
Revista Romana de Interactiune Om-Calculator 10 (2) 2017, 119-146 © MatrixRom

Augmented Space Editor

Codrin Dumitru Goia1, Dorian Gorgan2
Technical University Cluj-Napoca
Memorandumului 28, Cluj-Napoca
1 E-mail: codrin.goia@gmail.com
2 E-mail: dorian.gorgan@cs.utcluj.ro

Abstract. The paper presents a new concept of human-computer interaction having as
purpose 3D object modeling. The user models an object in an augmented reality context,
using as input the touch screen and two markers, the first representing the scene base on top
of which shapes will be drawn, and the second being a 3D cursor. The research
experiments a robust camera pose estimation algorithm based on the detection of the
marker, allowing for pose retrieval even in situations where marker is partially occluded.

Keywords: augmented reality, 3D editor, 3D cursor.

1. Introduction
As hardware and software evolve more and more we observe, among other
phenomena, a continuous strive to find new methods of interaction between
human and computer. Human-computer interaction is an important field of
research since it focuses on the interface between two inherently different
entities, the person (user) and the computer. Communication plays an
essential role as each of the two ends must present its information in a form
known to the other. A solution that targets this problem is augmented
reality.

Augmented reality (AR) is a live direct or indirect view of a physical,
real-world environment whose elements are augmented by computer-
generated sensory input such as sound, video, graphics or GPS data. It is
related to a more general concept called computer-mediated reality, in
which a view of reality is modified (possibly even diminished rather than
augmented) by a computer. Augmented reality enhances one’s current
perception of reality, whereas in contrast, virtual reality replaces the real
world with a simulated one. Augmentation techniques are typically
performed in real-time real time and in semantic context with environmental
elements, such as overlaying supplemental information like scores over a

120 Codrin Dumitru Goia, Dorian Gorgan

live video feed of a sporting event.
In other words, augmented reality represents a new paradigm of

interaction with computers by linking real and digital world together. Rather
than needing to fight his way through abstract representations, complex
menus or textual representation regarding a specific task, the user can now
interact intuitively with objects from his own world, in real-time (Wendy,
1998). Furthermore, the trend in AR is upwards, signalizing the positive
experience on the user side and great yet incompletely exploited potential of
this technology (Buchholz, 2014).

In computer graphics, 3D modeling is the process of developing a
mathematical representation of any surface of an object in three dimensions
via specialized software. The product is then called a 3D model. Once
created, it can then be displayed as a two-dimensional image through a
process called 3D rendering, it can be used in computer simulation of
physical phenomena, can be physically created using 3D printing devices,
or be further used in other applications such as animation software, video
post-production, or games.

When the user is interacting with the computer to work on a 3D model,
ambiguity is introduced due to the two-dimensional nature of the monitor.
Ideally, the object being modeled is both in the designer’s mind as well in
the computer memory, in different representations. However, the
communication between these two instances of the same object is limited
due to the fact that every interaction is done through a two-dimensional
image on the monitor. Due to this fact, regardless which angle is chosen to
look at the model in the virtual scene, or which lightning model is used, one
dimension is always lost in the process of communicating the model.

Consider the following two example scenarios:
1. In the virtual scene, the camera is focused on the object and the user

desires to move a part of the object being modeled towards the
camera. Because the camera is facing the object and the image formed
on the camera is displayed on the monitor, the task is equivalent to
moving the object out of the monitor. Hoverer this represents a new
dimension which the screen is not able to reproduce, hence the user
cannot point to it.

2. There is a fixed point selected in the virtual scene. The camera used in
the virtual scene is facing the point, such that it becomes visible on the
monitor. However, the user is unable to deduce distance of the point

Augmented Space Editor 121

to the camera, because the point can be anywhere on the line
connecting the position of the point and the center of projection of the
camera.

Both examples show the ambiguity that arise when dealing with a three-
dimensional, virtual scene. These obstacles can be overcome in each case by
changing the angle from which the camera is looking at the virtual object,
such that the position in 3D space becomes well determined. However, this
requires extra work and constant attention on behalf of the user.

Because of this and similar reasons, 3D modeling systems are tedious to
use and generally shackle creativity of users (Stéphane et al., 2003).

This paper proposes a new approach to modeling 3D structures by
introducing augmented reality interaction in the context of a 3D modeling
software. The user (3D artist) is able to define shapes in the real world by
using a custom defined pencil in his one hand, and view the created shapes
in real-time in the context of an AR scene on a mobile device, held in his
other hand.

The paper is structured as follows. Next section …

2. Related Works
There are a number of fields related to augmented reality. Augmented
reality is actually part of a bigger picture, namely the concept of mixed
reality (Schmalstieg and Hollerer, 2016). Mixed reality, sometimes referred
to as hybrid reality, is the merging of real and virtual worlds to produce new
environments and visualizations where physical and digital objects co-exist
and interact in real time. Augmented reality contains primarily real elements
and, therefore, is closer to reality. For example, a user with an AR app on a
smartphone will continue perceiving the real world in the normal way, but
with some additional elements presented on the smartphone.

