4. Section 4 briefly discusses the 
evaluation of this new system before drawing some 
conclusions in the last section.  

RELATED WORK 
In Romania, ALPR systems are used only by the National 
Company for Road Infrastructure Management (CNAIR) in 
two cases: for verifying the payment of “Rovinieta” and the 
toll for the “Fetești-Cernavodă” bridge. CNAIR uses 106 
fixed video cameras and 14 mobile video cameras, located 
on several roads to check who paid or not the Rovinieta or to 
identify drivers who did not acquire a toll. Basically, the 
CNAIR recognition system has the following functionalities: 
(1) photograph the registration number; (2) send real-time 
information to a computer center, where an operator 
confirms that the automatically registered number is correct; 
(3) the system checks if the driver paid one of the two taxes 
or both. In Europe, more precisely, in the United Kingdom, 
there have a network of 11,000 video cameras, which send 
about 50 million “readings” of registration numbers daily to 
the main center, where they are stored for approximately one 
year after their appearance, alongside metadata such as time, 
date and location regarding the place where the detection 
happened. The main purpose of this network is different than 
Romanian one. It is used to help criminality detection. An 
ALPR system can be implemented either on the basis of 
image processing techniques or on the basis of using deep 
learning techniques, more precisely using object detection 
algorithms such as: “Single Shot Detector” (SSD), “Fast 
Region-based Convolutional Neural Network” (Fast R-
CNN), “You Only Look Once” (YOLO) etc.  

Regarding the first category, one of the most used and simple 
image processing techniques for detection is to use the Sobel 
filter together with the Hough transform [1; 9; 15; 23]. The 
Sobel filter is used to detect the edges of a picture. These are 
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represented by areas with strong contrasts, which can be 
identified by the major difference in intensity between a 
pixel and the one after it. The image we are working with is 
represented only by the edges captured in the initial picture. 
Considering the fact, that the registration number is a 
rectangle, the search is limited to identifying and filtering the 
representative matching shape for it. This can be done using 
Hough Transform, which is a feature extraction technique, 
specialized in identifying different types of patterns. This 
approach can be found in specialized libraries for computer 
vision, such as OpenCV. 

The second category, based on neural networks [10; 18], 
teaches a computer to study as a human, through examples, 
using multi-layered neural networks. For a deep learning 
neural network, each hidden layer performs the training of a 
unique set of features that are based solely on the output of 
the layers that have appeared previously. In order to build the 
system proposed, we need a model in which accuracy and 
computing time play equally important roles. After carefully 
analyzing the options currently available, a YOLOv4 model 
seems to be the one that fits best the task, as it successfully 
combines the constants needed [3; 4; 21]. 

Our solution uses a YOLO model to recognize the license 
plates in pictures and for identifying them from a live feed. 
Then, highlighted areas, detected from the image, will be 
preprocessed to be delivered to an OCR (Optical Character 
Recognition). The state-of-the-art (SOTA) selected in order 
to be used for the fulfillment of the OCR is Tesseract 
provided by Google. All components will ultimately be 
embedded in a PyQt5 graphical user interface, which is easy 
to use and attractive. 

DATASETS AND TECHNOLOGIES USED 
Datasets - Open Images Dataset V4 is a collection of almost 
9 million pictures, annotated in various ways and arranged in 
600 distinct classes. The annotations provided are generally 
made by professionals in this field, thus ensuring the 
accuracy and consistency of the data. The images are 
extremely diverse and often contain several objects in a 
single picture (8.4 objects per image, on average). Analyzing 
all the available classes, the one of interest for us is “Vehicle 
registration plate”, which can help achieve the proposed 
goal. The class is accessible using the following path within 
the hierarchy: Entity, Vehicle, Land vehicle, Auto part. The 
data collected from the interest class are divided into two: 
training data and test data. In addition to the actual images, 
they contain an annotation file, which indicates the exact area 
in the photo where the license plate is, in the shape of a 
rectangle. The number of annotations in each image can 
range from a single annotation to 8 in a picture, in the case 
of test images and can reach up to 28, in terms of training 
images. The number of images in each batch is as follows: 
5,368 images for training, in which there are 7,853 
registration numbers and 386 pictures for test, in which there 
are 513 annotated plates. 

