
International Journal of User-System Interaction 12 (2) 2019, 67-82 © MatrixRom

Counting People in Crowded Places using
Convolutional Neural Networks

Eduard Cojocea1,2, Traian Rebedea1,2
1Open Gov SRL
95 Blvd. Alexandru Ioan Cuza, Bucharest, Romania
2University Politehnica of Bucharest
313 Splaiul Independentei, Bucharest, Romania
E-mail: iedi.cojocea@gmail.com, traian.rebedea@cs.pub.ro

Abstract. Security cameras have been around for decades and they continue to grow in
number and capabilities as time passes. These days, in addition to the security nature of these
cameras, they can be also used to obtain relevant information about the scene. Counting
people and classifying them by gender, age, weight, height, or other attributes are very useful
for marketing purposes and much more. Detecting anomalous events, like a suspicious
luggage left unattended in a crowd or a person falling on subway rails could improve security
in many spaces that are frequented by large masses of people. Extracting such data from
video streams can have many more uses, some of which are not even imagined yet. In this
paper we present how object recognition, tracking and classification methods can be used in
conjunction to offer a solution for the problems described above.

Keywords: people counting, people profiling, deep learning, computer vision, object
recognition.

1. Introduction
In this paper is described a solution for a system that can reliably extract
statistics, in real time, from video streams of crowded indoor places such as
malls, markets, subway stations, concert halls and so on and make them
available to the user through a custom Graphic User Interface (GUI). These
statistics are to be used for marketing purposes, serving as valid estimations
regarding the size of the crowd and its gender, age, weight and height
distributions. Obtaining low error estimations of the characteristics described
above is the main goal of the system, with optional goals such as anomaly
detection, which could be used for security purposes.

It is important to mention the fact that the system described in this paper
is aimed to be implemented in real life scenarios. For this, three scenarios are

68 Eduard Cojocea, Traian Rebedea

explored, which involve significant differences in both hardware architecture
and software.

The first scenario uses a client-server architecture, where the video stream
is collected from a camera and is sent as a whole to a server to be processed.
This involves using the great computing power of one or multiple servers for
running the algorithms that detect persons, track them and extract profiling
features (e.g. age, gender) in order to classify people in specific groups.

The second scenario consists of running the algorithms on an embedded
device directly connected to the camera. This way, the latency and data traffic
involving the first scenario are eliminated, but lower computing power is
available.

The third scenario is a hybrid between the first and second scenario,
involving processing the less computing intensive parts on an embedded
device and sending the rest to a server in order to be processed remotely on a
more powerful machine.

All three scenarios involve a further step of sending the extracted data to
an application which will display the extracted information in real time to the
user.

The tradeoff between running on a server with high computational power
available and an embedded device is determined by the smaller and smaller
gains obtained by using more and more computing power or computing
intensive algorithms. It is still a matter of research if the increase in
performance of some algorithms is really necessary for practical purposes. It
may be the case that an algorithm with poorer performance will be preferred
due to the fact that it requires significantly less computational power.

For this system to be functional, multiple algorithms are necessary, mostly
in a pipeline. Firstly, an object detection algorithm is required in order to
classify and localize objects in the video’s frames. Secondly, an object tracker
will use the objects’ class and location in order to track them, which means
to uniquely identify them in successive frames. Thirdly, multiple classifiers
will use the uniquely identified objects in order to extract further information
from them, placing these objects in subclasses. If the objects considered are
humans, they will be placed in subclasses such as gender, age, weight, height
and so on. Counting the objects can be done by relying on the tracker, which
means counting the new ids from a certain moment of time. Alternatively,
counting the objects can be done independently of the tracker, relying solely
on the object detection, though this approach might offer estimates that are

Counting People in Crowded Places using Convolutional Neural Networks 69

less accurate than the first approach.