The first operation in a long AR pipeline process is to detect the markers
representing the scene and the user pencil, before passing their data on and
proceed to their full analysis to get 3D poses. As the detection process is
color-based, each pixel in each frame from the camera feed is analyzed and
compared against the value that it searches for.

A widely used color model is the RGB color model. While using this
color model has its advantages, it has the limitation that it is heavily
dependent on illumination transformations. As such, two similar colors
illuminated at different light intensities may look equally different as two

122 Codrin Dumitru Goia, Dorian Gorgan

different colors that have the same brightness. This represents a limitation
when searching for a specific color in a camera shot, as the interest lies in
the originating source color and not in the result appearing on the camera,
result that may be affected in brightness by different light sources and
shadings. This limitation yields to the HSV color model (Szeliski, 2010).

Siltanen describes in (Siltanen, 2012) the process to define the camera in
marker coordinates. This is a matrix based camera transformation that
localizes the camera with respect to the marker, and it stays the same for
one frame. This is a non-linear estimation problem and will be solved using
a least-square minimization algorithm, such as the Levenberg-Marquardt
algorithm (Lourakis, 2005).

In normal AR scenarios the camera pose is computing by analyzing a
fully detected fiducial marker in the form of a quadrangle. However, in
practice one corner or even one full edge of the quadrangle may be occluded
leading to a situation where camera pose extraction is possible in theory but
requires a whole new approach to be put in practice. The paper of (Alvarez
and Borro, 2009) proposes an algorithm to address this issue by computing
the camera pose the normal way when the marker is fully visible and then,
when the marker gets partially occluded, making estimations based on the
poses of the previous frames.

3. Augmented 3D Space Editor Solution

3.1 Conceptual Architecture of the Editor
The application features a new approach on interacting with virtual 3D
structures with the aim to be more usable and intuitive. Values such as ease
of use and natural ways of human-computer interaction are put above
precision and complete control. In other words, the application will enable
users with minimal knowledge in 3D modeling to express their ideas
directly, without the need to master the complex concepts that come with
this field.

Figure 1 shows how the data flow bridges the gap between input and
output while communicating with and updating the model. The entire
workflow is heavily optimized to work in real-time.

There are two inputs to the system, the camera and the touchscreen.
Different from the camera input, the touch screen input is only triggered

Augmented Space Editor 123

when the user operates on the user interface. Data is modified in the model
accordingly, and will be taken into consideration while processing future
camera frames. The input arriving from the camera is different. It represents
a continuous loop and feeds the application on a regular basis, that is for
each frame (there are desirably at least 24 frames in one second); new input
arrives with every camera frame, which triggers its processing.

3.2 Core Features Analysis
During the main use case scenario, the user will be editing virtual shapes in
an interactive augmented reality space. This requires the application to do
the following high-level tasks at each update:

1. Extract the camera pose from which the current frame was taken;
2. Compute the position of the user pencil and match it to the context

of the scene;
3. Modify the model in accordance with the control commands coming

from the user interface and the computed pencil position;
4. Redraw the scene in conformity with the pose of the new frame and

the updated model.
These coarse tasks will now be grouped in input and output related tasks,

split in subtasks and each of them be considered individually from a
theoretical perspective.

Figure 1. Conceptual architecture of the Augmented Space Editor

124 Codrin Dumitru Goia, Dorian Gorgan

4. Input Features
There are three types of input features the processing concerns with: scene
marker, pencil position, and user interface.

4.1 Camera Pose
The extraction of the camera pose is the core task that stands at the base of
all the other tasks. Computing it for a given frame means to compute the
position and orientation of the camera that captured that frame, with respect
to the scene marker that is identified in it. This will enable us to capture the
virtual scene from the exactly same position and orientation with respect to
the scene base, and then add the result of this capture over the original
frame. In the eyes of the user, this will make the model in the virtual scene
look as part of the real world, because two perspectives from which we are
looking at the two scenes (the virtual and the marker) are one and the same.

Our implementation of camera pose retrieval is different from other
implementations on this matter. It is designed to compute the camera pose
even in situations where the scene marker often gets partially obstructed by
the user pencil marker and is not fully enclosed in the camera screen. This
makes the algorithm very flexible and robust to user input.

Figure 2 shows the pipeline of operations that the input frame undergoes
to obtain the camera pose, whose result will be used further on in the
application. The pipeline process is executed for every frame coming from
the camera.

Figure 2. Operations pipeline to get from input frame to camera pose

Augmented Space Editor 125

Scene Marker Type
We will now describe the marker that the system scans for in order to obtain
the camera pose. This marker represents the scene base to the user, on top of
which he will model the virtual shapes. This marker will be further referred
to as the scene marker.

An important aim of the project from start was to require the user a
minimal amount tools in order to use this application. That imposed the
system to accept a marker that can be easily provided from his environment
without asking him to make measurements with the ruler or print out special
markers. The scene marker represents a square piece of paper of custom
color.

Marker Detection
The detection of the scene marker is the first stage in the pipeline for
determining the camera pose. As input it receives the current frame from the
camera and the color attributes of the marker to be tracked, and at the end of
this stage it outputs the marker detected in the frame, in 2D image
coordinates. This output will be further processed by the next algorithms in
the pipeline to extract the 3D camera pose.

