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Abstract. The paper presents a new concept of human-computer interaction having as 
purpose 3D object modeling. The user models an object in an augmented reality context, 
using as input the touch screen and two markers, the first representing the scene base on top 
of which shapes will be drawn, and the second being a 3D cursor. The research 
experiments a robust camera pose estimation algorithm based on the detection of the 
marker, allowing for pose retrieval even in situations where marker is partially occluded. 
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1. Introduction 
As hardware and software evolve more and more we observe, among other 
phenomena, a continuous strive to find new methods of interaction between 
human and computer. Human-computer interaction is an important field of 
research since it focuses on the interface between two inherently different 
entities, the person (user) and the computer. Communication plays an 
essential role as each of the two ends must present its information in a form 
known to the other. A solution that targets this problem is augmented 
reality.  

Augmented reality (AR) is a live direct or indirect view of a physical, 
real-world environment whose elements are augmented by computer-
generated sensory input such as sound, video, graphics or GPS data. It is 
related to a more general concept called computer-mediated reality, in 
which a view of reality is modified (possibly even diminished rather than 
augmented) by a computer. Augmented reality enhances one’s current 
perception of reality, whereas in contrast, virtual reality replaces the real 
world with a simulated one. Augmentation techniques are typically 
performed in real-time real time and in semantic context with environmental 
elements, such as overlaying supplemental information like scores over a 



120 Codrin Dumitru Goia, Dorian Gorgan 

 

live video feed of a sporting event. 
In other words, augmented reality represents a new paradigm of 

interaction with computers by linking real and digital world together. Rather 
than needing to fight his way through abstract representations, complex 
menus or textual representation regarding a specific task, the user can now 
interact intuitively with objects from his own world, in real-time (Wendy, 
1998). Furthermore, the trend in AR is upwards, signalizing the positive 
experience on the user side and great yet incompletely exploited potential of 
this technology (Buchholz, 2014). 

In computer graphics, 3D modeling is the process of developing a 
mathematical representation of any surface of an object in three dimensions 
via specialized software. The product is then called a 3D model. Once 
created, it can then be displayed as a two-dimensional image through a 
process called 3D rendering, it can be used in computer simulation of 
physical phenomena, can be physically created using 3D printing devices, 
or be further used in other applications such as animation software, video 
post-production, or games. 

When the user is interacting with the computer to work on a 3D model, 
ambiguity is introduced due to the two-dimensional nature of the monitor. 
Ideally, the object being modeled is both in the designer’s mind as well in 
the computer memory, in different representations. However, the 
communication between these two instances of the same object is limited 
due to the fact that every interaction is done through a two-dimensional 
image on the monitor. Due to this fact, regardless which angle is chosen to 
look at the model in the virtual scene, or which lightning model is used, one 
dimension is always lost in the process of communicating the model. 

Consider the following two example scenarios:  
1. In the virtual scene, the camera is focused on the object and the user 

desires to move a part of the object being modeled towards the 
camera. Because the camera is facing the object and the image formed 
on the camera is displayed on the monitor, the task is equivalent to 
moving the object out of the monitor. Hoverer this represents a new 
dimension which the screen is not able to reproduce, hence the user 
cannot point to it.  

2. There is a fixed point selected in the virtual scene. The camera used in 
the virtual scene is facing the point, such that it becomes visible on the 
monitor. However, the user is unable to deduce distance of the point 
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to the camera, because the point can be anywhere on the line 
connecting the position of the point and the center of projection of the 
camera. 

Both examples show the ambiguity that arise when dealing with a three-
dimensional, virtual scene. These obstacles can be overcome in each case by 
changing the angle from which the camera is looking at the virtual object, 
such that the position in 3D space becomes well determined. However, this 
requires extra work and constant attention on behalf of the user. 

Because of this and similar reasons, 3D modeling systems are tedious to 
use and generally shackle creativity of users (Stéphane et al., 2003). 

This paper proposes a new approach to modeling 3D structures by 
introducing augmented reality interaction in the context of a 3D modeling 
software. The user (3D artist) is able to define shapes in the real world by 
using a custom defined pencil in his one hand, and view the created shapes 
in real-time in the context of an AR scene on a mobile device, held in his 
other hand. 