OIDv4 ToolKit - Given that Open Images Dataset V6 is a 
huge dataset, its manual manipulation could only be done 
with great difficulty and with a gargantuan waste of time. 
OIDv4 ToolKit comes in support of this problem and offers 
a simple and easy to use solution for fast download of the 
necessary data [20]. 

Roboflow - Roboflow is a complex web Computer Vision 
developer framework, useful for the preprocessing phase of 
many machine learning algorithms. In data pre-processing, 
there are several steps involved such as resizing, changing 
image orientation, contrasting, followed by various data 
augmentation techniques. As a web application, it is very 
well synchronized and allows extremely fast uploading of 
voluminous data and its manipulation. 

Darknet - Neural Network Framework - Darknet is an 
open-source neural network framework written in C and 
CUDA (Compute Unified Device Architecture). CUDA is 
fast, easy to install, and provides both CPU and GPU 
computation. Darknet is installed with only two optional 
dependencies: OpenCV, if users want a larger diversity of 
supported image types and CUDA, for GPU computation.  

Google Colab - In 2018, Google launched Google Colab 
which is a web platform that allows programmers to write 
and execute Python code. In general, the service is used to 
train machine learning models that are time and resource 
consuming. The files created by this platform are called 
Colab notebooks, which are nothing but Jupyter notebooks, 
hosted by Colab. Jupyter Notebook is an open-source web 
application that can be used to create and share documents 
that contain live code, plots, images and text.  

“tensorflow-yolov4-tflite” repository - Given that a 
YOLOv4 specific weight file cannot currently be used 
directly with TensorFlow, because in the latest release of 
YOLO, a new activation function, named Mish, was 
introduced, there was a need for a transformation to happen. 
That being said, the repository at hand contains the 
implementation for a parser that transforms YOLOv4-
specific .weights files to a format that is accepted by 
Tensorflow. Thus, making use of the code provided, the 
.weights files have been converted to .pb files. 

OpenCV - OpenCV (Open Source Computer Vision 
Library) is an open source library, written in C and C ++. The 
library has been designed to provide computational 
efficiency for real-time computer vision applications.  

TensorFlow - Tensorflow is an open-source library that 
contains algorithms for numerical calculations and 
implementations of complex machine learning algorithms 
and neural networks. The library is easy to use but also very 
fast, the source code being written in C++, while the 
interfaces that call the source code being written in Python. 
Tensorflow helps in training complex neural networks which 
can classify different objects such as: handwritten numbers, 
images, etc.  
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Tesseract - Tesseract is an OCR (Optical Character 
Recognition) engine for automatic character recognition of 
different types of documents: printed, handwritten and typed 
[7, 19]. Before this technology was available, the only way 
to digitize a text was to rewrite it manually, in its entirety. 
This process, in addition to being massively time-
consuming, also led to inconsistencies and typos. 

PyQt5 - PyQt is a GUI (Graphical User Interface) widget 
toolkit and represents a Python interface for Qt, one of the 
most popular cross-platform GUI libraries. In other words, 
PyQt serves as a link between the Python programming 
language and the Qt library. The most stable and the one 
constantly receiving new improvements is PyQt5, so it was 
chosen for the purpose of this work. 

THE MODELS 

Architecture 
Object detection is one of the classic problems in computer 
vision that should not be confused with classification, as it is 
much more complex. The latter can recognize objects but 
does not indicate the area in which they are located. In 
addition, classification cannot work on frames that contain 
multiple objects. 

YOLO (“You only look once”) is part of the category of 
systems that allow the detection of several objects within the 
same frame. It is popular because, in addition to achieving 
high accuracy, it can also run-in real time. The algorithm is 
named so because it requires a single forward propagation 
through the neural network in order to produce results. After 
non-max suppression, the algorithm exposes the objects 
present in the frame, surrounded by delimitation boxes, 
ensuring that they are not detected several times. Models for 
object detection can be divided into two categories (1) Two-
Stage Detectors, (2) One-Stage Detectors. YOLO, as 
expected, is part of the category of one-stage detection 
models (also called one-shot detection models), which do not 
need the last preliminary step, present in the case of two-
stage detectors. This last phase, within these detectors, is a 
costly one from a computational point of view, slowing down 
the detection process. This happens because it involves the 
detection of important regions and then, based on them, the 
detection of the objects sought. Thus, after receiving the 
input, there are 3 phases for fulfilling the purpose of the 
model (1) Backbone, (2) Neck, (3) Dense Prediction (Head). 