The marker in the real world is a square piece of paper; on the frame, due
to its projection on the camera screen, it forms a convex quadrangle. At this
stage all operations are in 2D space. It consists of the following tasks:

1. Contour Detection. Detect the contour of the marker;
2. Line fitting. Fit four lines in the extracted contour to obtain the

marker edges;
3. Rearrange edges. Rearrange the order in which the lines are

considered such that it determines the edges of the marker;
4. Adjust rotation. Rearrange the order in which the lines are

considered, such that they are placed in counter clockwise order.
Contour Detection
In order to extract the contour, we first scan the image in the search for
regions that have the color we are looking for. Because the color of the
marker in the environment may appear on the camera brighter or dimmer,
depending on the current illumination; we rather want a comparison
independent on the environmental light which will enable us to take for the
comparison the originating color of the object and not its appearance on the
camera screen. In order to achieve this, we convert the color model from

126 Codrin Dumitru Goia, Dorian Gorgan

RGB to HSV and then perform the comparison between each image pixel
and the color we search for within the given radius, independent on
illumination. This conversion is done for each pixel individually and is a
basic operation consisting of a few additions, multiplications and divisions.

The algorithm (Figure 3) is able to process as well the cases when the
pencil marker in the hands of the user might be placed in the image in such
a way that it is in front of the marker, partially covering it in the middle and
splitting it in two parts that do not touch each other.
Rearrange Edges
Although we now have all the marker edges expressed as lines in the 2D
image, it is not enough information for the pose estimation algorithm. At
this point, data is a random line sequence. We need to order them in such a
way that their traversal from line 1 to line 4 represents a quadrangle.
Line Fitting
We now have a contour (a closed chain of pixels) of which we now it
represents a square marker. Hence, we will successively apply 4 times a
Ransac line fitting algorithm, and after each iteration we will remove the
pixels that supported the current resulting hypothesis. That means the first
time we apply Ransac on all the points. After finding a line, all the points
that are in the proximity of that line are removed from the original set of
points, so that they will not be considered again in future iterations – after
all we found the line and don’t want it to interfere with future searches of
other lines. We then apply Ransac again in search of the second line, on the

Figure 3. Marker detected correctly (light blue) even if it is formed out of two non-
adjacent groups, above and below the pencil (contour of the groups shown in gray)

Augmented Space Editor 127

set of points that remain, and so on.
Ransac algorithm for line fitting is very fast. What it does is to randomly

select two points out of the set of points and build the line that connects
them. Next, the set of points is considered again to check how many points
actually support this line hypothesis, that means how many lie in its
proximity. The line and number of its supporters is remembered and the
same process is repeated a few times. At the end, the line with the most
supporters is returned.

To maximize accuracy, after fitting a line with Ransac, the line is re-
estimated using a least squares algorithm performed on its supporters. The
line now represents the best possible estimate of the original points (Figure
4).
Adjust Rotation
The final step in the algorithm for identifying the 2D marker in the image is
to ensure the iteration through lines l1-l2-l3-l4 is done in anti-clockwise
direction. This is done using the rotation matrix in the 2-dimensional space,
which defines a rotation around the origin by an angle α defined in radians.

Camera Pose from Marker
The input of this pipeline stage is the output from the previous stage which
represents a marker defined in the 2D coordinates of the frame with the
following characteristics:
• It is formed out of the line sequence l1-l2-l3 or l1-l2-l3-l4, which

represents the 3 or 4 detected marker edges;

Figure 4. From left to right: Original contour points, line result after Ransac fitting, revised
line result after Least Squares fitting on Ransac supporters

128 Codrin Dumitru Goia, Dorian Gorgan

• The line sequence is ordered;
• The line sequence goes counter-clockwise.
At this point the algorithm leaves the 2D space of the frame behind and

enters the 3D world. What it does is to analyze the 2D input data in order to
obtain its significance in the 3D context. It consists of the following tasks:

1. Solve the individual 3D equation systems
2. Inverse the transformation
3. Merge results

Solve the Individual 3D Equation Systems
When filming with a camera, objects from the real world get projected on
the camera screen where they are represented by color pixels. During this
process ambiguity is introduced, as the depth information is lost. As an
example, a point in the real world when filmed by a camera will get a pixel
value on the camera screen that corresponds to its perspective projection on
the camera screen. However, it is represented only as a color value and the
information regarding the distance which the original point has to the
camera is lost. That means by simply analyzing a pixel in the image we
cannot determine the location of the point in the outside 3D world that
caused that projection. The point could be anywhere on the line connecting
the camera center of projection and its pixel representation on the camera
screen.

The proposed algorithm that computes the pose does not need more than
3 marker lines as input. This means it is necessary and sufficient to detect 3
lines of the marker in order to get a pose estimation. We aim to express the

Figure 5. Transformation to camera coordinates system

Augmented Space Editor 129

3D pose of the marker identified in the frame with respect to the camera
coordinate system. The marker has the form of a square.

