
Revista Romana de Interactiune Om-Calculator 10 (1) 2017, 25-38 © MatrixRom

ObDroid: An Android permanent monitoring
application using the observer pattern

Mihai Hornariu1 Alexandru Butean2
1Babes-Bolyai University; Faculty of Mathematics and Computer Science
1 M. Kogălniceanu Street, Cluj-Napoca, 400084, Romania
E-mail: hornariu.mihai@yahoo.com

2University “Lucian Blaga” of Sibiu; Faculty of Engineering
10, Victoriei Bd., Sibiu, 550024, Romania
E-mail: alexandru.butean@ulbsibiu.ro

Abstract. Nowadays, mobile devices are the most important gadgets from our lives. We
use smartphones and tablets for many activities: communication, instant messaging, emails,
multimedia content sharing, social networks, e-banking procedures, etc. The fact that we
are already used with their advantages makes them indispensable in our daily activities. In
this paper, we present a solution, an experimental application based on the observer pattern,
a method to permanently monitor the main activities (calls, messages, location) using an
Android device. The interaction between the analyzed device and the observer is possible
using an intermediary server that makes the connection between a hidden service and the
monitoring platform. Using a tool with monitoring capabilities can be extremely useful in
many cases such as industrial use for employees, the family purpose for parental control,
personal security as an anti-theft solution.

Keywords: Mobile devices; Android; observer pattern.

1. Introduction
Modern mobile devices have a major impact on people’s lives. The most
important fields in which mobile devices play a crucial role include
industrial technology and family. The growth in the number of downloads
of applications for smartphones and tablets has led to the development of
mobile applications which store personal information about the user and his
activity. The high degree of accessibility of such data can cause undesired
effects like:

• Endangering privacy;
• Preventing the user from fulfilling his activity;

26 Mihai Hornariu Alexandru Butean

• Loss of important private data;
In order to prevent or reduce the impact of these hazards from taking place,
sending an important amount of information to a person who will monitor
the user is considered essential. The importance of this action is a major
aspect that will be taken into consideration.

ObDroid is an experimental Android application that reacts whenever an
event is triggered by the operating system on the device. This is the reason
why the observer pattern represents the core of the design. In order to test
whether this approach is reliable, the study presents the architecture and
implementation steps for an early prototype. The result offers the end user
the facility to observe the activities carried out by the supervised person,
allowing both real-time and data history monitoring.

2. Related Research

2.1 Mobile Activity Monitoring System Using Android Spy
Since every company has unique policies, rules and Intellectual Property
Rights, in some cases the privacy, security, and confidentiality must be
maintained by the employees. Also, the usage of company’s assets (mobile
phone) for personal use or crossing out the organization’s geographical area
in working hours is not allowed. So, it is important to have a tool to track
mobile phones to be able to implement such rules. The main advantages of
the described system are: easy to use and track devices, multiple users can
be tracked in the same time, provides security to find data leakage and
security breaches in the organization works using notifications and instant
alerts to the administrator.

2.2 Unsafe Exposure Analysis of Mobile In-App Advertisements
Almost two-thirds of the free mobile applications incorporate a library of
advertising in their code. A study (Grace et al, 2012) observes, identifies
and classifies these libraries and what risks they expose in terms of user
privacy and security. These libraries collect private information (such as
user location for further promotion), or some invasive information related to
the call log or the message name, phone number or his account information.

ObDroid: An Android permanent monitoring application using the observer pattern 27

In order to prevent detection from such initiatives, ObDroid was developed
without using any classical advertising libraries.

2.3 Cloud-based Real-time location tracking and messaging
system: A child-care case study

Cloud Computing synchronization is one of the ways to achieve real-time
monitoring over mobile devices to supervise various activities. Through
mobile cloud services parents can watch their children and know if they are
safe and sound. To achieve this, a cloud-based system CRLTMS (Huynh et
al, 2015), reports data to a supervisor and offers the following features:
finding a device location in real time, fencing notification, messages and
indicators. Its purpose is to keep kids safe and report parents their activity.

3. Similar market applications
ObDroid, as an experimental proof of concept application, was developed
using standard software engineering patterns. Keeping things simple and
using low-level logic, a malware-like application acts undetectable on a
target phone and proves how easy is to steal information from one of the
most used OS around the world. While the research was ongoing, the
market has already exploded and there are few good commercial
applications that took the concept to the next level.