The GUI through which the user can interact with the data extracted offers
a variety of tools for data manipulation and visualisation. They will allow the
user to extract higher level insights from the raw statistics, such as trends,
cycles and other repetitive phenomena regarding the flow of people, which
will be very useful for marketing and other similar purposes.

2. Related work
In this section there will be presented methods and algorithms regarding
object detection, object tracking, object counting, and various classifiers used
for extracting attributes from the objects detected in videos.

2.1. Object detection
Sutskever, Hinton, & Krizhevsky [1] described an architecture that won the
ImageNet Large Scale Visual Recognition Challenge 2012, popularizing
Convolutional Neural Networks (CNN), which became the staple of Machine
Learning for images and videos due to their usage as general feature
extractors. Continuing this work, several solutions have been found for
detecting, localizing and classifying objects in images.

Region Convolutional Neural Networks (RCNN) [2] use a selective search
algorithm in order to extract 2000 candidate regions, that might contain
objects. These regions are then cropped and warped into 227x227 pixels
images, which are in turn used as inputs in a CNN having the AlexNet [1]
architecture. This way, the output consists of 4096-dimensional feature
vectors, which are fed into a Support Vector Machine (SVM) in order to
classify the object. The feature vectors are also fed into a regressor, which
predicts 4 offsets in order to increase the precision of the bounding box. This
is necessary, since sometimes the objects are only partially situated in a
region, hence needing localization adjustment. Unfortunately, this approach
could not be implemented in real time, since it needed tens of seconds in order
to process an image. This is due to the large number of regions passed through
the CNN. Also, the algorithm generating these regions is static, meaning that
no learning occurs. Another disadvantage is that it needs a large amount of
time for training (~84 hours as mentioned in [3]).

Fast RCNN [3] has a similar approach to the RCNN method, but instead

70 Eduard Cojocea, Traian Rebedea

of generating the regions and feeding each and single one of them into the
feature extractor, the input image is directly fed into the CNN, outputting
features maps. Regions are then proposed from the features maps, using the
same selective search algorithm. These are then warped into squares, which
are shaped into a fixed size by the Region of Interest (RoI) pooling layer,
feeding them into a Fully Connected layer. For classification it is used a
softmax layer, while a regressor predicts the bounding box offsets similar to
RCNN. This method is a lot faster than RCNN, taking down the processing
time for a single image significantly (in our experiments, from tens of seconds
to several seconds). The training time is also improved, being necessary 9.5
hours (as presented in [3]) The bottleneck of this approach is the process of
proposing regions.

Faster RCNN [4] is an improved version of Fast RCNN, where the
selective search algorithm for proposing regions is eliminated. Using this new
approach, the network learns to generate region proposals. The image is fed
into the feature extractor, outputting features maps, which are further used as
inputs into a Region Proposal Network (RPN). The proposed regions are then
reshaped using a Region of Interest pooling layer and fed into a classifier and
a regressor, similar to the previous 2 approaches. The great achievement
made by this approach is that it can be used in real time, taking less than a
second (a few hundred milliseconds) to process an image.

Mask RCNN [5] extends Faster RCNN by adding a predicting branch for
objects masks specific to a class. This branch is added in parallel to the
classifier and the regressor. Another change is the replacement of RoI pooling
layer with a RoIAlign layer, which uses bilinear interpolation in order to
obtain the exact location of the features at each subwindow.

You Only Look Once (YOLO) [6] is a totally different approach from
those described earlier. It uses a single CNN for predicting both the offsets to
the bounding boxes and the class probabilities for them. The input image is
split into an SxS grid. For each grid are assigned m bounding boxes. For each
bounding box, the network predicts a class probability and the offset values.
If the probability is above a threshold, the bounding box is selected and used
to locate the object in the image. This approach is much faster than previous
ones, being able to run at 45 frames per second. The biggest drawback of this
approach consists of the spatial constraints that don’t allow too many small
objects to be detected in a cell of the SxS grid. So this approach struggles to
detect small objects, such as a flock of birds.