Backbone is a neural network made up mostly of 
convolutional layers. Its purpose is to extract the essential 
features from the input data, having a particularly important 
role in the final performance of the model. YOLO can be 
used together with several types of backbone, the ones that 
are widely used being YOLOv4 tiny and Darknet53: 

• Darknet53 has 53 convolutional layers, being much 
more precise but slower compared to the architecture 
used by YOLOv4 tiny. 

• YOLOv4 tiny has only 29 convolutional layers, so it is 
less accurate, but faster and suitable for devices that do 
not have a very high computational capacity. 

Both versions adopt a structure called Cross Stage Partial 
(CSP) which is inspired by the DenseNet architecture. 

Neck - The next step to achieve the proposed goal is to mix 
and combine the features extracted in the backbone in the 
“Neck” block to prepare them for the detection step. The 
authors of YOLOv4 propose in this block a series of tools 
already used in the world of deep learning algorithms, but 
modified to better fit the needs of the model and to increase 
its final accuracy.  

After CSPDarknet53, an SPP (Spatial Pyramid Pooling) 
block is added in order to increase the receptive field and 
separate out the most important features extracted by the 
backbone. Original SPP arose from the need to have an 
approach that can have multi-scale input images for training 
because, in the past, only fixed-size images could be used 
due to the presence of the fully connected layers. The 
problem with these types of layers started from the fact that 
for them we have to specify which the input layers and the 
output layers are. Before these layers, there is always a series 
of convolutional or max pool layers that need to be flattened 
in order to be used as input. This last step represents the 
bottleneck in being able to receive inputs of variable size, 
since the input of a fully connected layer must remain of 
fixed length. The first deep learning models used simple 
networks that manipulate the input data through a succession 
of layers, each layer having as input data the output of the 
previous one. Due to the evolution of models of this type, it 
has been observed that as we progress towards the end of the 
network, some information that may help fine-tune the 
prediction may be lost. In response to this problem, the 
authors of the YOLOv4 model used PaNet, whose 
architecture allows better information propagation. The 
components of the neck typically flow up and down among 
layers and connect only the few layers at the end of the 
convolutional network. One aspect to note is that in the 
original PaNet implementation, low-level information is 
brought to the top layers by adding together the current layer 
and information from the previous layer to form a new 
vector. Instead, the authors of YOLOv4, propose a modified 
variant that uses a new vector created by concatenating the 
input and the vector from the previous layer. 

Head - the last part of the model deals with the following: 

• Locating bounding boxes; 

• Classifying what is inside each box. 

Due to the architecture present in the neck, the head’s input 
will contain spatially rich information from the bottom-up 
stream and the semantic rich information from the top-down 
stream. The output of the algorithm is composed of 4 values 
that are meant to describe the predicted bounding box (x, y, 
h, w) and the probability of k classes and an additional one, 
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for the background. An anchor box is predefined and has an 
aspect ratio set, which is defined beforehand by running, on 
the dataset, a k-means clustering. 

YOLOv4 tiny particularities 
In terms of activation function, YOLOv4 uses Mish, while 
YOLOv4 tiny uses Leaky ReLU, which is a function based 
on maximum, being less computationally expensive than the 
one used by the first model. In the part of feature fusion, 
Yolov4 tiny differs by removing the SPP and using only the 
first step within the PaNet, called FAN (Feature Pyramid 
Network). 

Training process and results 
The process of creating models is started by preparing the 
data. Thus, using the OIDv4 ToolKit, the training and testing 
datasets are extracted. After extracting all the necessary 
images from the Open Images Dataset V4, we have attached 
for each one a .txt file with the same name as the picture, in 
which all the present registration plates are annotated in a 
classic format. Basically, for each license plate, in order to 
identify it, in the annotation files, the top left corner and the 
bottom right corner of the bounding box are mentioned. 
However, the annotation format required by YOLO is 
different, based on the center of the rectangle and its width 
and height. Therefore, to make the transition from the first 
format to the desired one, the Roboflow was used. After this 
step, we can start using the Darknet framework together with 
the work environment from Google Colab. The steps to be 
taken to achieve the proposed goal can be summarized as 
follows: 

1. The first step is to set the use of a GPU hardware 
accelerator in Google Colab in order to receive the results 
in the shortest time that the work environment can 
provide. 