MSpy
Mspy offers a complete and user-friendly solution for mobile & computer
monitoring activities. Hosts a platform that allows complex management
scenarios of multiple devices. Each device must follow an installation and
then it works as a set it and forget it service. Using standard advertising and
spy libraries, the product offers a rich variety of features and maybe that is
why it is easily detectable even by the free antivirus monitoring
applications.

TrackmyFone
Whether is iOS or Android, this service gives an observer the ability to
install a spyware application on a target and monitor its activity.
Undetectable by most free antivirus solutions, this product offers a very

28 Mihai Hornariu Alexandru Butean

limited set of functionalities and remains one of the few market ready
applications that can be used on any related use-case.

4. The Observer pattern
The Observer pattern is included in the behavioral design pattern family
according to Kanasz (2013). As also stated by Taylor & Ray (2014), the
main role of a behavioral pattern is to explain how objects interact. It
describes how classes or objects communicate with each other in order to
perform a task and how the steps of this task are divided among these
objects (further divide it into smaller tasks allocated to corresponding
objects) as stated by Pankaj (2016).

The use of the observer pattern is mainly described by a one-to-many
dependency between objects so that when one object changes its state, the
objects that depend on it will receive notifications and will be updated.
Mainly, the observer pattern is useful whenever the developer is interested
in the state of an object and wants to be notified if there is any change to
that instance.

There are two main actor classes in the observer pattern. The object that
watches over the state of another object is called the Observer, while the
object that is being watched is called the Subject. The subject contains a list
of observers to be notified if any change happens to its state. A subject
should also provide methods that would be used by observers in order to
register and unregister themselves.

An implementation of the observer design pattern is described in Figure
1. The SubjectBase is the class for all the subjects. It includes a protected
list of observers that are subscribed to the respective subject. It also contains
a list of methods that allow adding or removing observers and the Notify
method which loops through the registered observers calling their own
Notify method, as in Balkar (2014). The ConcreteSubject represents the
concrete implementation of the SubjectBase class which maintains its own
state and calls the Notify method as described above.

The ObserverBase class is the abstract class for all the observers,
containing the method called whenever the state of a subject changes.

ObDroid: An Android permanent monitoring application using the observer pattern 29

Figure1. UML diagram - observer pattern implementation

The ConcreteObserver is the concrete implementation of the
ObserverBase, containing the subject to whom the observer is registered,
and the implemented Update method.

5. Android’s broadcast receiver
Broadcast receivers are important parts of any Android application. More
accurately, a broadcast receiver is an observer pattern playing the role of a
guardian or watching over the entire application. Inside the application, also
known as a publisher, broadcasts can be generated to send events, not
knowing if anyone will be noticed about the occurrence of these events,
similar with the aspects related by Shedge (2013).

Receivers, also known as subscribers, fulfill the role of forcing the
information to be subscribed by making use of filters. If there is a message
matching a filter, that subscriber will be activated and notified of the
message’s presence as described by Balkar (2014).

In order to get notified, similar with the approach from (Huynh et al,
2015), whenever an action takes place, an application will have to subscribe
to a BroadcastReceiver. The action is in the form of an intent broadcast. The
receiver is woken up and will start executing whenever a matching intent is

30 Mihai Hornariu Alexandru Butean

launched. The “wakeup” or alarm event will happen in the form of a
onReceive() callback method (seen in Figure 2), as Sarkar (2016) states.

Figure2. Diagram of a Broadcast receiver being notified by a broadcast sent by a ServiceContent

Observer

6. ContentObserver
The pattern of observing a dataset labels the various situations when a
component makes the changes to the set and then invokes a notification
interface so that the dependent components are aware that it has changed.
(The dataset behavior pattern includes notifications every time a change is
made to the dataset, alerting the corresponding dependent components.)

The Android content provider framework has an elegant design. URIs
uniquely identify the datasets by asking for notifications when a certain URI
has changed. The observer object is a child of the ContentObserver class as
used by Wolfram (2015), so its onChange() method should be called by a
content resolver if there is any existent change of the data behind the URI,
the observer was registered for.

