
Proceedings of RoCHI 2021

- 28 -

An Automatic Car License Plate Recognition System
Ionuț-Andrei Pătrăuceanu, Adrian Iftene, Daniela Gîfu

Faculty of Computer Science, “Alexandru Ioan Cuza” University of Iași, Romania
{andrei.patrauceanu, adiftene, daniela.gifu}@info.uaic.ro

ABSTRACT
Taking into account the increase in the number of cars and,
implicitly, the traffic problems, an automatic license plate
recognition (ALPR) system becomes a significant task in
smart surveillance and transportation. The interest for the
implementation and integration of ALPR technology into the
daily security operations is visible, although there are still
insufficiently resolved issues. They are based on either the
help of image processing techniques or deep learning
techniques. More precisely, they are using object detection
algorithms such as You Only Look Once (YOLO). In order
to obtain a system capable of detecting the license plates, we
propose a method using YOLOv4. This system achieved
impressive frames per second, the results show that we are
talking about a method that is relatively insensitive to
background variations.

Author Keywords
Image classification, OCR, YOLOv4, Usability tests.

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI):
User Interfaces. H.3.2. Information Storage and Retrieval:
Information Storage.

General Terms
Human Factors; Design.

DOI: 10.37789/rochi.2021.1.1.6

INTRODUCTION
Annually, the number of cars increases rapidly (e.g., between
2015 and 2019, the Europe’s car fleet increased by about 8
million units). Consequently, car monitoring systems should
be widely implemented, being able to automate processes
that normally depend on a worker [11]. Moreover, this would
discourage acts that are against the law, such as: leaving the
scene of an accident, kidnapping, car theft etc. [22].
Automatic License Plate Recognition (ALPR), invented in
1976 by the UK’s Police Scientific Development Branch
[14], represents a field that acquired importance to many
traffic related applications such as road traffic monitoring
[2]. In fact, ALPR plays a major role in monitoring of traffic
rules and maintaining law enforcement on public roads [17]
by their number-plates using recognition techniques [6; 12].
We know too well that cars can be monitored based on their
license plates. Delays, traffic jams, thefts, etc. could be
prevented if the control entities (e.g., police) were equipped
with intelligent systems for detecting and recognizing
registration numbers [16]. The legitimate research question
of this paper intends to answer: How does automatic license

plate recognition improve public safety? The main focus of
this work is to build and implement a real time system,
assisted by YOLOv4, able to automate surveillance
processes in Romania. In fact, the computational limitations
could be attained easily, as the application only requires a
machine to run on and the media files to examine, given in
the form of either images or video streams. No matter how
well we choose the right algorithms, a successful ALPR
system deployment may require additional hardware to
maximize its accuracy. The rest of paper is organized as
follows: Section 2 presents a short overview of license plate
systems very useful in the control traffic and other ways (e.g.,
criminality detection), while Section 3 describes the new
system based on YOLOv4. Section 4 briefly discusses the
evaluation of this new system before drawing some
conclusions in the last section.

RELATED WORK
In Romania, ALPR systems are used only by the National
Company for Road Infrastructure Management (CNAIR) in
two cases: for verifying the payment of “Rovinieta” and the
toll for the “Fetești-Cernavodă” bridge. CNAIR uses 106
fixed video cameras and 14 mobile video cameras, located
on several roads to check who paid or not the Rovinieta or to
identify drivers who did not acquire a toll. Basically, the
CNAIR recognition system has the following functionalities:
(1) photograph the registration number; (2) send real-time
information to a computer center, where an operator
confirms that the automatically registered number is correct;
(3) the system checks if the driver paid one of the two taxes
or both. In Europe, more precisely, in the United Kingdom,
there have a network of 11,000 video cameras, which send
about 50 million “readings” of registration numbers daily to
the main center, where they are stored for approximately one
year after their appearance, alongside metadata such as time,
date and location regarding the place where the detection
happened. The main purpose of this network is different than
Romanian one. It is used to help criminality detection. An
ALPR system can be implemented either on the basis of
image processing techniques or on the basis of using deep
learning techniques, more precisely using object detection
algorithms such as: “Single Shot Detector” (SSD), “Fast
Region-based Convolutional Neural Network” (Fast R-
CNN), “You Only Look Once” (YOLO) etc.