Counting People in Crowded Places using Convolutional Neural Networks 71

YOLOv2 [7] is an improved version of YOLO, implementing the

following changes: batch normalization on all convolutional layers,
convolutions with anchor boxes, direct location prediction, fine grained
features, multi-scale training. These incremental changes made possible
significant improvements in mean Average Precision (mAP).

YOLOv3 [8] is an improved version of YOLOv2, making use of a deeper
architecture, with 106 fully convolutional layers. Unlike the first two
versions, YOLOv3 implements residual blocks, skip connections and
upsampling, which are usually present in state of the art algorithms. Other
improvements include making predictions at three scales, better detecting
smaller objects, increase in the number of bounding boxes per image and
changes in the loss function. All three approaches, YOLO, YOLOv2 and
YOLOv3 have variations both in architecture and in approach that allow a
tradeoff between mAP and inference time. This is very useful in practice,
especially in cases where there is not a lot of computer power available, but
a real time inference is desired.

2.2 Object tracking
Object tracking is the ability of a model to uniquely identify one or more
objects in successive frames. There are many solutions for tracking a single
object, such as GOTURN [9] and MILTrack [10], but in the scope of this
paper it is needed a multi-object tracker. Also, an online tracker, as opposed
to a batch tracker, is needed for being able to run the system in real time.

Online Multi-Object Tracking by Decision Making [11] proposes an
approach that formulates the multiple object tracking as a decision making
problem. Thus, it models the lifetime of a tracked object using a Markov
Decision Process (MDP), having 4 states for an object: Active, which is the
state in which an object is detected; Tracked, which is the state where a true
positive should transition; Lost, which is the state where the object is
occluded or out of the scene; Inactive, which is the state where an object has
been in the Lost state for long enough.

Simple Online and Realtime Tracking (SORT) [12] proposes a model that
relies on the good performance of an object detector and uses a combination
of simple techniques such as Kalman Filter and the Hungarian algorithm for
the tracking. This approach is very fast, being able to easily run in real time,
while also being online, meaning that only the frames until the current frame
are known.

72 Eduard Cojocea, Traian Rebedea

Simple Online and Realtime Tracking with a Deep Association Metric

(DeepSORT) [13] builds upon the model of SORT by adding the appearance
information about the objects tracked. This is done by pre-training a network
on a large person dataset, which learns a deep association metric. This is very
useful for objects that are occluded for more time or disappear out of the scene
for longer. This metric also helps limiting the ID switching between objects
that overlap or occlude one another.

3. System description
In this section will be described the structure and the first draft version of the
proposed system.

Successful attempts have been made in order to use an embedded device
dedicated for Machine Learning algorithms, such as Movidius [14] and Jetson
[15], in conjunction with a Raspberry Pi. Moreover, initial promising results
have been obtained by using a series of neural networks for object detection,
custom made to be run on such devices, called Mobilenets [16]. However, the
focus was shifted from this approach because establishing what performance
could be achieved using the computational power of two GeForce GTX 1080
Ti GPUs had a higher priority. Thus, after having a working model from start
to end, the effort could be redirected into optimizing and adapting the model
for embedded devices.

In this system, YOLOv3 [8] is used as the preferred object detector, due
to its great balance between performance and frames processed per second.
Also, it is handy to integrate it code-wise. It was able to process 600x600
pixels images in ~0.02 seconds, which is around 50 frames per second, being
reliable to run in real time. Also, shallower YOLO architectures have been
tested.

For tracking, DeepSORT [13] has been the best solution to date for the
problem at hand. In scenes expected for the system, such as entrances to
shopping malls, there are many occlusions between people. In this particular
case, DeepSORT is very useful due to its deep association metric, which
allows for occlusions to last a few seconds. Also, the occlusions are being
limited thanks to the flexibility of the camera placement. Thus, a camera
placed higher eliminates some of the occlusions and makes other occlusions
to be partial. On the other hand, by doing this, the bounding boxes with
persons in the scene will have lower quality due to distance and angle.