2. The second step is cloning and building the Darknet 
framework within Google Colab. 

3. After this, it is necessary that both the training and the 
test images, together with the files adapted for the format 
required by YOLOv4 to be uploaded in Google Drive, in 
two .zip archives called obj and test. 

4. The next step is to create the files needed to start the 
training: 

• Customized configuration files with .cfg extension, one 
for each model (YOLOv4 and YOLOv4 tiny). 

• obj.data and obj.name files; the first file contains 
information such as the number of classes on which the 
detection is made (in our case one, the class of the 
license plates), the location of the obj.names file, 
train.txt and test.txt files, as well as the location where 
the generated models will be saved. 

• train.txt and test.txt files; files can be generated using a 
Python script and contain the paths of all previously 
uploaded images from the location where they were 
unzipped.   

5. One last step, before starting the training process, is to 
download pre-trained weights for both YOLOv4 and the 
YOLOv4 tiny model. These are trained on the basis of 
the well-known data set called COCO, and can be used 
thanks to the process called transfer learning. Thereby, 
instead of randomly setting weights, we will use these 
ones. This saves a lot of time and helps minimize the 
number of computations required while training the 
custom model. 

6. Finally, the training is launched, the results and the 
waiting time for each of them are presented in Table 1. 

Model YOLOv4 YOLOv4 tiny  

Training duration 9 hours and 4 
minutes 

2 hours and 12 
minutes 

Batch size  64 64 

Input size  416x416 416x416 

Activation function Mish Leaky ReLu 

IoU 50% 50% 

Iterations 6000 2500 

mAP (Mean average 
precision) 

91.58% 78.20% 

Table 7. Models results. 

Table 1 shows some aspects that are mentioned in the 
configuration files, such as the size of the input and the size 
of each batch. The batch size defines the number of samples 
that will be propagated together through the network. The 
training time is, as expected, different in the case of the two 
models, YoloV4 tiny being at least 4 times faster. In the case 
of the number of iterations, not all those mentioned in the 
table are useful for obtaining the final model used. This is 
due to the Darknet framework which uses the mAp 
evaluation metric, once every few hundred/thousand 
iterations to evaluate the model even during training, 
stopping the process when it starts to lose accuracy due to 
various causes. However, the framework saves the model at 
each evaluation, so that in the end we can be sure that we 
benefit from the best possible model. The metric mentioned 
previously is widely used, being found as an evaluation 
method for various models. Despite the name, the metric is 
not calculated by taking the average of precision values. The 
mAP compares the ground-truth bounding box to the 
detected box and returns a score. In these calculations, the 
IoU (intersection over union) index and the results obtained 
based on it are vital: false positive, false negative, true 
negative and true positive. In short, the IoU index takes into 
account the bounding box received from the model in 
response and the one we have in our data set. If the model 
answers a box that overlaps well enough with the original, it 
is classified as a valid answer. In our case, the percentage of 
overlap that must be met is at least 50%. The accuracy of the 
two models can be improved by enlarging the ImageV4 data 
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set, with real images, which can be taken by anyone with a 
camera. These are more valuable in terms of learning, 
comparable to any augmented images that can be added. 

Recognition of the license plate 
In order to detect the characters on the license plate we use 
Tesseract. Its creators claim that in order to have optimal 
results, the characters must be black, on a white background 
[5]. As it can be seen, the YOLO model gives us as a result 
an area in the photo, in the form of a rectangle, in which the 
license plate is framed (number 1 in Figure 1; from this 
moment the indications in this section will be made 
exclusively on this figure). Thus, a series of preprocessing 
steps are required to get rid of the noise in the photo and to 
deliver the letters to the OCR in the best condition. For these 
preprocessings we use the OpenCV library which helps 
fulfill the purpose.  

 
Figure 1. Steps leading to detection. 