Regarding the first category, one of the most used and simple
image processing techniques for detection is to use the Sobel
filter together with the Hough transform [1; 9; 15; 23]. The
Sobel filter is used to detect the edges of a picture. These are

Proceedings of RoCHI 2021

- 29 -

represented by areas with strong contrasts, which can be
identified by the major difference in intensity between a
pixel and the one after it. The image we are working with is
represented only by the edges captured in the initial picture.
Considering the fact, that the registration number is a
rectangle, the search is limited to identifying and filtering the
representative matching shape for it. This can be done using
Hough Transform, which is a feature extraction technique,
specialized in identifying different types of patterns. This
approach can be found in specialized libraries for computer
vision, such as OpenCV.

The second category, based on neural networks [10; 18],
teaches a computer to study as a human, through examples,
using multi-layered neural networks. For a deep learning
neural network, each hidden layer performs the training of a
unique set of features that are based solely on the output of
the layers that have appeared previously. In order to build the
system proposed, we need a model in which accuracy and
computing time play equally important roles. After carefully
analyzing the options currently available, a YOLOv4 model
seems to be the one that fits best the task, as it successfully
combines the constants needed [3; 4; 21].

Our solution uses a YOLO model to recognize the license
plates in pictures and for identifying them from a live feed.
Then, highlighted areas, detected from the image, will be
preprocessed to be delivered to an OCR (Optical Character
Recognition). The state-of-the-art (SOTA) selected in order
to be used for the fulfillment of the OCR is Tesseract
provided by Google. All components will ultimately be
embedded in a PyQt5 graphical user interface, which is easy
to use and attractive.

DATASETS AND TECHNOLOGIES USED
Datasets - Open Images Dataset V4 is a collection of almost
9 million pictures, annotated in various ways and arranged in
600 distinct classes. The annotations provided are generally
made by professionals in this field, thus ensuring the
accuracy and consistency of the data. The images are
extremely diverse and often contain several objects in a
single picture (8.4 objects per image, on average). Analyzing
all the available classes, the one of interest for us is “Vehicle
registration plate”, which can help achieve the proposed
goal. The class is accessible using the following path within
the hierarchy: Entity, Vehicle, Land vehicle, Auto part. The
data collected from the interest class are divided into two:
training data and test data. In addition to the actual images,
they contain an annotation file, which indicates the exact area
in the photo where the license plate is, in the shape of a
rectangle. The number of annotations in each image can
range from a single annotation to 8 in a picture, in the case
of test images and can reach up to 28, in terms of training
images. The number of images in each batch is as follows:
5,368 images for training, in which there are 7,853
registration numbers and 386 pictures for test, in which there
are 513 annotated plates.

OIDv4 ToolKit - Given that Open Images Dataset V6 is a
huge dataset, its manual manipulation could only be done
with great difficulty and with a gargantuan waste of time.
OIDv4 ToolKit comes in support of this problem and offers
a simple and easy to use solution for fast download of the
necessary data [20].

Roboflow - Roboflow is a complex web Computer Vision
developer framework, useful for the preprocessing phase of
many machine learning algorithms. In data pre-processing,
there are several steps involved such as resizing, changing
image orientation, contrasting, followed by various data
augmentation techniques. As a web application, it is very
well synchronized and allows extremely fast uploading of
voluminous data and its manipulation.

Darknet - Neural Network Framework - Darknet is an
open-source neural network framework written in C and
CUDA (Compute Unified Device Architecture). CUDA is
fast, easy to install, and provides both CPU and GPU
computation. Darknet is installed with only two optional
dependencies: OpenCV, if users want a larger diversity of
supported image types and CUDA, for GPU computation.

Google Colab - In 2018, Google launched Google Colab
which is a web platform that allows programmers to write
and execute Python code. In general, the service is used to
train machine learning models that are time and resource
consuming. The files created by this platform are called
Colab notebooks, which are nothing but Jupyter notebooks,
hosted by Colab. Jupyter Notebook is an open-source web
application that can be used to create and share documents
that contain live code, plots, images and text.

“tensorflow-yolov4-tflite” repository - Given that a
YOLOv4 specific weight file cannot currently be used
directly with TensorFlow, because in the latest release of
YOLO, a new activation function, named Mish, was
introduced, there was a need for a transformation to happen.
That being said, the repository at hand contains the
implementation for a parser that transforms YOLOv4-
specific .weights files to a format that is accepted by
Tensorflow. Thus, making use of the code provided, the
.weights files have been converted to .pb files.

OpenCV - OpenCV (Open Source Computer Vision
Library) is an open source library, written in C and C ++. The
library has been designed to provide computational
efficiency for real-time computer vision applications.