Counting People in Crowded Places using Convolutional Neural Networks 73

DeepSORT extracts a deep association metric, consisting of a 128-

dimensional features vector, which is projected on the unit hypersphere. This
way, the similarity in appearance between two objects is determined by using
the cosine distance between the two resulting 128-dimensional points on the
unit hypersphere. If the value is below a certain threshold, then it is
considered that the two objects are the one and the same.

In order to increase the tracking performance of the particular case of a
high placed camera in an entrance to a mall, a grid search has been made over
3 important parameters of DeepSORT. The first represents the cosine
threshold for the similarity in appearance of two objects. The second is the
age of a tracked object, which means the number of frames that an object is
kept after it disappeared from the scene or it has been occluded. This way, if
the object is detected again after less than this number of frames have passed,
it is recognized with its ID and not treated as a new object. The third
parameter is the initial number of frames a new object has to be consistently
tracked before it counts as a new object. This is important for eliminating
stray objects or false object detections, which appear for only one or a few
frames. For this grid search, there have been used a few hand annotated videos
with real life scenarios. The optimal values found were 0.3 for the cosine
threshold, 100 for the age and 4 for the initial frames.

Having the tracker working, counting the people in the video stream is a
trivial task, equivalent to counting the new IDs registered by the tracking
algorithm.

4. Architecture
In this section there will be described the flow of data from the camera/video
file straight to the GUI application which displays the results.

In Figure 1 is shown the general architecture of the proposed system,
which has three parts: Data Acquisition module, Computer Vision module,
Application module.

4.1 Data acquisition module
This module is responsible with acquiring the video streams that are to be
processed. This usually means using a camera placed at the desired scene,

74 Eduard Cojocea, Traian Rebedea

which can send the frames through a network protocol, such as Real Time
Streaming Protocol (RTSP). Cameras usually support RTSP, making it easy
for other devices to access the video stream through Ethernet of Wi-Fi. The
streams are usually compressed using codecs, H.264 and its successor H.265
being very popular and having high performance in compressing videos
without reducing the quality. Another option is to use only a sensor in order
to get the raw frames. This would be more useful for embedded devices,
where the sensor could be directly connected to the devices, bypassing any
protocols. In Figure 1, it is shown that video streams could be accessed from
video files as well. This is useful for test, historical runs or buffering videos
in case of delays caused by the Computer Vision algorithms.

Figure 1 – The architecture of the proposed system

4.2 Computer vision module
This module is responsible with processing the video streams, regardless of
their origin.

Whenever the system runs, it receives frames from a RTSP connection, a
serial connection from a directly connected device or a video file. After each
frame is received and the raw pixels are decoded, they are sent as input to the
Object Detector, which outputs a list of objects, their centers, widths and
heights. Then, the frames and the objects recognized within, together with
their coordinates are used as input for the Tracking algorithm. Note that the
relevant objects are persons. Whenever a person is considered new and
tracked, the Tracking algorithm sends a HTTP request to the GUI application,
containing the number of new persons. Besides the HTTP request, the
Tracking algorithm, along with the Object Detector, sends information to a
number of classifiers. The information needed as input consists of the
bounding boxes of new persons detected. Then, these images will be
classified and the results sent to the GUI application. The results will consist

Counting People in Crowded Places using Convolutional Neural Networks 75

in a number of males and females, number of children, teens, adults and
elders. Categories for weight and height will be set as well.

4.3 Application module
This module is responsible for taking the results from the Computer Vision
module and displaying them using a GUI containing charts, graphics and
other visual representations for data. Also, this module is responsible for
offering the user various filters and time buckets such that the data received
could be visualized in as many useful ways as possible. In Figure 2 is
presented the GUI prototype implemented. It contains 4 main screens, each
representing the data in different formats. The first screen is a timeseries
chart, where the number of persons detected are ploted against time. The
second screen presents a pie chart with the data. The third screen is a heat
map of people detected and the fourth screen is a bar chart of the same data.
Each screen has tools that allow the user to filter the data by gender, age and
type of detection: “snap” means people detected in frames, “track in” means
people detected that are coming in the scene, “track out” means people
detected leaving the scene. The data used in Figure 2 is extracted from videos
saved from live cameras in a shopping mall by the computer vision module.
It must be mentioned here, that while the number of people detected and
counted are a direct result of the models used, the classification by gender
and age is done randomly. This is done in order to test all of the GUI’s tools.