7. ObDroid architecture
In the case of a phone call, the data that will be collected on the Android
Device and sent to the server includes the phone number, contact name,
duration of the call. If we refer to a message, the text will then replace the
duration and if the location is being taken into consideration, the address,
the latitude, and longitude as well as the timestamp will also be sent as
pieces of information to the server.

ObDroid: An Android permanent monitoring application using the observer pattern 31

Figure 3. ObDroid Architecture

The information about phone calls, SMS and Location obtained inside
the BroadcastReceivers and ContentObservers is sent to the server by a
HTTP POST method. The data that will be sent through the POST method
is encrypted using the Advanced Encryption Standard(AES) as in (Pahal et
al, 2013), Cypher Block mode, with no padding as recommended by
Dworkin(2001). A response from the server is being sent back to the
Android Device to notify whether the POST was successfully delivered or
not. The PHP scripts on the server are used to store this information in a
database. In order to display the information in the Web application, it will
be read from the database and decrypted using the same standard that was
used during the encryption phase. The entire communication protocol can
be observed in Figure 3.

Starting a service at boot
The first question that should be answered is if a broadcast receiver can be
triggered before the application that it belongs to is being launched. If we
take a closer look at the vulnerabilities of this pattern, as Tian (2016)

32 Mihai Hornariu Alexandru Butean

explains, the answer is affirmative, and the most clarifying example is
given by triggering a receiver whenever the BOOT_COMPLETED event is
registered as stated by Darwin (2016). This way, a service or an activity can
be started by that receiver at the startup of the device. To successfully
complete this task, permission for receiving the completed boot operation
must be required and included in the manifest as described in Manifest File
in Android, (2016).

Restarting a service whenever being closed
In order to avoid a service from being stopped from properly working when
a user tries to destroy or close it, that service sends a broadcast including a
message that will be observed by the matching BroadcastReceiver. When
the BroadcastReceiver will be notified of the new message’s presence, it
will restart the service by invoking a restart method.

Call detection receiver
Whenever a phone call occurs, an action will be completed by an instance
of the BroadcastReceiver class. This receiver will then be notified the
moment when an action will change regarding the call state of the phone:
from idle to ringing, from ringing to off-hook, vice versa scenarios.

Figure 4. Call Process diagram – Call detection

ObDroid: An Android permanent monitoring application using the observer pattern 33

In order to complete this type of action, a permission to read the phone
state must also be included in the manifest file as described in Manifest File
in Android, (2016). Different call types and information about the caller can
now be used, based only on the transition between the three call states of the
device. As seen in Figure 4, when a call is sent or received, the
BroadcastReceiver gets notified about the state. Based on this notification,
the call data can be accessed from the app and then sent to the server for
storage. Using this approach, the device sends a log about the call details
each time its state changes so it gets missed calls, received calls, dialed calls
and rejected calls.

BroadcastReceiver for location
The location services need a considerable amount of battery power. This
problem is also studied by Chis & Harrison (2016) and mentioned by
HowtoGeek (2016). In order to reduce this impact on the battery, we
concluded that the location of the device should be obtained every 30
minutes so that the battery consumption level stays decent. To get a precise
location, these services need to be activated two minutes before the location
is actually obtained. In order to fulfill this goal, an alarm is set to be woken
every 30 minutes, and this alarm will send a broadcast to a class which has
the functionality of polling the location of the device.

When the polling is completed, a broadcast containing extra information
(the current location) is sent, to notify the BroadcastReceiver which will
receive the final location data and use it further. This last receiver will
decode the location data received and then will send it to the server. The
permission which is required to access the device’s location is called
ACCES_FINE_LOCATION and it must also be placed inside the manifest
file.

Text messages detection
BroadcastReceiver cannot be used to detect whether a text message is sent
or received because there is no broadcast throughout the system at that
moment.

A Content Resolver instance is created, and a ContentObserver is
registered to the resolver previously created, to listen for the changes that
happen to the SMS content of the device. The ContentObserver will then
integrate the functionality of querying the URI that contains the data parsed

34 Mihai Hornariu Alexandru Butean

from the SMS content. With every change that happens to the respective
content, the information about the latest message will be processed and sent
to the server. The permissions needed to achieve this functionality include
reading, sending and receiving SMS permissions.