TensorFlow - Tensorflow is an open-source library that
contains algorithms for numerical calculations and
implementations of complex machine learning algorithms
and neural networks. The library is easy to use but also very
fast, the source code being written in C++, while the
interfaces that call the source code being written in Python.
Tensorflow helps in training complex neural networks which
can classify different objects such as: handwritten numbers,
images, etc.

Proceedings of RoCHI 2021

- 30 -

Tesseract - Tesseract is an OCR (Optical Character
Recognition) engine for automatic character recognition of
different types of documents: printed, handwritten and typed
[7, 19]. Before this technology was available, the only way
to digitize a text was to rewrite it manually, in its entirety.
This process, in addition to being massively time-
consuming, also led to inconsistencies and typos.

PyQt5 - PyQt is a GUI (Graphical User Interface) widget
toolkit and represents a Python interface for Qt, one of the
most popular cross-platform GUI libraries. In other words,
PyQt serves as a link between the Python programming
language and the Qt library. The most stable and the one
constantly receiving new improvements is PyQt5, so it was
chosen for the purpose of this work.

THE MODELS

Architecture
Object detection is one of the classic problems in computer
vision that should not be confused with classification, as it is
much more complex. The latter can recognize objects but
does not indicate the area in which they are located. In
addition, classification cannot work on frames that contain
multiple objects.

YOLO (“You only look once”) is part of the category of
systems that allow the detection of several objects within the
same frame. It is popular because, in addition to achieving
high accuracy, it can also run-in real time. The algorithm is
named so because it requires a single forward propagation
through the neural network in order to produce results. After
non-max suppression, the algorithm exposes the objects
present in the frame, surrounded by delimitation boxes,
ensuring that they are not detected several times. Models for
object detection can be divided into two categories (1) Two-
Stage Detectors, (2) One-Stage Detectors. YOLO, as
expected, is part of the category of one-stage detection
models (also called one-shot detection models), which do not
need the last preliminary step, present in the case of two-
stage detectors. This last phase, within these detectors, is a
costly one from a computational point of view, slowing down
the detection process. This happens because it involves the
detection of important regions and then, based on them, the
detection of the objects sought. Thus, after receiving the
input, there are 3 phases for fulfilling the purpose of the
model (1) Backbone, (2) Neck, (3) Dense Prediction (Head).

Backbone is a neural network made up mostly of
convolutional layers. Its purpose is to extract the essential
features from the input data, having a particularly important
role in the final performance of the model. YOLO can be
used together with several types of backbone, the ones that
are widely used being YOLOv4 tiny and Darknet53:

• Darknet53 has 53 convolutional layers, being much
more precise but slower compared to the architecture
used by YOLOv4 tiny.

• YOLOv4 tiny has only 29 convolutional layers, so it is
less accurate, but faster and suitable for devices that do
not have a very high computational capacity.

Both versions adopt a structure called Cross Stage Partial
(CSP) which is inspired by the DenseNet architecture.

Neck - The next step to achieve the proposed goal is to mix
and combine the features extracted in the backbone in the
“Neck” block to prepare them for the detection step. The
authors of YOLOv4 propose in this block a series of tools
already used in the world of deep learning algorithms, but
modified to better fit the needs of the model and to increase
its final accuracy.

After CSPDarknet53, an SPP (Spatial Pyramid Pooling)
block is added in order to increase the receptive field and
separate out the most important features extracted by the
backbone. Original SPP arose from the need to have an
approach that can have multi-scale input images for training
because, in the past, only fixed-size images could be used
due to the presence of the fully connected layers. The
problem with these types of layers started from the fact that
for them we have to specify which the input layers and the
output layers are. Before these layers, there is always a series
of convolutional or max pool layers that need to be flattened
in order to be used as input. This last step represents the
bottleneck in being able to receive inputs of variable size,
since the input of a fully connected layer must remain of
fixed length. The first deep learning models used simple
networks that manipulate the input data through a succession
of layers, each layer having as input data the output of the
previous one. Due to the evolution of models of this type, it
has been observed that as we progress towards the end of the
network, some information that may help fine-tune the
prediction may be lost. In response to this problem, the
authors of the YOLOv4 model used PaNet, whose
architecture allows better information propagation. The
components of the neck typically flow up and down among
layers and connect only the few layers at the end of the
convolutional network. One aspect to note is that in the
original PaNet implementation, low-level information is
brought to the top layers by adding together the current layer
and information from the previous layer to form a new
vector. Instead, the authors of YOLOv4, propose a modified
variant that uses a new vector created by concatenating the
input and the vector from the previous layer.