In the first phase (number 2), the image will be converted to 
grayscale, in order to be delivered to the function that 
binarizes the photo, based on Otsu thresholding. Otsu’s 
thresholding divides the pixels into foreground and 
background, based on calculations with the purpose of 
obtaining a binary image, in the best shape (number 3). The 
next step is to add a padding to the entire image to prepare it 
for identifying the contours. This step has the role of 
avoiding the situation in which a letter cannot be identified 
because it is too close to the margin of the photo (number 4). 
Evidently, after identifying the contours (number 5), many 
of the ones found are redundant, our next goal being to sort 
them and keep only the ones that fit the letters (number 6). 
The last two preprocessing phases are done based on the 
binarized image, but for a better visualization, the original 
image was kept in the figure. The identification of contours 
that are not relevant for detection is done by removing those 
that have less than 5% and more than 30% of the total width 
of the image. In addition, another criterion is that the contour 
be between 25% and 90% of the total height of the image. 
However, in order to minimize the risk of taking into account 
unnecessary data, a filter is applied, eliminating those 
contours in which the difference in height between them is 
greater than 15%. These filters were fixed based on the 
careful analysis of a Romanian registration plate and the tests 
were made on multiple images. The next step is to take the 

remaining contours and cut them, leaving only the letters and 
numbers (number 7). Finally, a padding is added to each 
character, because an improvement in accuracy has been 
observed thanks to this aspect. Regarding the configuration 
imposed on the Tesseract, it looks like this: 

-c tessedit_char_whitelist = 0123456789ABCDE 
FGHIJKLMNOPQRSTUVWXYZ  

--psm 10 --oem 3 
The above instruction has the role of allowing only a series 
of characters to be detected (tessedit_char_whitelist), 
indicating that the detection is done only on one letter (psm) 
and that any internal OCR engine can be used (oem). 

THE APPLICATION 
The model created for the detection and recognition of the 
license plate can be integrated in various applications that 
can simplify or automate vital processes for the safety and 
smooth running of daily life. In the following sections, we 
propose to present the implementation of a MVP (Minimum 
Viable Product) application capable of managing a parking 
lot and the access to it. The system aims to allow access in 
the parking lot to vehicles that are pre-registered in the 
system and to charge them accordingly, depending on the 
length of stay in it. The parking owner can customize the 
system settings such as: the fee for one hour in the parking 
lot and the number of places available in it. He can also 
register people who have access to the parking lot, recharge 
their accounts, edit people’s identification data and generate 
various reports about vehicles that have transited the system. 
The data required for the operation of the application is 
stored in a relational database, PostgreSQL. The system will 
be embedded in a graphical PyQt5 application that is 
intuitive and does not allow actions that can lead to 
inconsistencies in the data saved in the database. 

Application Architecture 
Owner page - The page has the role of adding a new owner 
in the system. Before entering the data into the database, a 
series of sanity checks are performed in order to prevent their 
inconsistency. These are made with the help of regular 
expressions, and if there are any problems with one of the 
completed fields, the user receives a warning message (see 
Figure 2 left). 

Edit Owners’ Information Page - The role of this page is 
to offer the option to edit information about owners added 
using the previous page or to permanently delete an owner 
from the system. At the top of the page, there exists a 
modified QTableWidget, in which all of the owners of the 
system are displayed. This table only allows the selection of 
rows and when the user selects one, a trigger automatically 
fills in the editable fields present below the table with the 
information about that person. Obviously, in this case too, 
the data given by the user is validated with the help of regular 
expressions and, if some fields do not respect the format 
imposed, the user is informed about it. 
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Figure 2. Screenshot from “Add Owner Page” (left) and 
“Modify Budget and Fee Page” (right). 

Modify Budget and Fee Page - The role of this page is to 
modify additional data, vital for its proper functioning. It is 
divided into 3 sections as follows: “Modify the budget for an 
owner”, “Modify the number of parking spaces” and 
“Modify the parking fee” (see Figure 2 right). Each of the 
three sections has a button or two associated with the 
following role: 

1. “Get budget” button has the role of automatically filling, 
based on the registration number entered by the user, the 
budget associated with the respective car, within the 
“Current budget” field. “Modify budget” button modifies 
the car budget, if the user enters a valid value. 

2. “Modify parking spaces” button triggers the update in the 
database of the number of parking spaces, if the data 
entered by the user is valid. 

3. “Modify fee” button triggers the update in the database 
of the fee for one hour of parking,  if the data entered by 
the user is valid. 