The paper is structured as follows. Next section … 

2. Related Works 
There are a number of fields related to augmented reality. Augmented 
reality is actually part of a bigger picture, namely the concept of mixed 
reality (Schmalstieg and Hollerer, 2016). Mixed reality, sometimes referred 
to as hybrid reality, is the merging of real and virtual worlds to produce new 
environments and visualizations where physical and digital objects co-exist 
and interact in real time. Augmented reality contains primarily real elements 
and, therefore, is closer to reality. For example, a user with an AR app on a 
smartphone will continue perceiving the real world in the normal way, but 
with some additional elements presented on the smartphone.  

The first operation in a long AR pipeline process is to detect the markers 
representing the scene and the user pencil, before passing their data on and 
proceed to their full analysis to get 3D poses. As the detection process is 
color-based, each pixel in each frame from the camera feed is analyzed and 
compared against the value that it searches for. 

A widely used color model is the RGB color model. While using this 
color model has its advantages, it has the limitation that it is heavily 
dependent on illumination transformations. As such, two similar colors 
illuminated at different light intensities may look equally different as two 
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different colors that have the same brightness. This represents a limitation 
when searching for a specific color in a camera shot, as the interest lies in 
the originating source color and not in the result appearing on the camera, 
result that may be affected in brightness by different light sources and 
shadings. This limitation yields to the HSV color model (Szeliski, 2010). 

Siltanen describes in (Siltanen, 2012) the process to define the camera in 
marker coordinates. This is a matrix based camera transformation that 
localizes the camera with respect to the marker, and it stays the same for 
one frame. This is a non-linear estimation problem and will be solved using 
a least-square minimization algorithm, such as the Levenberg-Marquardt 
algorithm (Lourakis, 2005). 

In normal AR scenarios the camera pose is computing by analyzing a 
fully detected fiducial marker in the form of a quadrangle. However, in 
practice one corner or even one full edge of the quadrangle may be occluded 
leading to a situation where camera pose extraction is possible in theory but 
requires a whole new approach to be put in practice. The paper of (Alvarez 
and Borro, 2009) proposes an algorithm to address this issue by computing 
the camera pose the normal way when the marker is fully visible and then, 
when the marker gets partially occluded, making estimations based on the 
poses of the previous frames. 

3. Augmented 3D Space Editor Solution 

3.1 Conceptual Architecture of the Editor 
The application features a new approach on interacting with virtual 3D 
structures with the aim to be more usable and intuitive. Values such as ease 
of use and natural ways of human-computer interaction are put above 
precision and complete control. In other words, the application will enable 
users with minimal knowledge in 3D modeling to express their ideas 
directly, without the need to master the complex concepts that come with 
this field. 

Figure 1 shows how the data flow bridges the gap between input and 
output while communicating with and updating the model. The entire 
workflow is heavily optimized to work in real-time. 

There are two inputs to the system, the camera and the touchscreen. 
Different from the camera input, the touch screen input is only triggered 
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when the user operates on the user interface. Data is modified in the model 
accordingly, and will be taken into consideration while processing future 
camera frames. The input arriving from the camera is different. It represents 
a continuous loop and feeds the application on a regular basis, that is for 
each frame (there are desirably at least 24 frames in one second); new input 
arrives with every camera frame, which triggers its processing. 

3.2 Core Features Analysis 
During the main use case scenario, the user will be editing virtual shapes in 
an interactive augmented reality space. This requires the application to do 
the following high-level tasks at each update: 

1. Extract the camera pose from which the current frame was taken; 
2. Compute the position of the user pencil and match it to the context 

of the scene; 
3. Modify the model in accordance with the control commands coming 

from the user interface and the computed pencil position; 
4. Redraw the scene in conformity with the pose of the new frame and 

the updated model. 
These coarse tasks will now be grouped in input and output related tasks, 

split in subtasks and each of them be considered individually from a 
theoretical perspective. 

 

Figure 1.  Conceptual architecture of the Augmented Space Editor 
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4. Input Features 
There are three types of input features the processing concerns with: scene 
marker, pencil position, and user interface. 

4.1 Camera Pose 
The extraction of the camera pose is the core task that stands at the base of 
all the other tasks. Computing it for a given frame means to compute the 
position and orientation of the camera that captured that frame, with respect 
to the scene marker that is identified in it. This will enable us to capture the 
virtual scene from the exactly same position and orientation with respect to 
the scene base, and then add the result of this capture over the original 
frame. In the eyes of the user, this will make the model in the virtual scene 
look as part of the real world, because two perspectives from which we are 
looking at the two scenes (the virtual and the marker) are one and the same. 

Our implementation of camera pose retrieval is different from other 
implementations on this matter. It is designed to compute the camera pose 
even in situations where the scene marker often gets partially obstructed by 
the user pencil marker and is not fully enclosed in the camera screen. This 
makes the algorithm very flexible and robust to user input. 