Figure 2 – The GUI prototype for interaction with the system

76 Eduard Cojocea, Traian Rebedea

5. Future additions
In this section there will be described the components that will be added to
the system in order to achieve its goal. This includes the classifiers for each
person and some anomaly detection models.

5.1 Object detection and tracking
At the time of the writing of this paper, the system has a fully functional
object detector and tracker. It is planned that in the next few months to
improve the performance of these models. Also, it is desirable to try running
smaller versions of these models on embedded devices, in order to investigate
the validity of such an approach.

5.2 Classifiers
For the time being, no classifier has been implemented yet. But extensive
research has been conducted in this field, resulting in a roadmap of steps that
need to be followed in order to achieve a fully functional system.

Wu et al. [17] present multiple models that are able to classify persons by
gender. It presents both appearance and non-appearance methods, though the
latter is not in the scope of the system, since the only input consists of video
streams from fixed cameras. Nithyashri & Kulanthaivel [18] propose a
method for age classification into four categories: children (0-12 years),
teenager (13-18), adult (19-59 years) and elders (60+ years). Rativa,
Fernandes & Roque [19] describe a method based on anthropometry for the
estimation of height and weight, which can be adapted for this system. The
solutions described up to this point have encouraging results, which makes
them perfect candidates to be integrated into the system pipeline.

Also, for the classifiers needed, custom networks can be trained, using as
foundation one of the many CNN architectures that have proven to have high
performance, such as AlexNet [1], ZFNet [20], VGGNet [21], GoogLeNet
[22], ResNet [23].

6. Encountered issues
In this section a special focus will be given to the most challenging issues
encountered during the development phase. Also of intereset are the expected

Counting People in Crowded Places using Convolutional Neural Networks 77

issues regarding the performance of the system.

Some of the issues met were regarding the object detector. One issue is the
poor detection of objects far from the camera, when they appear smaller in
relative size. This means that the detection area had to be reduced. Also, due
to the grid nature of YOLOv3 [8], when many objects from the same class
are in a vicinity to one another, some false positives are detected, considering
the whole group of objects as a single object of the same class. This
anomalous behaviour required a special filtering of the detections.

When it comes to the tracker, DeepSORT [13], its performance varies
considerably, and is correlated with the three parameters described in section
3, which required extensive tweaking for the right parameters for the specific
case at hand. Also, the performance of the tracker drops significantly when
the number of objects increases by a big factor. Basically, in tightly packed
crowds, the tracker has the lowest performance. This is to be expected, since
there are a lot more objects to track and most objects have many occlusions,
some of them being occluded most of the time or for extended periods. One
thing that is noteworthy is the fact that the tracked error is consistent with the
object density in the scene. This means that the tracker could be adjusted,
with the help of the detector, by correcting the number of objects being
tracked. Also, a statistical approach for estimating the number of persons in
a video stream is worth exploring.

7. Results
At the time of the writing of this paper, the only results available from the
implementation of the system are regarding people counting. We will present
them in this section, though an accurate measurement is very difficult and
time consuming. The numbers presented regarding the ground truth are
estimations, due to the nature of the video files used and their length. In other
words, the exact number of unique persons in the videos is hard to be
computed even by humans. The system is tested this way and not using a
largely used annotated dataset, since it has a particular purpose. Thus, videos
from real life scenarios are used.When it comes to the object detector’s
performance, it is worth noting that the detector was tested in real life
scenarios, with a lot of noise and far from ideal camera placement. The results
obtained using YOLOv3 are presented in Table 1.