Input Flow Page –  The role of the page is to analyze the 
flow of entry into the parking lot and to start the necessary 
actions to save the data about the cars (see Figure 3 left). The 
page offers the user the option to select a video file, 
previously saved on the personal computer, with the help of 
the "Choose file" button. Next to it is the “Analyze file” 
button that triggers an algorithm that sends a frame for 
detection, once every 5 frames to the YOLOv4 tiny model. 
After this step, the Tesseract OCR identifies the characters 
on the license plate, and the result, if the sanity checks for a 
valid license plate are met, is checked in the database. At the 
same time, at the top of the page, the analyzed file will be 
broadcasted in a QVideoWidget. After the checks that take 
place in the database, 5 distinct messages can appear under 
the area where the analyzed video is running: 

1. “Number not registered. ACCESS DENIED.” 
2. “Number recognized successfully. ACCESS 

ALLOWED.” 
3. “Balance negative. ACCESS DENIED.” 
4. “Car already inside the parking lot. Account still 

charged.” 
5. “Parking lot is full. ACCESS DENIED.” 

 

Figure 3. Screenshot from “Input Flow Page” (left) and “Output 
Flow Page” (right). 

Output Flow Page - The role of the page is to analyze the 
cars leaving the parking lot, to charge the drivers accordingly 
and to notify them by email in case their budget becomes 
negative after their last visit (see Figure 3 right). The 
implemented payment system allows any owner registered 
who has a strictly positive balance to enter the parking lot. 
At the end of the visit, it is charged accordingly, allowing the 
balance to become negative. Moreover, if necessary, the 
system will notify the car owner that a top-up of the account 
is necessary, using the email address registered in the system, 
also letting them know that their access is being restricted on 
subsequent visits. The email notification service for drivers 
is implemented using the “SMTPLIB”  library in Python 
which uses the SMTP protocol (Simple Mail Transfer 
Protocol), that handles sending emails and routing emails 
between mail servers. After each car leaving the parking lot, 
4 messages can be displayed within the interface: 

1. “Number not registered. Goodbye!” 
2. “The fee is {price}. The new balance is {new_credit}. 

Please top up. Have a nice day!” 
3. “The fee is {price}. The new balance is {new_credit}. 

Have a nice day!” 
4. “An error occurred. Please contact the nearest operator.” 

In the case of messages 2 and 3, the “price” field will be 
replaced accordingly for each car with the amount it had to 
pay for the period it was parked in the parking lot, while the 
“new_credit” field will be replaced with the remaining 
amount after completing the payment for the last stay. 

Live Stream Page - The page is not available in the MVP 
version, but it exists in order to be used for further 
development of the application. The page aims to be able to 
take live video streams for both the input flow and the output 
flow, acting similarly to page “Input Flow Page” and  
“Output Flow Page”. The biggest challenge for 
implementing this page will be getting the live stream needed 
in order to test the features. 

Reports Generator Page - The page has the role of 
generating reports on the flow of cars. It is divided into two 
sections: “Generate report from the past” and “Generate 
report with currently parked cars”. The first section allows 
the user to set the date and time frame (start and end of the 
period) for generating the report. The “Choose directory” 
button gives the user the option to select the directory where 
he wants the report to be saved, while the “Generate report” 
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button starts the generation and finally saves a document 
called “report_past_parked_cars.pdf” at the location 
indicated by the user. The second section allows the user to 
generate a report with the cars that are currently in the 
parking lot. The buttons have the same functionality as the 
first section, but the document generated in this section will 
be called “report_currently_parking_cars.pdf”. Both reports 
are built using FPDF which is a library for PDF document 
generation under Python. Compared to other PDF libraries, 
FPDF is simple, small and versatile, with advanced 
capabilities and is also easy to learn. 

ID CAR ENTRANCE EXIT FEE PHOTO 

19 2021-06-01 
01:50:37 

2021-06-01 
01:51:15 

15 

 

Figure 4. Excerpt from the report on cars parked in the past. 