Let us now consider any two adjacent edges of this square (Figure 5). As
these edges are perpendicular and intersect each other, we can consider one
as being the marker’s ox axis and the other one the marker’s oy axis. We
denote the marker’s ox axis by ,, the marker’s oy axis by -, and the
marker’s position by .. With these notations the marker is completely
described. Thus, we say that we found the pose of the square/marker with
respect to the camera if and only if we found ,, - and .. These are all
vectors in 3D space. , and - completely define the marker’s orientation,
while . defines its position in space. After we find out their values we will
switch back to coordinate system of the marker. Thus the orientation of the
marker is computed extremely fast, by applying some 3D vector space
geometry.

For determining the marker position, we leave the orientation phase
where we dealt only with angles and introduce distance data to our system.
As such, we use the base for our distance computations the measured
constant length of one side of the scene marker (i.e. 290 mm).

Therefore, we have computed the orientation (i.e. ,, -) and position (i.e.
.) of the marker in camera coordinates, in other words the marker
pose/transform with respect to the camera.
Inverse Transformation
The camera pose with respect to the marker is simply obtained by
computing the inverse of the transform. This represents a change in
perspective in the algorithm. Until now all data was expressed taking the
camera as a base. This was necessary because the camera was the only thing
that we knew in the environment.
Merge Results
As mentioned earlier, the resulted pose was computed taking into
consideration only 3 marker edges. Should the current frame contain a
partially visible marker with only 3 visible edges, this step of the algorithm
is complete. Otherwise, in case the marker has 4 detected edges, we desire
to use the information of all 4 edges.

Therefore, the algorithm is applied for each possible input combination
and each partial result is considered. There are 4 possible ways to combine
the 4 input edges in groups of 3, and for each one of them the pose is
computed using the algorithm covered in the previous section.

130 Codrin Dumitru Goia, Dorian Gorgan

Adapting the Result
The camera pose was computed up to this point only taking into
consideration input related to the current frame obtained from the camera.
However, this algorithm of obtaining the pose is not applied once on a
single image, but on the input stream of images coming from the camera,
so-called frames. This means the result obtained on a local context by
analyzing the current frame needs to be integrated in the global context,
such that the new pose makes sense in the light of the earlier ones. In order
to do that, two things need to be taken care of:

1. Adjust quadrant to previous pose;
2. Smooth out noise.

Adjust Quadrant to Previous Pose
As we chose a scene marker type that would require the user minimal effort
to procure it, the scene marker is merely a square piece of paper of some
specific color. Being a square, we can identify its edges and compute the
camera pose from this information as described earlier, however there is a

Figure 6. Pose ambiguity on a symmetrical marker; camera could be located in each of the
4 quadrants and still fulfill the marker projection conditions

Augmented Space Editor 131

limitation: because this square is perfectly symmetrical both along the x axis
as well as the y axis, there are no unique features that we could identify on it
and track in order to determine the camera’s absolute pose with respect to
the marker.

Figure 6 illustrates how the marker’s symmetry allows each pose to be
accurately determined inside a quadrant but leaves the question open of
which of the 4 quadrants it is actually in. Additionally, there is no way to
solve this problem by just analyzing the marker edges, as the input for pose
computation are the results coming from the Ransac algorithm that has a
randomness factor, which leads to the order in which marker edges are
considered being possibly different from one frame to the other.

To solve this problem, the solution is to ensure coherency exists between
each pair of successive frames (i.e. minimal difference in orientation),
without caring about our absolute position.

The only situation in which this method fails is when the difference in
orientation between the pose of two successive frames is more than 45
degrees. This is a theoretical possible but practically unattainable case,
considering that the application is designed to work at a minimum of 24
frames per second which would require the user to rotate the camera more
than 45 degrees in less than 42 milliseconds in order to get this an error –
which is extremely unlikely.
Smooth Out Noise
In order to increase the continuity between frames despite the presence of
noise, each pose result is averaged with the result obtained in the past few
frames. Thus, a smooth movement is obtained at the expense of accuracy. In
other words, the averaged pose is more stable and steady and less influenced
by noise due to the fact that it represents an estimation based on values
computed from several frames, but it is less responsive to changes.

4.2 Pencil Position
Besides the marker representing the scene base (scene marker) which also
represents the main system of reference according to which transforms are
defined in the world, the system also scans for the pencil marker. The pencil
marker is the marker representing the user’s input in the 3D scene, in the
form of a position in 3D space. The user utilizes the pencil to model the
virtual 3D objects.

132 Codrin Dumitru Goia, Dorian Gorgan

Pencil Detection
The pencil marker consists of a disk of some predefined color. It is a circle
cut in colored paper that is attached to a small stick that will allow the user
to move it freely through the scene without having his hands interfere with
the pencil or scene markers (Figure 7). The pencil position passed as input
to the program will be the center of the disk.

Pencil Position
At this point we have all the information needed to compute the pencil’s
position. The next step is first to determine the pencil’s 3D space position
with respect to the camera, and then, knowing the global position of the
camera, compute the global position of the pencil.

Gravity
Up to this point we obtained the pencil position only by analyzing the
current camera frame. However, if the user wants to interact with previously
created shapes in the virtual scene, the raw pencil position input may not
deliver the desired accuracy. Due to this fact, the pencil position
determination process undergoes one last phase, the exposure to gravity.