78 Eduard Cojocea, Traian Rebedea

Table 1 – The results obtained by the proposed method on real life data

Method AP AP50 AP75
Faster R-CNN+++ 34.9 55.7 37.4
YOLOv2 21.6 44.0 19.2
RetinaNet 40.8 61.1 44.1
DSSD513 33.2 53.3 35.2
YOLOv3 – original 33.0 57.9 34.4
YOLOv3 – custom 27.9 53.2 30.1

As it can be seen in Table 1, the model on this specific set of data (e.g.

fixed cameras at mall entrances, a few meters above the ground) behaves
slightly worse than its original, but this is to be expected. However for the
scope of this paper (e.g. counting people), the performance achieved is
acceptable, while further improvements considering the object detector’s
performance can be added subsequently, or even another object detector can
be used in the place of the current one. The videos used for measuring the
performance where annotated by the authors, containing real life scenarios
from shopping malls, ranging in length from 15 seconds to 300 seconds. The
people density in the videos varies from a couple of persons to tens of persons
at a time in a frame. In order to improve the performance of the overall
system, the focus should be shifted towards improving the object tracker.

There are two performance metrics that concern the algorithm: the
difference between the ground truth and the prediction and the number of
frames processed per second. Both of these metrics vary according to the
scene. This is to be expected, taking into account the two main components
of the current system: an object detector and an object tracker. Both
components have better performances, both in quality and frames per second,
when fewer objects are in the scene. Also, their performance is increased by
a lower number of occlusions. But as the number of objects and occlusions in
a scene increase, their performance drops and can process fewer frames per
second.

Table 2 – Results of the system on two relevant videos

Video Predicted Ground Truth Min fps Max fps Average fps
First 74 68 9 30 21.75
Second 5624 2157 3 20 7.76

The results in Table 2 are obtained from two relevant videos. The first one

represents a short video, 15 minutes in duration, with a relatively small
number of persons and occlusions. It depicts a scene from the entrance to

Counting People in Crowded Places using Convolutional Neural Networks 79

cinema halls. The second video represents a longer video, 60 minutes in
duration, with a higher number of persons and occlusions. It depicts a scene
from the cinema bar, where people pass by or stand in line.

It is visible that the error increases greatly in the second video. But it is
worth noting that the error is directly proportional to the number of persons
and occlusions, which will allow in the future for corrections to be made
heuristically in post processing.

In Figure 3 is presented a frame from the second video. The blue bounding
boxes represent the object detector’s prediction, while the white bounding
boxes represent the tracker’s prediction of the future position for each object
detection at the previous frame. The numbers shown in green are each
person’s unique ID. It can be seen that many persons are not detected due to
occlusions or their small relative size.

Figure 3 – Capture of a frame from the second video as processed by the proposed system

The high number of occlusions and small relative sizes of persons induce
errors both in the object detector, as well as in the tracker (since the tracker
is based on the object detector), which induces even bigger errors in the

80 Eduard Cojocea, Traian Rebedea

overall system.

 The performance of the GUI will be tested in the near future, with users
in real scenarios, and upgraded accordingly, in order to ensure the novelty
and usefulness of the system.

8. Conclusions
In this paper we have presented a system which is intended to collect video
streams from indoor cameras or using prerecored videos, extract relevant
information about the people detected in the videos, such as number of
persons in a certain interval of time and their age, gender, weight, height etc.
distributions. These data are then sent to a custom GUI for visualisation and
filtering to empower the users to easily extract statistics about the customers
visiting crowded open spaces, such as shopping malls. In order to extract
these data, the system uses an object detector [8] and an object tracker [13],
which work in conjunction in order to estimate the number of persons. The
system was tested on a dataset of real life videos, manually annoted for the
scenarios considered in this paper (e.g. indoor malls).