Head - the last part of the model deals with the following:

• Locating bounding boxes;

• Classifying what is inside each box.

Due to the architecture present in the neck, the head’s input
will contain spatially rich information from the bottom-up
stream and the semantic rich information from the top-down
stream. The output of the algorithm is composed of 4 values
that are meant to describe the predicted bounding box (x, y,
h, w) and the probability of k classes and an additional one,

Proceedings of RoCHI 2021

- 31 -

for the background. An anchor box is predefined and has an
aspect ratio set, which is defined beforehand by running, on
the dataset, a k-means clustering.

YOLOv4 tiny particularities
In terms of activation function, YOLOv4 uses Mish, while
YOLOv4 tiny uses Leaky ReLU, which is a function based
on maximum, being less computationally expensive than the
one used by the first model. In the part of feature fusion,
Yolov4 tiny differs by removing the SPP and using only the
first step within the PaNet, called FAN (Feature Pyramid
Network).

Training process and results
The process of creating models is started by preparing the
data. Thus, using the OIDv4 ToolKit, the training and testing
datasets are extracted. After extracting all the necessary
images from the Open Images Dataset V4, we have attached
for each one a .txt file with the same name as the picture, in
which all the present registration plates are annotated in a
classic format. Basically, for each license plate, in order to
identify it, in the annotation files, the top left corner and the
bottom right corner of the bounding box are mentioned.
However, the annotation format required by YOLO is
different, based on the center of the rectangle and its width
and height. Therefore, to make the transition from the first
format to the desired one, the Roboflow was used. After this
step, we can start using the Darknet framework together with
the work environment from Google Colab. The steps to be
taken to achieve the proposed goal can be summarized as
follows:

1. The first step is to set the use of a GPU hardware
accelerator in Google Colab in order to receive the results
in the shortest time that the work environment can
provide.

2. The second step is cloning and building the Darknet
framework within Google Colab.

3. After this, it is necessary that both the training and the
test images, together with the files adapted for the format
required by YOLOv4 to be uploaded in Google Drive, in
two .zip archives called obj and test.

4. The next step is to create the files needed to start the
training:

• Customized configuration files with .cfg extension, one
for each model (YOLOv4 and YOLOv4 tiny).

• obj.data and obj.name files; the first file contains
information such as the number of classes on which the
detection is made (in our case one, the class of the
license plates), the location of the obj.names file,
train.txt and test.txt files, as well as the location where
the generated models will be saved.

• train.txt and test.txt files; files can be generated using a
Python script and contain the paths of all previously
uploaded images from the location where they were
unzipped.

5. One last step, before starting the training process, is to
download pre-trained weights for both YOLOv4 and the
YOLOv4 tiny model. These are trained on the basis of
the well-known data set called COCO, and can be used
thanks to the process called transfer learning. Thereby,
instead of randomly setting weights, we will use these
ones. This saves a lot of time and helps minimize the
number of computations required while training the
custom model.

6. Finally, the training is launched, the results and the
waiting time for each of them are presented in Table 1.

Model YOLOv4 YOLOv4 tiny

Training duration 9 hours and 4
minutes

2 hours and 12
minutes

Batch size 64 64

Input size 416x416 416x416

Activation function Mish Leaky ReLu

IoU 50% 50%

Iterations 6000 2500

mAP (Mean average
precision)

91.58% 78.20%

Table 7. Models results.

Table 1 shows some aspects that are mentioned in the
configuration files, such as the size of the input and the size
of each batch. The batch size defines the number of samples
that will be propagated together through the network. The
training time is, as expected, different in the case of the two
models, YoloV4 tiny being at least 4 times faster. In the case
of the number of iterations, not all those mentioned in the
table are useful for obtaining the final model used. This is
due to the Darknet framework which uses the mAp
evaluation metric, once every few hundred/thousand
iterations to evaluate the model even during training,
stopping the process when it starts to lose accuracy due to
various causes. However, the framework saves the model at
each evaluation, so that in the end we can be sure that we
benefit from the best possible model. The metric mentioned
previously is widely used, being found as an evaluation
method for various models. Despite the name, the metric is
not calculated by taking the average of precision values. The
mAP compares the ground-truth bounding box to the
detected box and returns a score. In these calculations, the
IoU (intersection over union) index and the results obtained
based on it are vital: false positive, false negative, true
negative and true positive. In short, the IoU index takes into
account the bounding box received from the model in
response and the one we have in our data set. If the model
answers a box that overlaps well enough with the original, it
is classified as a valid answer. In our case, the percentage of
overlap that must be met is at least 50%. The accuracy of the
two models can be improved by enlarging the ImageV4 data

Proceedings of RoCHI 2021

- 32 -

set, with real images, which can be taken by anyone with a
camera. These are more valuable in terms of learning,
comparable to any augmented images that can be added.