EXPERIMENTAL RESULTS 
We performed usability tests similar with [8; 13] and 
collected opinions about the application from two different 
perspectives: (1) user of the application (the owner of the 
parking lot whose duties are: registers people in the system, 
edits data about existing people, changes the number of 
parking spaces and the price for an hour in the parking lot, 
generates reports based on the flow of people who passed the 
parking lot) and (2) beneficiary of the application (the driver 
of the car, which is registered in advance by the owner of the 
parking lot and whose registration number is scanned at the 
entrance and exit of the parking lot), to see what can be 
improved or changed in the future in the application. 

Methodology:  The conducted usability test consisted of an 
introduction, tasks for the application, a short interview, and 
a post-test questionnaire. We instructed the participants to 
think out loud and express their thoughts during the test. 
After the task series that we communicated verbally to the 
participants, we gathered their assessment of the overall 
experience using the QUIS (The Questionnaire for User 
Interaction Satisfaction) scale. The tasks that users 
performed covered the options from the application and each 
session took around 5 minutes. 

Participants: We collaborated for evaluation with 11 
persons, with an average age of 21.9 years, 9 out of 11 
holding a driving license. Their selection was random, the 
group being formed of 7 women and 4 men. All of them have 
previous experience with desktop applications. They 
received the application and their interactions with it were 
during one day.  

Results: From our observation during the test sessions, users 
have successfully used and understood all the functionalities 
that the application offers. Participants were asked to rate 
different sentences about the application with a grade from 1 
to 9, where 1 means “Strongly disagree” and 9 means 
“Strongly agree”. They also had to answer 4 open-ended 

questions aimed at identifying: (1) the most useful 
component, (2) the component that can generate the most 
problems, (3) shortcomings of the current version and (4) the 
challenges that may arise in using such a system. All 
questions to be assessed with a grade were chosen such that 
to form a clear delimitation of strengths and weaknesses, 
based on the score obtained. In the case of open-ended 
questions, all this has been designed so that it can provide 
future directions for the application and highlight problems 
that may arise when using such a system. 

Thus, from the perspective of an application user, the 
following questions obtained the average of the answers as 
follows: “Overall, I am satisfied with how easy it is to use 
this system.” - 8.09, “I felt comfortable using this system.” - 
7.36, “I believe I could become productive quickly using this 
system.” – 8, “Whenever I made a mistake using the system, 
I could recover easily and quickly.” - 8.09, “The organization 
of information on the system screens was clear.” - 8.18, “The 
interface of this system was pleasant.” -7.09, “This system 
has all the functions and capabilities I expect it to have.” - 
7.54, “Overall, I am satisfied with this system.” - 8.18.  

Summarizing the open-ended questions, users consider that 
the most useful component of the application is the 
automatic payment system that streamlines processes that 
normally happen manually.  Users expressed concern that the 
license plate detection and recognition system could not 
operate in optimal parameters if the registration number is 
damaged, dirty or if the weather is unfavorable outside. In 
future versions, respondents want the graphical interface to 
be improved, the “Live Page” page to be implemented and 
the application to be available on multiple operating systems.  

Instead, from the perspective of a beneficiary of the 
application, the following questions obtained the average of 
the answers as follows: “I see the charging system better than 
the classic ticketing system.” - 8.45, “I see the system used 
at the same time with the classic ticketing system, not a 
replacement for it.” - 4.45, “I think this system will be 
perceived negatively by people.” - 3.54, “I believe that in the 
medium and long term such a system would bring more 
problems than the classic ticketing system.” – 3. In opinion 
of those who answered the questionnaire, the biggest 
challenges that the system can have are the errors that can 
occur in the automatic recognition of the license plate and 
people’s reluctance to the technological advance required by 
the implementation of this system. 

CONCLUSIONS 
This work describes two of the YOLO models together with 
the process of segmentation and detection of a license plate 
and their integration in an application that deals with the 
management of a parking lot. Basically, this approach offers 
multiple functionalities for the user. Regarding this 
application, the Live page must be implemented in the 
following versions, whether we are talking about testing on 
a real parking lot with an access barrier or in a controlled test 



Proceedings of RoCHI 2021 

- 35 - 

environment, such as one based on microcontrollers. In 
addition, for the efficiency of the detection and recognition 
of the registration plate, an additional system that first detects 
the movement within the supervised area can be 
implemented. Based on motion detection, it triggers 
operations that are more expensive in terms of resources 
used, with no need for the main model to process frames 
continuously. 
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