By this interactive technique, the pencil position will be snapped to that
gravity point, such that the user will not need to move the pencil exactly to
the desired position. Therefore, the system anticipates the position where
the user wants to move the pencil and, if the pencil is in its proximity, it
automatically moves the pencil to the point of interest.

Figure 7. Pencil marker detection process

Augmented Space Editor 133

4.3 User Interface Input
Apart from the pencil position which defines where to draw the models in
the augmented reality scene, additional input is require to define what and
how to draw. This input is taken from the user interface and defines the
structure, color, and parameters of the shapes to be created with the pencil.

The construction concept is to build the model out of a set of individual
components. These components will be defined using a series of shape
primitives which can be instantiated with custom set attributes. Regarding
the shape primitives, the user will be able to choose from a menu containing
basic shapes such as sphere, line with square diameter, line with circle
diameter, Bézier curve, free curve, triangle, etc.

5. Output Features
Augmented Reality Scene
The augmented reality scene provides real-time feedback to the user for his
actions on the UI and with the pencil marker. It offers the user a quick and
intuitive way of visualizing and interacting with the model.

Nevertheless, the difference between real and virtual objects will still be
visible, mainly because of different illumination. For no matter what
illumination model is used to render the virtual scene, the result will still
look different from the real world because:
• There is no ray tracing process. The rendering of the scene needs to be

done in real-time, making ray tracing impossible to use due to its high
computational cost.

• The lighting parameters of the environment are unknown. Parameters
such as light sources intensities, light sources positions, ambient light
and surrounding material properties all contribute to the way light
falls onto an object. If these parameters are not known, then the virtual
object will look unnaturally different from the real world objects and
the human eye will percept it as an intruder.

Phong Reflection Model
The model represents a 3D structure in a virtual scene. In order to be visible
to the user it is brought to the screen by a process called rendering, which is
composed of a series of operations known as graphics pipeline. Aiming to
reproduce the model as it would appear in reality, with colors, overcast

134 Codrin Dumitru Goia, Dorian Gorgan

shadows, etc. we hope “to display an image that approximates the real
object closely enough to provide a certain degree of realism” (Phong, 1975).

Advanced Shapes
In order to model the desired object, the user has at its disposal basic
primitive shapes which he is able to instantiate with different parameters
such as position, size, and color. The more challenging primitive shapes are
the Bézier Curves. A Bézier curve is defined by a set of points known as
control points. Due to the nature of its parametric function, it has the
property that, once the control points are defined, it represents a smooth
curve that runs through the first and the last of the control points and
presents an approximation of the other control points in between, offering
an intuitive way to describe continuous curves and a pleasant-looking result.

6. Experimental Validation

6.1 System Configuration
The application is built using the Android software development kit
(Android SDK) on a Windows 10 machine. The IDE used for this was
Android Studio, which is the official IDE from Google for native Android
application development since 2015. Android Studio is based on JetBrains'
IntelliJ IDEA software but designed specifically for Android development.

The image processing part in the application is done using the OpenCV
Java library for Android. OpenCV (Open Source Computer Vision) is a
library of programming functions mainly aimed at real-time computer
vision. The library is cross-platform and free for use under the open-source
BSD license.

In order to communicate with the phone’s GPU for rendering the virtual
scene, OpengGL ES 2.0 is used. OpenGL ES (OpenGL for Embedded
Systems) is a subset of the OpenGL computer graphics rendering API for
rendering 2D and 3D computer graphics, such as those used by video
games, typically hardware-accelerated using a graphics processing unit
(GPU). It is designed for embedded systems like smartphones, computer
tablets, video game consoles and PDAs.

Augmented Space Editor 135

6.2 Visual Results
The user may edit 3D virtual objects working directly within the 3D real
space (Figure 8). The feeling and the manipulation of the tree dimensions
(i.e. x, y and z; width, length and deep) is more natural than within the
known 3D graphical editors.

6.3 Performance Evaluation
As have been already experimentally checked, the load on the GPU and
main memory consumption is moderate and is not detrimental to the
system’s performance. The system’s most important aspect is how to make
use of the CPU in order to ensure real-time interaction.

The main and only relevant way to measure time performance in this
application is by counting how fast the system is able to process incoming
camera frames – this means the time between the frame arrival from the
camera as input to the system, and the displaying of the AR scene to the
user, in concordance to the frame, the model and user input. This processing
is done continuously, such that as soon as a frame is finished processing and
displayed the system starts working on the new one. This is the system’s
most time-critical path as it represents the work done for the AR scene
which is the application’s main feature. All the other tasks such as user
input coming from the UI are short and direct, rather determining how the
main task is executed and not actually doing anything.

During the application’s most heavily loaded use case (the AR editor),

Figure 8. Building up complex 3D virtual objects by working directly within the 3D real

world

136 Codrin Dumitru Goia, Dorian Gorgan

measurements show that the application works at an average of 17 frames
per second (fps). While this value is enough to enable a steady use of the
application, it is not a very good value considering that most video formats
operate at a minimum frame rate of 24 fps. The frame rate does not directly
affect the user experience in the AR editor as it does not lag and is still
perceived by the brain as motion, however it is not perfectly fluid and does
put stress on the eye indirectly and especially over time.