Figure 2 shows the pipeline of operations that the input frame undergoes 
to obtain the camera pose, whose result will be used further on in the 
application. The pipeline process is executed for every frame coming from 
the camera. 

 

Figure 2. Operations pipeline to get from input frame to camera pose 
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Scene Marker Type 
We will now describe the marker that the system scans for in order to obtain 
the camera pose. This marker represents the scene base to the user, on top of 
which he will model the virtual shapes. This marker will be further referred 
to as the scene marker. 

An important aim of the project from start was to require the user a 
minimal amount tools in order to use this application. That imposed the 
system to accept a marker that can be easily provided from his environment 
without asking him to make measurements with the ruler or print out special 
markers. The scene marker represents a square piece of paper of custom 
color. 

Marker Detection 
The detection of the scene marker is the first stage in the pipeline for 
determining the camera pose. As input it receives the current frame from the 
camera and the color attributes of the marker to be tracked, and at the end of 
this stage it outputs the marker detected in the frame, in 2D image 
coordinates. This output will be further processed by the next algorithms in 
the pipeline to extract the 3D camera pose. 

The marker in the real world is a square piece of paper; on the frame, due 
to its projection on the camera screen, it forms a convex quadrangle. At this 
stage all operations are in 2D space. It consists of the following tasks: 

1. Contour Detection. Detect the contour of the marker; 
2. Line fitting. Fit four lines in the extracted contour to obtain the 

marker edges; 
3. Rearrange edges. Rearrange the order in which the lines are 

considered such that it determines the edges of the marker; 
4. Adjust rotation. Rearrange the order in which the lines are 

considered, such that they are placed in counter clockwise order. 
Contour Detection 
In order to extract the contour, we first scan the image in the search for 
regions that have the color we are looking for. Because the color of the 
marker in the environment may appear on the camera brighter or dimmer, 
depending on the current illumination; we rather want a comparison 
independent on the environmental light which will enable us to take for the 
comparison the originating color of the object and not its appearance on the 
camera screen. In order to achieve this, we convert the color model from 
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RGB to HSV and then perform the comparison between each image pixel 
and the color we search for within the given radius, independent on 
illumination. This conversion is done for each pixel individually and is a 
basic operation consisting of a few additions, multiplications and divisions. 

The algorithm (Figure 3) is able to process as well the cases when the 
pencil marker in the hands of the user might be placed in the image in such 
a way that it is in front of the marker, partially covering it in the middle and 
splitting it in two parts that do not touch each other. 
Rearrange Edges 
Although we now have all the marker edges expressed as lines in the 2D 
image, it is not enough information for the pose estimation algorithm. At 
this point, data is a random line sequence. We need to order them in such a 
way that their traversal from line 1 to line 4 represents a quadrangle. 
Line Fitting 
We now have a contour (a closed chain of pixels) of which we now it 
represents a square marker. Hence, we will successively apply 4 times a 
Ransac line fitting algorithm, and after each iteration we will remove the 
pixels that supported the current resulting hypothesis. That means the first 
time we apply Ransac on all the points. After finding a line, all the points 
that are in the proximity of that line are removed from the original set of 
points, so that they will not be considered again in future iterations – after 
all we found the line and don’t want it to interfere with future searches of 
other lines. We then apply Ransac again in search of the second line, on the 

 

Figure 3.  Marker detected correctly (light blue) even if it is formed out of two non-
adjacent groups, above and below the pencil (contour of the groups shown in gray) 
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set of points that remain, and so on. 
Ransac algorithm for line fitting is very fast. What it does is to randomly 

select two points out of the set of points and build the line that connects 
them. Next, the set of points is considered again to check how many points 
actually support this line hypothesis, that means how many lie in its 
proximity. The line and number of its supporters is remembered and the 
same process is repeated a few times. At the end, the line with the most 
supporters is returned. 

To maximize accuracy, after fitting a line with Ransac, the line is re-
estimated using a least squares algorithm performed on its supporters. The 
line now represents the best possible estimate of the original points (Figure 
4). 
Adjust Rotation 
The final step in the algorithm for identifying the 2D marker in the image is 
to ensure the iteration through lines l1-l2-l3-l4 is done in anti-clockwise 
direction. This is done using the rotation matrix in the 2-dimensional space, 
which defines a rotation around the origin by an angle α defined in radians. 