Recognition of the license plate
In order to detect the characters on the license plate we use
Tesseract. Its creators claim that in order to have optimal
results, the characters must be black, on a white background
[5]. As it can be seen, the YOLO model gives us as a result
an area in the photo, in the form of a rectangle, in which the
license plate is framed (number 1 in Figure 1; from this
moment the indications in this section will be made
exclusively on this figure). Thus, a series of preprocessing
steps are required to get rid of the noise in the photo and to
deliver the letters to the OCR in the best condition. For these
preprocessings we use the OpenCV library which helps
fulfill the purpose.

Figure 1. Steps leading to detection.

In the first phase (number 2), the image will be converted to
grayscale, in order to be delivered to the function that
binarizes the photo, based on Otsu thresholding. Otsu’s
thresholding divides the pixels into foreground and
background, based on calculations with the purpose of
obtaining a binary image, in the best shape (number 3). The
next step is to add a padding to the entire image to prepare it
for identifying the contours. This step has the role of
avoiding the situation in which a letter cannot be identified
because it is too close to the margin of the photo (number 4).
Evidently, after identifying the contours (number 5), many
of the ones found are redundant, our next goal being to sort
them and keep only the ones that fit the letters (number 6).
The last two preprocessing phases are done based on the
binarized image, but for a better visualization, the original
image was kept in the figure. The identification of contours
that are not relevant for detection is done by removing those
that have less than 5% and more than 30% of the total width
of the image. In addition, another criterion is that the contour
be between 25% and 90% of the total height of the image.
However, in order to minimize the risk of taking into account
unnecessary data, a filter is applied, eliminating those
contours in which the difference in height between them is
greater than 15%. These filters were fixed based on the
careful analysis of a Romanian registration plate and the tests
were made on multiple images. The next step is to take the

remaining contours and cut them, leaving only the letters and
numbers (number 7). Finally, a padding is added to each
character, because an improvement in accuracy has been
observed thanks to this aspect. Regarding the configuration
imposed on the Tesseract, it looks like this:

-c tessedit_char_whitelist = 0123456789ABCDE
FGHIJKLMNOPQRSTUVWXYZ

--psm 10 --oem 3
The above instruction has the role of allowing only a series
of characters to be detected (tessedit_char_whitelist),
indicating that the detection is done only on one letter (psm)
and that any internal OCR engine can be used (oem).

THE APPLICATION
The model created for the detection and recognition of the
license plate can be integrated in various applications that
can simplify or automate vital processes for the safety and
smooth running of daily life. In the following sections, we
propose to present the implementation of a MVP (Minimum
Viable Product) application capable of managing a parking
lot and the access to it. The system aims to allow access in
the parking lot to vehicles that are pre-registered in the
system and to charge them accordingly, depending on the
length of stay in it. The parking owner can customize the
system settings such as: the fee for one hour in the parking
lot and the number of places available in it. He can also
register people who have access to the parking lot, recharge
their accounts, edit people’s identification data and generate
various reports about vehicles that have transited the system.
The data required for the operation of the application is
stored in a relational database, PostgreSQL. The system will
be embedded in a graphical PyQt5 application that is
intuitive and does not allow actions that can lead to
inconsistencies in the data saved in the database.

Application Architecture
Owner page - The page has the role of adding a new owner
in the system. Before entering the data into the database, a
series of sanity checks are performed in order to prevent their
inconsistency. These are made with the help of regular
expressions, and if there are any problems with one of the
completed fields, the user receives a warning message (see
Figure 2 left).

Edit Owners’ Information Page - The role of this page is
to offer the option to edit information about owners added
using the previous page or to permanently delete an owner
from the system. At the top of the page, there exists a
modified QTableWidget, in which all of the owners of the
system are displayed. This table only allows the selection of
rows and when the user selects one, a trigger automatically
fills in the editable fields present below the table with the
information about that person. Obviously, in this case too,
the data given by the user is validated with the help of regular
expressions and, if some fields do not respect the format
imposed, the user is informed about it.

Proceedings of RoCHI 2021

- 33 -

Figure 2. Screenshot from “Add Owner Page” (left) and
“Modify Budget and Fee Page” (right).