More than 90% of the frame processing time is spent in performing
image processing on the camera frame in order to compute the camera pose
and the pencil position, and, despite being heavily optimized, the resulting
frame rate shows that this is a part of the application that still needs
improving. As such, at this point in time the quality requirement of a
minimum frame rate of 24 fps is not fulfilled.

6.4 Functional Evaluation

Static Factors
The user experience is affected by certain aspects of the environment where
the application is used. The factors covered here are static – once
established, they do not change during the usage of the application
Marker Uniqueness
By marker uniqueness we refer to the condition that the color of the scene
and pencil marker object is not found in the environment in significant
amounts.

This comes with the drawback that there are times where the color of the
marker is similar to the color of the environment visible in the background,
leading to false pencil and scene marker identifications. The step where the
user selects the colors of the scene and pencil marker, as well as the radius
in the HSV color model around which they are to be searched for, is to be
treated with great care.
Illumination
Environment illumination is also an important factor since the detection of
the markers is color-based. The environment is to be brightly and uniformly
lit. Otherwise, the pencil marker’s shadow may fall hard enough on the
underlying scene marker, thus affecting its proper detection.

Augmented Space Editor 137

Marker Size
The size of the pencil and scene marker directly affects the accuracy of the
camera pose and pencil position retrieval.

While the size of the scene marker should be small enough to entirely fit
in the camera frame but large enough to deliver a proper estimation of the
camera pose, experiments showed that this value is not an issue, as it can
vary a lot (from 50 mm to 300 mm) without affecting the accuracy of the
camera pose.

As for the pencil marker, it represents a colored disk of some diameter,
whose value represents a trade-off. The smaller the value, the smaller the
pencil marker will be. This will make the user pencil appear more natural to
the user as it resembles more and more a normal pencil, and it will decrease
the probability of obstructing the scene marker during the drawing phase.
However, we rely on the size of the diameter to retrieve the distance of the
pencil marker to the camera; the smaller this value is, the less precise our
estimation will be. A value of 30 mm turned out to be a good compromise
between these two options

Dynamic Factors
Besides the static ones, there are two factors influencing the correct
functioning of the application that change during the usage.
Distance
The distance to the markers is closely coupled to their size. The camera
must not be too close, so that the markers fits inside the camera screen. The
pencil marker must always be fully visible in order to be correctly analyzed,
and the scene marker must have at least 3 out of 4 edges detected, while 4
edges are desirable for an increased pose accuracy.

The maximum distance depends again on the marker’s size. In the case
of a pencil marker of 30 mm diameter and a scene marker with the side of
200 mm, the maximum distance is 40 mm for the pencil detection and 1300
mm for the scene marker detection. The detection of the scene marker
without the pencil marker would allow the user to visualize the AR scene
but not interact with it, as the pencil position is missing.
Speed
A correct marker detection is also influenced by the speed with which the
camera moves through the environment, as well as the speed of the markers.
However, this value turned out to be of no concern during normal use of the

138 Codrin Dumitru Goia, Dorian Gorgan

application.

6.5 Usability Evaluation
The application was given to three persons from different categories to test
its usability.

The first individual is a computer science student with high expertise in
the image processing domain. The second person has high knowledge skills
in engineering such as control theory and thus strong logical thinking is
shaped, however he is not aware of the exact implementation details. The
third person has little to no knowledge in the field, though she is very
familiar to the smartphone technology (hence she is representative for the
majority of potential users out there).

The testing process was done for each person individually. He was
notified that the test was done to evaluate the usability of a research project,
the purpose of the application was clarified, the way to operate it, and to
some of the testers a short life demo was shown. Next, each tester was
allowed to freely use the application as desired, and at the end he was given
the task to draw a smiley face. First, the testers’ feedback is presented and
then my personal notes and conclusions on the tests.

Critical feedback from the testers
The critics and the recommendations of the testers could be concluded by
the followings:
• Dependency on color in order to identify the markers is a problem; the

constant care for a proper marker detection (in order not to be
confused with the environment or covered by shadow) is tedious;

• More primitive shapes should be available;
• Working with the application provides a good feel for grasping the

3rd dimension;
• Additional to the color picker, a color palette should be visible where

the user can quickly pick a color among a set of basic predefined
colors; this would speed up the process of selecting the color in cases
where the user is not interested in a very specific color;

• More customization options should be offered;

Augmented Space Editor 139

• A useful addition would be an extra functioning mode in which the
angle from which the virtual scene visualized is not set according to
the AR scene, but can rather be set manually by the user, using
swiping gestures over the touchscreen.