8. Resulted work

8.1 Prototype
As a first working prototype of ObDroid, the application manages to extract
data from the target’s phone and send it to the server and then displayed for
the supervisor.

An example, as shown in Figure 5 and 6, the information about the calls
and location are extracted, placed in the database on the server and
displayed in the table structure.

Figure 5. Call information

Currently, the entire concept is based on a 1 to 1 link, where a viewer can
only monitor one device because the extracted information is encrypted
using a key generated based on the IMEI of the 2 phones: observer and
target.

Figure 6. Localization information

ObDroid: An Android permanent monitoring application using the observer pattern 35

8.2 Installation and Functioning
In order to successfully use the Android application, the beneficiary has to
install the application on a target device and then follow a simple register
procedure with his email account. A password will be sent to the user
through the email service.

Whenever a call or message is received or sent, or the location is
updated, these changes can be seen by the observer on the web application.
The user has to log in with the email account and the password received at
the registering step. He will be able to see a complete history of the
activities performed on the monitored device.

The Call module includes information about the dialed number, name of
the person (if exists as a contact), duration and timestamp for each call
registered on that device. The SMS module includes extra information about
the text of the SMS and the Location module provides data about the
address of the device, the latitude, the longitude, and timestamp. All this
information is sorted in reversed chronological order so that the user can see
at first the most recent recorded activity.

8.3 Usage scenarios
The application offers the observer the possibility of monitoring the activity
of another person.
The solution can be used by parents if they want to receive information
about the activity of their children in a proper way. The location of a child
can be detected at a certain moment in time. Also, the content of their text
messages and the information about their phone calls can be monitored in
real time.

Another area where this type of applications can be used is represented
by the transport industry. A company that delivers packages or cargos
would monitor the activity of their employees. The person that uses the
application will be able to find out which are the messages the delivery
agent sent to the customers and which are the calls made by the agent.
These pieces of information, correlated with data about the employee’s
location, current date and time, will represent a relevant criterion for
analyzing the activity of the employee.

36 Mihai Hornariu Alexandru Butean

8.4 Tests and issues
The installed application was tested on the following Android versions: 4.4,
5.0.2, 6.0.1. On versions 4 and 5, all the functionalities were working with
no problems, but on version 6, the security updates prevented the deployed
app from sending information about call logs while location and messages
were not affected.

Also, in terms of messages, if the targeted phone has an external app that
manages all messages (Facebook or WhatsApp) the messages will not be
extracted at all because those applications are overlapping the standard SMS
protocol using their proprietary protocols.

At this early stage, there were no tests concluding the amount of battery
drainage caused by the installed application on the target’s phone.
Regarding the data traffic, the amount of information is directly influenced
by the activity on the target’s phone, measuring no more than a few Kb of
data per day.

On the target phone, several antivirus applications were installed before
and after the installation of the application. None of them reported a
malicious activity coming from ObDroid’s service. This achievement
proves that the method described in this paper is valid and undetectable.

However, in a more extreme testing environment, if a firewall is installed
using root rights and has an active professional feature to disable all internet
access without confirmation, then for every information sent through the
existing channels ObDroid will request a confirmation. This extreme case
applies to all other applications on the device and can block the interface if
there are many applications requesting access to once: messenger, weather,
location, browser, social media, etc. This case is highly improbable but
while the issue was discovered a solution was also identified at a conceptual
level: while root user is performing on the device, do not send any data.

8.5 Future research and development
Considering the very early stage of this concept, soon a variety of other
features will be added to the initial concept, some of the most important
upgrades are:

• Offline usage: the application does not cover the situation where the user is
offline. To allow monitoring while being offline, a mechanism must store
the data in a local encrypted file until the device has a working internet

ObDroid: An Android permanent monitoring application using the observer pattern 37
connection and send it afterward to the server.

• Fencing: a safe area space, a fencing feature could notify the observer
whenever the monitored subject leaves a pre-established area (in the form
of a circle on the map).