The system presented in this paper is only partially implemented and still
requires further improvements and optimization alongside implementing the
classifiers for human profiling (e.g. age, gender). The current results are
promising and the research and development process ahead is sure to achieve
the expected results.

ACKNOWLEDGEMENTS
This research was funded by the MARKSENSE project “Real Time Analysis
Platform For Persons Flows Based on Artificial Intelligence Algorithms and
Intelligent Information Processing for Business and Government
Environment”, contract no. 124/13.10.2017, MySMIS 2014 code 119261.

References
1. Sutskever, I., Hinton, G. E., & Krizhevsky, A. (2012). Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems, 1097-
1105.

2. Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for
accurate object detection and semantic segmentation. In Proceedings of the IEEE

Counting People in Crowded Places using Convolutional Neural Networks 81

conference on computer vision and pattern recognition (pp. 580-587).

3. Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on
computer vision (pp. 1440-1448).

4. Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object
detection with region proposal networks. In Advances in neural information processing
systems (pp. 91-99).

5. He, K., Gkioxari, G., Dollár, P., & Girshick, R. (2017). Mask r-cnn. In Proceedings of the
IEEE international conference on computer vision (pp. 2961-2969).

6. Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified,
real-time object detection. In Proceedings of the IEEE conference on computer vision and
pattern recognition (pp. 779-788).

7. Redmon, J., & Farhadi, A. (2017). YOLO9000: better, faster, stronger. In Proceedings of
the IEEE conference on computer vision and pattern recognition (pp. 7263-7271).

8. Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767.

9. Held, D., Thrun, S., & Savarese, S. (2016, October). Learning to track at 100 fps with
deep regression networks. In European Conference on Computer Vision (pp. 749-765).
Springer, Cham.

10.Babenko, B., Yang, M. H., & Belongie, S. (2009, June). Visual tracking with online
multiple instance learning. In 2009 IEEE Conference on Computer Vision and Pattern
Recognition (pp. 983-990). IEEE.

11.Xiang, Y., Alahi, A., & Savarese, S. (2015). Learning to track: Online multi-object
tracking by decision making. In Proceedings of the IEEE international conference on
computer vision (pp. 4705-4713).

12.Bewley, A., Ge, Z., Ott, L., Ramos, F., & Upcroft, B. (2016, September). Simple online
and realtime tracking. In 2016 IEEE International Conference on Image Processing (ICIP)
(pp. 3464-3468). IEEE.

13.Wojke, N., Bewley, A., & Paulus, D. (2017, September). Simple online and realtime
tracking with a deep association metric. In 2017 IEEE International Conference on Image
Processing (ICIP)(pp. 3645-3649). IEEE.

14.Intel Neural Compute Stick. https://www.movidius.com.
15.Nvidia Jetson TX2 Module. https://developer.nvidia.com/embedded/jetson-tx2.
16.Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., ... & Adam,

H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision
applications. arXiv preprint arXiv:1704.04861.

17.Wu, Y., Zhuang, Y., Long, X., Lin, F., & Xu, W. (2015). Human gender classification: A
review. arXiv preprint arXiv:1507.05122.

18.Nithyashri, J., & Kulanthaivel, G. (2012, December). Classification of human age based
on Neural Network using FG-NET Aging database and Wavelets. In 2012 Fourth
International Conference on Advanced Computing (ICoAC) (pp. 1-5). IEEE.

19.Rativa, D., Fernandes, B. J., & Roque, A. (2018). Height and Weight Estimation From

82 Eduard Cojocea, Traian Rebedea

Anthropometric Measurements Using Machine Learning Regressions. IEEE journal of
translational engineering in health and medicine, 6, 1-9.

20.Zeiler, M. D., & Fergus, R. (2014, September). Visualizing and understanding
convolutional networks. In European conference on computer vision (pp. 818-833).
springer, Cham.

21.Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556.

22.Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., ... & Rabinovich, A.
(2015). Going deeper with convolutions. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 1-9).

23.He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition.
In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
770-778).