Usability evaluation given by the developers
The developers performed themselves usability evaluation sessions. The
conclusions and recommendations are the followings:
• The tester’s prior knowledge in computer science turned out to play

an important role; testers with domain knowledge understood from
start what the marker detection process consisted of, and hence knew
how to set the parameters accordingly. Whereas the person with
highest experience figured out on her own to hide an object in the
background that had approximatively the same color as the scene
marker in order not to interfere with the detection process, the person
with no knowledge did not really grasp the conditions necessary for a
good marker detection until the end; additional effort needs to be
invested in order to avoid this, by managing more of the tasks that are
currently done by the user, in order for the application to be less
dependent on his actions;

• A visual tutorial (at best a video) is very important to be shown before
usage; it was much easier to understand what needs to be done at each
step in cases in which a live demo was shown to the testers at start.
This is all the more important as the application is not a standard one
and greatly relies on user cooperation;

• The application proved to be very appealing and fun to the test person
that had painting as a hobby;

• To ease up usability, at various points in the application the main
commands are launched not by the press of one particular button, but
by tapping anywhere on the screen; it is more convenient to the user
to simply touch his finger anywhere on the screen than needing to hit
exactly one button; however, this created confusion among all users,
due to the fact that the tapping needed to be done over the AR scene,
which gave them the impression that the actual position of the point
where the tapping was done was important, confusing it with another
form of input; additional emphasis needs to be put on the instruction

140 Codrin Dumitru Goia, Dorian Gorgan

that the tapping may be done anywhere on the screen and the exact
location plays no role;

• Users did not really comprehend the principle of the Bézier curve;
when the control points needed to be added at each new editing step,
they expected the curve to run through the control points and not in-
between as it was the case; some visual representation of the control
points and their relation to the curve needs to be shown during the
drawing process in order to avoid this confusion in the future.

Figure 9. Marker selection: (left) search radius too small ; (right) correct color and radius

parameters

7. Working Session Calibration
Using this application supposes executing 5 major steps:

1. Select the color and intensity of the scene marker
2. Select the color and intensity of the pencil marker
3. Calibrate the pencil marker with respect to the scene marker
4. Select the attributes of the shape to be drawn
5. Draw the shape in the editor

Steps 1 to 3 are done only once, at application start. Steps 4 and 5 are
done repeatedly during the object modeling phase in the AR scene.

7.1 Define Scene Marker
The first step after launching the application is to select the attributes to
search for when looking for the scene marker. These consist of the color to
be searched for as well as the radius in the HSV color space in which two
colors will be considered equal. As Figure 9 points out, the parameters shall

Augmented Space Editor 141

lead to a full marker detection but without having it interact with the
environment.

7.2 Define Pencil Marker
Similar to the scene marker the pencil marker shall be defined (Figure
10.left).

7.3 Calibrate Markers
Once the two markers can be tracked, one thing remains: the system must
know the size of each marker relative to the other one, so that it will be able
to compute their distances to the camera on the same scale, and thus their
transforms in 3D space in the same coordinate system (Figure 10.right).
This step is important as the camera has no depth information.

7.4 Select Shape Attributes
At this stage the main scene featuring the AR editor is visible (Figure
12.left). The detection of the scene marker and the pencil marker are done
using the attributes defined previously: shape type, size, and color (Figure
12.right).

Figure 10. (left) Pencil marker attributes are being selected; (right) Calibration of marker

size by placing both markers in the same plane

142 Codrin Dumitru Goia, Dorian Gorgan

Figure 12. (left) AR editor on top of the scene marker with the pencil marker position

tracked in 3D space ; (right) Shape select menu. The created shape will be a blue sphere
with the diameter specified dynamically with the pencil, after its creation

7.5 Draw Shapes
Once the shape attributes are defined, the shape may be drawn on the scene
(Figure 11). Tap anywhere on the scene once in order start drawing. Tap
again each time to get to the next editing step. All shapes are drawn in
editing steps in which the pencil position is submitted, the transition from
one editing step to the other being the tap on the screen gesture. Simple
shapes, as for example the drawing of a fixed size sphere, require only one
editing step (specifying its position with the pencil). More complex shapes
may require more editing steps, such as a square line of dynamic diameter
which requires 3 (specifying the start point, end point, and the width of its

Figure 11. Drawing made with the Augmented Space Editor

Augmented Space Editor 143

section). There are shapes such as the Bézier curve that require an indefinite
number of editing steps (for the Bézier curve, with each editing step a new
control point is added). In this case, a red button in the lower right part of
the screen will appear which may be pressed at the end to finish editing the
current shape.

8. Conclusions

8.1 Results and Issues
A new concept of human-computer interaction having as purpose the
modeling of 3D objects has been designed, implemented and evaluated. The
root idea is to allow the user to define and interact with multiple 3D shapes
in an augmented reality context, using as input the touch screen and two
markers, the first representing the scene base on top of which shapes will be
drawn, and the second representing a cursor which is able to move in 3D
(unlike the typical mouse cursor which can only be moved in two
dimensions).

The main advantage was the ability of the system to mix the real
perspective from which the scene is looked at with the virtual one, blending
the two worlds together. The user was able to model shapes directly and
straightforwardly, without worrying about domain-related terms that would
appear in a normal graphics modeling software, such as virtual camera,
coordinate system or scene depth – which where all now linked to the
reality world.

There were also some issues identified while testing the system. These
issues are all related to implementation details of the application, and not to
the concepts themselves.

Issues preventing a problem-free usage were mostly caused by its
physical implementation of the marker detection. The advantage of a color-
based marker detection also turned out to be one of the system major
problems. The system sometimes failed to perfectly detect markers by either
not identifying them fully, or confusing them with parts of the environment
background. This lead to bad pose computations which made the virtual
scene look misplaced in the AR scene.