Camera Pose from Marker 
The input of this pipeline stage is the output from the previous stage which 
represents a marker defined in the 2D coordinates of the frame with the 
following characteristics: 
• It is formed out of the line sequence l1-l2-l3 or l1-l2-l3-l4, which 

represents the 3 or 4 detected marker edges; 

 

Figure 4. From left to right: Original contour points, line result after Ransac fitting, revised 
line result after Least Squares fitting on Ransac supporters 
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• The line sequence is ordered; 
• The line sequence goes counter-clockwise. 
At this point the algorithm leaves the 2D space of the frame behind and 

enters the 3D world. What it does is to analyze the 2D input data in order to 
obtain its significance in the 3D context. It consists of the following tasks: 

1. Solve the individual 3D equation systems 
2. Inverse the transformation 
3. Merge results  

Solve the Individual 3D Equation Systems 
When filming with a camera, objects from the real world get projected on 
the camera screen where they are represented by color pixels. During this 
process ambiguity is introduced, as the depth information is lost. As an 
example, a point in the real world when filmed by a camera will get a pixel 
value on the camera screen that corresponds to its perspective projection on 
the camera screen. However, it is represented only as a color value and the 
information regarding the distance which the original point has to the 
camera is lost. That means by simply analyzing a pixel in the image we 
cannot determine the location of the point in the outside 3D world that 
caused that projection. The point could be anywhere on the line connecting 
the camera center of projection and its pixel representation on the camera 
screen. 

The proposed algorithm that computes the pose does not need more than 
3 marker lines as input. This means it is necessary and sufficient to detect 3 
lines of the marker in order to get a pose estimation. We aim to express the 

 

Figure 5. Transformation to camera coordinates system 
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3D pose of the marker identified in the frame with respect to the camera 
coordinate system. The marker has the form of a square.  

Let us now consider any two adjacent edges of this square (Figure 5). As 
these edges are perpendicular and intersect each other, we can consider one 
as being the marker’s ox axis and the other one the marker’s oy axis. We 
denote the marker’s ox axis by ,, the marker’s oy axis by -, and the 
marker’s position by .. With these notations the marker is completely 
described. Thus, we say that we found the pose of the square/marker with 
respect to the camera if and only if we found ,, - and .. These are all 
vectors in 3D space. , and - completely define the marker’s orientation, 
while . defines its position in space. After we find out their values we will 
switch back to coordinate system of the marker. Thus the orientation of the 
marker is computed extremely fast, by applying some 3D vector space 
geometry.  

For determining the marker position, we leave the orientation phase 
where we dealt only with angles and introduce distance data to our system. 
As such, we use the base for our distance computations the measured 
constant length of one side of the scene marker (i.e. 290 mm). 

Therefore, we have computed the orientation (i.e. ,, -) and position (i.e. 
.) of the marker in camera coordinates, in other words the marker 
pose/transform with respect to the camera.  
Inverse Transformation 
The camera pose with respect to the marker is simply obtained by 
computing the inverse of the transform. This represents a change in 
perspective in the algorithm. Until now all data was expressed taking the 
camera as a base. This was necessary because the camera was the only thing 
that we knew in the environment.  
Merge Results 
As mentioned earlier, the resulted pose was computed taking into 
consideration only 3 marker edges. Should the current frame contain a 
partially visible marker with only 3 visible edges, this step of the algorithm 
is complete. Otherwise, in case the marker has 4 detected edges, we desire 
to use the information of all 4 edges.  

Therefore, the algorithm is applied for each possible input combination 
and each partial result is considered. There are 4 possible ways to combine 
the 4 input edges in groups of 3, and for each one of them the pose is 
computed using the algorithm covered in the previous section. 
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Adapting the Result 
The camera pose was computed up to this point only taking into 
consideration input related to the current frame obtained from the camera. 
However, this algorithm of obtaining the pose is not applied once on a 
single image, but on the input stream of images coming from the camera, 
so-called frames. This means the result obtained on a local context by 
analyzing the current frame needs to be integrated in the global context, 
such that the new pose makes sense in the light of the earlier ones. In order 
to do that, two things need to be taken care of: 

1. Adjust quadrant to previous pose; 
2. Smooth out noise. 

Adjust Quadrant to Previous Pose 
As we chose a scene marker type that would require the user minimal effort 
to procure it, the scene marker is merely a square piece of paper of some 
specific color. Being a square, we can identify its edges and compute the 
camera pose from this information as described earlier, however there is a 

 

Figure 6.   Pose ambiguity on a symmetrical marker; camera could be located in each of the 
4 quadrants and still fulfill the marker projection conditions 
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limitation: because this square is perfectly symmetrical both along the x axis 
as well as the y axis, there are no unique features that we could identify on it 
and track in order to determine the camera’s absolute pose with respect to 
the marker.  