Modify Budget and Fee Page - The role of this page is to
modify additional data, vital for its proper functioning. It is
divided into 3 sections as follows: “Modify the budget for an
owner”, “Modify the number of parking spaces” and
“Modify the parking fee” (see Figure 2 right). Each of the
three sections has a button or two associated with the
following role:

1. “Get budget” button has the role of automatically filling,
based on the registration number entered by the user, the
budget associated with the respective car, within the
“Current budget” field. “Modify budget” button modifies
the car budget, if the user enters a valid value.

2. “Modify parking spaces” button triggers the update in the
database of the number of parking spaces, if the data
entered by the user is valid.

3. “Modify fee” button triggers the update in the database
of the fee for one hour of parking, if the data entered by
the user is valid.

Input Flow Page – The role of the page is to analyze the
flow of entry into the parking lot and to start the necessary
actions to save the data about the cars (see Figure 3 left). The
page offers the user the option to select a video file,
previously saved on the personal computer, with the help of
the "Choose file" button. Next to it is the “Analyze file”
button that triggers an algorithm that sends a frame for
detection, once every 5 frames to the YOLOv4 tiny model.
After this step, the Tesseract OCR identifies the characters
on the license plate, and the result, if the sanity checks for a
valid license plate are met, is checked in the database. At the
same time, at the top of the page, the analyzed file will be
broadcasted in a QVideoWidget. After the checks that take
place in the database, 5 distinct messages can appear under
the area where the analyzed video is running:

1. “Number not registered. ACCESS DENIED.”
2. “Number recognized successfully. ACCESS

ALLOWED.”
3. “Balance negative. ACCESS DENIED.”
4. “Car already inside the parking lot. Account still

charged.”
5. “Parking lot is full. ACCESS DENIED.”

Figure 3. Screenshot from “Input Flow Page” (left) and “Output
Flow Page” (right).

Output Flow Page - The role of the page is to analyze the
cars leaving the parking lot, to charge the drivers accordingly
and to notify them by email in case their budget becomes
negative after their last visit (see Figure 3 right). The
implemented payment system allows any owner registered
who has a strictly positive balance to enter the parking lot.
At the end of the visit, it is charged accordingly, allowing the
balance to become negative. Moreover, if necessary, the
system will notify the car owner that a top-up of the account
is necessary, using the email address registered in the system,
also letting them know that their access is being restricted on
subsequent visits. The email notification service for drivers
is implemented using the “SMTPLIB” library in Python
which uses the SMTP protocol (Simple Mail Transfer
Protocol), that handles sending emails and routing emails
between mail servers. After each car leaving the parking lot,
4 messages can be displayed within the interface:

1. “Number not registered. Goodbye!”
2. “The fee is {price}. The new balance is {new_credit}.

Please top up. Have a nice day!”
3. “The fee is {price}. The new balance is {new_credit}.

Have a nice day!”
4. “An error occurred. Please contact the nearest operator.”

In the case of messages 2 and 3, the “price” field will be
replaced accordingly for each car with the amount it had to
pay for the period it was parked in the parking lot, while the
“new_credit” field will be replaced with the remaining
amount after completing the payment for the last stay.

Live Stream Page - The page is not available in the MVP
version, but it exists in order to be used for further
development of the application. The page aims to be able to
take live video streams for both the input flow and the output
flow, acting similarly to page “Input Flow Page” and
“Output Flow Page”. The biggest challenge for
implementing this page will be getting the live stream needed
in order to test the features.

Reports Generator Page - The page has the role of
generating reports on the flow of cars. It is divided into two
sections: “Generate report from the past” and “Generate
report with currently parked cars”. The first section allows
the user to set the date and time frame (start and end of the
period) for generating the report. The “Choose directory”
button gives the user the option to select the directory where
he wants the report to be saved, while the “Generate report”

Proceedings of RoCHI 2021

- 34 -

button starts the generation and finally saves a document
called “report_past_parked_cars.pdf” at the location
indicated by the user. The second section allows the user to
generate a report with the cars that are currently in the
parking lot. The buttons have the same functionality as the
first section, but the document generated in this section will
be called “report_currently_parking_cars.pdf”. Both reports
are built using FPDF which is a library for PDF document
generation under Python. Compared to other PDF libraries,
FPDF is simple, small and versatile, with advanced
capabilities and is also easy to learn.