Another considerable drawback is the fact that the system relies heavily
on the user to do his job right: the user needs to come up with a perfect disk

144 Codrin Dumitru Goia, Dorian Gorgan

to represent the pencil marker; a perfect square for the scene marker; setting
the color parameters of the markers needs to be done with optimal settings
to enable a good identification later on; during the calibration phase, the
pencil marker needs to be placed on top of the scene marker. These are all
actions in which the system expects the user to do his task right, with
limited or no ways to verify if they were done right.

As general characteristics of the system, we developed an application
that favors speed and ease of use over precision. Accuracy was limited to
the precision with which the scene marker and camera marker where
detected, which were subject to noise. It relies on care and attention on the
side of the user to use it properly in order to make it work as intended.

8.2 Further Development
The application is a proof of concept and is far from being a complete tool
for modeling 3D objects ready to be released on the market. Additions may
be implemented in almost every direction pointing out the potential of the
underlying concept, and only a fraction are presented here:
• Auxiliary input methods: Besides changing the marker detection

approach, the application could benefit from auxiliary ways to
determine the camera’s position in 3D space. This is due to the fact
that sometimes it happens that the pencil marker obstructs the scene
marker in such a way that a correct pose computation is not possible.

• Space partitioning: At the current stage, the virtual scene used to hold
the data of the model solely consists of a collection of 3D shapes. In
order to perform operations on the shapes, such as to compute the
gravity result of the pencil’s current position, we need to iterate over
the whole collection and check each individual shape, which leads to
an execution time of O(n), where n is the number of shapes in the
scene. While this approach is genuine for a scene of medium size
(runtime was never a problem for scenes containing dozens of
shapes), it does not scale well for shapes of larger size (keep in mind
that the computation of the pencil gravity result needs to be done at
every frame, thus its execution time is critical).

• New editing operations: At the moment the user can create a custom
model having at his disposal a series of basic shapes (sphere, line,
etc.) which may be instantiated with any parameters. A custom 3D

Augmented Space Editor 145

model may then be constructed by combining these shapes, as one
would build a house using several types of bricks. However, there are
a lot more editing operations to be implemented using the underlying
concepts. An editing operation that would offer way more flexibility
to the user is sculpting. The user would then chisel the desired 3D
shape in the cube, exactly as a sculptor would do on a real block of
stone. A merging algorithm between two 3D objects must be
employed, such the one presented in (Decaudin, 1996).

• Save and export: At this point, the structure modeled by the user
resides only in the main memory and is lost when the application is
closed. A useful expansion is the possibility to save one’s work in the
phone’s storage, such that it can be opened later for visualization and
further editing.

References
Alvarez, H., and Borro, D., 2009, A Novel Approach to achieve Robustness against Marker

Occlusion, Proceedings of the International Conference on Computer Vision Theory and
Applications (VISAPP9), pp. 478-483. Lisbona, Portugal.

Buchholz, R., 2014, Augmented Reality: New Opportunities for Marketing and Sales, KEY
VALUES GmbH, Hamburg, Germany.

Dachsbacher, C., 2015, Computergrafik course 9, Karlsruhe Intitute of Technology,
Karlsruhe, Germany, slides 29-33.

Decaudin, P., 1996, Geometric Deformation by Merging a 3D Object with a Simple Shape,
Graphics Interface ‘96 proceedings, May 21-24, Toronto, Canada. [8] Fitzgibbon,
A.W., Fisher, R.B., 1995, A Buyer’s Guide to Conic Fitting, Proc.5th British Machine
Vision Conference, Birmingham, UK, pp. 513-522.

Gallier, J., 1999, Curves and Surfaces in Geometric Modeling: Theory and Algorithms,
Morgan Kaufmann Publishers Inc. San Francisco, USA, pp. 81-86.

Huot, H., Dumas, C., and Hégron, G., 2003, Toward Creative 3D Modeling: an Architects'
Sketches Study, IFIP TC13 International Conference on Human-Computer Interaction,
Zurich, Switzerland.

Lourakis, M.I.A., 2005, A brief description of the Levenberg-Marquardt algorithm
implemented by levmar, Technical Report, Institute of Computer Science, Foundation
for Research and Technology - Hellas.

Mackay, W.E., 1998, Augmented reality: linking real and virtual worlds: a new paradigm
for interacting with computers, AVI '98 Proceedings of the working conference on
Advanced visual interfaces, pp. 13-21.

Phong, B. T., 1975, Illumination for computer generated pictures, Communications of ACM
18 no. 6.

146 Codrin Dumitru Goia, Dorian Gorgan

Schmalstieg, D., 2016, Hollerer, T., Augmented Reality: Principles and Practice, Addison-

Wesley Professional, pp. 28-29.
Siltanen, S., 2012, Theory and Applications of Marker-based Augmented Reality, VTT

science, vol. 3, pp. 51-53.
Szeliski, R., 2010, Computer Vision: Algorithms and Applications, Springer-Verlag New

York, Inc. New York, USA, pp. 91-92.