• Battery drainage measurement and corresponding settings to the observer
to reduce the power consumption when necessary

9. Conclusion
In this paper we presented a mobile activity monitoring tool that is taking
advantage of several Android vulnerabilities, similar to the ones described
by (Hamandi et al, 2016), enabling a person to monitor another person with
an Android device by using a previously installed hidden application that
communicates with a server using a protocol that complies with the
observer pattern available in the operating system’s SDK. The information
(calls, messages, location) can be accessed on an external platform that
communicates with the server. During the communication process, all the
personal data is encrypted and each monitored device has its own personal
generated encryption key so that only a specific observer can get access to a
set of information.

References
Balkar, K., (2014), Detect incoming call and call hang-up event in Android, Retrieved on

5.11.2016 from http://karanbalkar.com/2014/02/detect-incoming-call-and-call-hangup-
event-in-android/

Chis, T., Harrison, P., (2016), Performance-energy trade-offs in smartphones, 19th ACM
International Conference on Modeling, Analysis and Simulation of Wireless and Mobile
Systems, At Malta, Malta, DOI: 10.1145/2988287.2989140

Darwin, I., (2016), Android Cookbook, Problems and Solutions for Android Developers,
O'Reilly Media

Dworkin, M., (2001), Recommendation for Block Cipher Modes of Operation, NIST
Special Publication 800-38A

Grace M., Zhou W., Jiang X., Sadeghi A., (2012), Unsafe Exposure Analysis of Mobile In-
App Advertisements, WISEC '12 Proceedings of the fifth ACM conference on Security
and Privacy in Wireless and Mobile Networks, 101-112

Hamandi, K., Alaa, S., Elhajj, I., Kayssi, A., (2015), Messaging Attacks on Android:
Vulnerabilities and Intrusion Detection, Mobile Information Systems, DOI:
10.1155/2015/746930

38 Mihai Hornariu Alexandru Butean

HowtoGeek, Why is Google Services Draining So Much Battery on Android? (2016)

Retrieved on 28.10.26 from http://www.howtogeek.com/193982/why-is-google-
services-draining-so-much-battery-on-android/

Huynh, C-T., Nguyen, H-Q, Pham, X-Q, Nguyen, T-D, Huh, E-N, (2015), Cloud-based
Real-time location tracking and messaging system: A child-care case study, published in
ACM International Conference on Ubiquitous Information Management and
Communication, ACM IMCOM, ISBN: 978-1-4503-3377-1

Jagtap N., Patil K., Shakil S., Ingle N., (2015), Mobile Activity Monitoring System Using
Android Spy, International Journal of Advanced Research in Computer and

Communication Engineering, Vol. 4, Issue 2, ISSN: 2278-1021 ISSN: 2319-5940
Kanasz, R., (2013), Behavioral Design Patterns, Retrieved on 20.11.206 from

http://www.codeproject.com/Articles/455228/Design-
%20%20%20%20%20%20Patterns-of-Behavioral-Design-Patterns

Manifest File in Android, (2016) Retrieved in 10.11.2016 from
https://developer.android.com/guide/topics/manifest/manifest-intro.html

Pankaj, (2016), Observer Design Pattern in Java, Retrieved on 2.11.2016 from
http://www.journaldev.com/1739/observer-design-pattern-in-java

Pahal, R., Kumar, V., Efficient Implementation of AES, (2013), International Journal of
Advanced Research in Computer Science and Software Engineering, Volume 3, Issue 7,
July 2013 ISSN: 2277 128X

Sarkar, V., (2016) Java Design Patterns, A tour with 24 Gang of Four Design Patterns in
Java, Apress Publishing House

Shedge, K.N., Pathak, S., Rokade, S.M., (2013), Android-Broadcast Receiver, International
Journal of Emerging Technology and Advanced Engineering, ISSN 2250-2459

Tian, D., (2016), Detecting Vulnerabilities of Broadcast Receivers in Android
Applications, Oshawa, Ontario, Canada

Taylor, G., Wray. R., (2014) Behavior Design Patterns: Engineering Human Behavior
Models, Behavior Representation in Modeling and Simulation (BRIMS)

Wolfram, R., (2015), Use Android’s ContentObserver in Your Code to Listen to Data
Changes, GrokkingAndroid, Retrieved on 20.11.2016 from
http://www.grokkingandroid.com/use-contentobserver-to-listen-to-changes/

of Broadcast Receivers in Android Applications, (2016), Oshawa, Ontario, Canada