ID CAR ENTRANCE EXIT FEE PHOTO

19 2021-06-01
01:50:37

2021-06-01
01:51:15

15

Figure 4. Excerpt from the report on cars parked in the past.

EXPERIMENTAL RESULTS
We performed usability tests similar with [8; 13] and
collected opinions about the application from two different
perspectives: (1) user of the application (the owner of the
parking lot whose duties are: registers people in the system,
edits data about existing people, changes the number of
parking spaces and the price for an hour in the parking lot,
generates reports based on the flow of people who passed the
parking lot) and (2) beneficiary of the application (the driver
of the car, which is registered in advance by the owner of the
parking lot and whose registration number is scanned at the
entrance and exit of the parking lot), to see what can be
improved or changed in the future in the application.

Methodology: The conducted usability test consisted of an
introduction, tasks for the application, a short interview, and
a post-test questionnaire. We instructed the participants to
think out loud and express their thoughts during the test.
After the task series that we communicated verbally to the
participants, we gathered their assessment of the overall
experience using the QUIS (The Questionnaire for User
Interaction Satisfaction) scale. The tasks that users
performed covered the options from the application and each
session took around 5 minutes.

Participants: We collaborated for evaluation with 11
persons, with an average age of 21.9 years, 9 out of 11
holding a driving license. Their selection was random, the
group being formed of 7 women and 4 men. All of them have
previous experience with desktop applications. They
received the application and their interactions with it were
during one day.

Results: From our observation during the test sessions, users
have successfully used and understood all the functionalities
that the application offers. Participants were asked to rate
different sentences about the application with a grade from 1
to 9, where 1 means “Strongly disagree” and 9 means
“Strongly agree”. They also had to answer 4 open-ended

questions aimed at identifying: (1) the most useful
component, (2) the component that can generate the most
problems, (3) shortcomings of the current version and (4) the
challenges that may arise in using such a system. All
questions to be assessed with a grade were chosen such that
to form a clear delimitation of strengths and weaknesses,
based on the score obtained. In the case of open-ended
questions, all this has been designed so that it can provide
future directions for the application and highlight problems
that may arise when using such a system.

Thus, from the perspective of an application user, the
following questions obtained the average of the answers as
follows: “Overall, I am satisfied with how easy it is to use
this system.” - 8.09, “I felt comfortable using this system.” -
7.36, “I believe I could become productive quickly using this
system.” – 8, “Whenever I made a mistake using the system,
I could recover easily and quickly.” - 8.09, “The organization
of information on the system screens was clear.” - 8.18, “The
interface of this system was pleasant.” -7.09, “This system
has all the functions and capabilities I expect it to have.” -
7.54, “Overall, I am satisfied with this system.” - 8.18.

Summarizing the open-ended questions, users consider that
the most useful component of the application is the
automatic payment system that streamlines processes that
normally happen manually. Users expressed concern that the
license plate detection and recognition system could not
operate in optimal parameters if the registration number is
damaged, dirty or if the weather is unfavorable outside. In
future versions, respondents want the graphical interface to
be improved, the “Live Page” page to be implemented and
the application to be available on multiple operating systems.

Instead, from the perspective of a beneficiary of the
application, the following questions obtained the average of
the answers as follows: “I see the charging system better than
the classic ticketing system.” - 8.45, “I see the system used
at the same time with the classic ticketing system, not a
replacement for it.” - 4.45, “I think this system will be
perceived negatively by people.” - 3.54, “I believe that in the
medium and long term such a system would bring more
problems than the classic ticketing system.” – 3. In opinion
of those who answered the questionnaire, the biggest
challenges that the system can have are the errors that can
occur in the automatic recognition of the license plate and
people’s reluctance to the technological advance required by
the implementation of this system.

CONCLUSIONS
This work describes two of the YOLO models together with
the process of segmentation and detection of a license plate
and their integration in an application that deals with the
management of a parking lot. Basically, this approach offers
multiple functionalities for the user. Regarding this
application, the Live page must be implemented in the
following versions, whether we are talking about testing on
a real parking lot with an access barrier or in a controlled test

Proceedings of RoCHI 2021

- 35 -

environment, such as one based on microcontrollers. In
addition, for the efficiency of the detection and recognition
of the registration plate, an additional system that first detects
the movement within the supervised area can be
implemented. Based on motion detection, it triggers
operations that are more expensive in terms of resources
used, with no need for the main model to process frames
continuously.

ACKNOWLEDGMENTS
This work was supported by project REVERT (taRgeted
thErapy for adVanced colorEctal canceR paTients), Grant
Agreement number: 848098, H2020-SC1-BHC-2018-2020/
H2020-SC1-2019-Two-Stage-RTD.

REFERENCES
1. Agrawal, P. Vehicle Number Plate Detection Using

Sobel Edge Detection Techniques by MATLAB, (2017).

2. Ahmed, M.J., Sarfraz, M., Zidouri, A., and Al-Khatib,
W.G. License Plate Recognition System. Proceedings of
the 2003 10th IEEE International Conference on
Electronics, Circuits and Systems, 2 (2003).

3. Ajay, S., and Mahmood, A. Review of Deep Learning
Algorithms and Architectures. IEEE Access PP 99: 1-1,
(2019).

4. Anand, J., and Meva, D. A Comparative Study of
Various Object Detection Algorithms and Performance
Analysis. International Journal of Computer Sciences
and Engineering 8, (2020), 158-163.

5. Badr, A., Abdelwahab, M.M., Thabet, A.M., and
Abdelsadek, A.M. Automatic Number Plate Recognition
System, (2011).

6. Bailey, D.G., Irecki, D., Lim, B.K., and Yand, L. Test
Bed for Number Plate Recognition Applications.
Proceedings of the 1st IEEE International Workshop on
Electronic Design, Test and Applications (DELTA’02),
IEEE Computer Society. (2002).

7. Boiangiu, C., Ioanitescu, R., and Dragomir, R. Voting-
Based OCR System. Journal of Information Systems &
Operations Management, (2016).

8. Chițaniuc, M., and Iftene, A. GeoAR - An Augmented
Reality Application to Learn Geography. In Romanian
Journal of Human-Computer Interaction 11, 2 (2018),
93-108.

9. Choong, Y.J., Lee, K.K., and Tan, C.C. License plate
number detection and recognition using simplified
linear-model. DOI: 10.31838/jcr.07.03.09. (2020)

10. Coca, G.L., Romanescu, S.C., Botez, S.M., and Iftene,
A. Crack detection system in AWS Cloud using

Convolutional neural networks. In 24rd International
Conference on Knowledge-Based and Intelligent
Information & Engineering Systems, Procedia Computer
Science, 176, (2020), 400-409.

11. Morales-Alvarez, W., Sipele, O., Léberon, R., Tadjine,
H.H., and Olaverri-Monreal, C. Automated Driving: A
Literature Review of the Take over Request in
Conditional Automation. Electronics 2020, 9, 2087

12. Mufti, N., and Shah, S.A.A. Automatic Number Plate
Recognition: A Detailed Survey of Relevant
Algorithms. Sensors 21, 3028, (2021).

13. Pinzariu, M.N., and Iftene, A. Sphero - Multiplayer
Augmented Game (SMAUG). In International
Conference on Human-Computer Interaction, Iasi,
Romania, (2016), 46-49.

14. Roberts, D.J., and Casanova, M. Automated License
Plate Recognition (ALPR) Use by Law Enforcement:
Policy and Operational Guide, (2012).

15. Rudeš, H., and Grd, P. License Plate Detection for
Preserving Privacy using Haar Classifiers. (2015).

16. Sankari, M., Bremananth, R., and Meena, C. A Robust
Diverged Localization and Recognition of License
Registration Characters. Int. J. Electr. Comput. Eng. 6,
(2013), 1225-1232.

17. Sarfraz, M. Computer‐Aided Intelligent Recognition
Techniques and Applications, (2005).

18. Shrestha, A., Mahmood, A. Review of Deep Learning
Algorithms and Architectures, 1-1, (2019).

19. Smith, R. An Overview of the Tesseract OCR Engine.
In 9th International Conference on Document Analysis
and Recognition, (2007).

20. Vittorio, A. Toolkit to download and visualize single or
multiple classes from the huge Open Images v4 dataset,
(2018) https://github.com/EscVM/OIDv4_ToolKit.

21. Walsh, J., O’Mahony, N., Campbell, S., Carvalho, A.
Krpalkova, L., Velasco H.G., Harapanahalli, S., and
Riordan, D. Deep Learning vs. Traditional Computer
Vision, (2019).

22. Woods, L. Automated Number Plate Recognition: Data
Retention and the Protection of Privacy in Public Places.
Journal of Information Rights Policy and Practice 2 (1),
(2017).

23. Zhao, Y., Gu, J., Liu, C., Han, S., Gao, Y., and Hu,
Q.M. License Plate Location Based on Haar-Like
Cascade Classifiers and Edges, (2010).