Figure 6 illustrates how the marker’s symmetry allows each pose to be 
accurately determined inside a quadrant but leaves the question open of 
which of the 4 quadrants it is actually in. Additionally, there is no way to 
solve this problem by just analyzing the marker edges, as the input for pose 
computation are the results coming from the Ransac algorithm that has a 
randomness factor, which leads to the order in which marker edges are 
considered being possibly different from one frame to the other. 

To solve this problem, the solution is to ensure coherency exists between 
each pair of successive frames (i.e. minimal difference in orientation), 
without caring about our absolute position.  

The only situation in which this method fails is when the difference in 
orientation between the pose of two successive frames is more than 45 
degrees. This is a theoretical possible but practically unattainable case, 
considering that the application is designed to work at a minimum of 24 
frames per second which would require the user to rotate the camera more 
than 45 degrees in less than 42 milliseconds in order to get this an error – 
which is extremely unlikely. 
Smooth Out Noise 
In order to increase the continuity between frames despite the presence of 
noise, each pose result is averaged with the result obtained in the past few 
frames. Thus, a smooth movement is obtained at the expense of accuracy. In 
other words, the averaged pose is more stable and steady and less influenced 
by noise due to the fact that it represents an estimation based on values 
computed from several frames, but it is less responsive to changes. 

4.2 Pencil Position 
Besides the marker representing the scene base (scene marker) which also 
represents the main system of reference according to which transforms are 
defined in the world, the system also scans for the pencil marker. The pencil 
marker is the marker representing the user’s input in the 3D scene, in the 
form of a position in 3D space. The user utilizes the pencil to model the 
virtual 3D objects. 
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Pencil Detection 
The pencil marker consists of a disk of some predefined color. It is a circle 
cut in colored paper that is attached to a small stick that will allow the user 
to move it freely through the scene without having his hands interfere with 
the pencil or scene markers (Figure 7). The pencil position passed as input 
to the program will be the center of the disk. 

Pencil Position 
At this point we have all the information needed to compute the pencil’s 
position. The next step is first to determine the pencil’s 3D space position 
with respect to the camera, and then, knowing the global position of the 
camera, compute the global position of the pencil. 

Gravity 
Up to this point we obtained the pencil position only by analyzing the 
current camera frame. However, if the user wants to interact with previously 
created shapes in the virtual scene, the raw pencil position input may not 
deliver the desired accuracy. Due to this fact, the pencil position 
determination process undergoes one last phase, the exposure to gravity. 

By this interactive technique, the pencil position will be snapped to that 
gravity point, such that the user will not need to move the pencil exactly to 
the desired position. Therefore, the system anticipates the position where 
the user wants to move the pencil and, if the pencil is in its proximity, it 
automatically moves the pencil to the point of interest.  

 

Figure 7.  Pencil marker detection process 
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4.3 User Interface Input 
Apart from the pencil position which defines where to draw the models in 
the augmented reality scene, additional input is require to define what and 
how to draw. This input is taken from the user interface and defines the 
structure, color, and parameters of the shapes to be created with the pencil. 

The construction concept is to build the model out of a set of individual 
components. These components will be defined using a series of shape 
primitives which can be instantiated with custom set attributes. Regarding 
the shape primitives, the user will be able to choose from a menu containing 
basic shapes such as sphere, line with square diameter, line with circle 
diameter, Bézier curve, free curve, triangle, etc. 

5. Output Features 
Augmented Reality Scene 
The augmented reality scene provides real-time feedback to the user for his 
actions on the UI and with the pencil marker. It offers the user a quick and 
intuitive way of visualizing and interacting with the model. 

Nevertheless, the difference between real and virtual objects will still be 
visible, mainly because of different illumination. For no matter what 
illumination model is used to render the virtual scene, the result will still 
look different from the real world because: 
• There is no ray tracing process. The rendering of the scene needs to be 

done in real-time, making ray tracing impossible to use due to its high 
computational cost. 

• The lighting parameters of the environment are unknown. Parameters 
such as light sources intensities, light sources positions, ambient light 
and surrounding material properties all contribute to the way light 
falls onto an object. If these parameters are not known, then the virtual 
object will look unnaturally different from the real world objects and 
the human eye will percept it as an intruder. 

Phong Reflection Model 
The model represents a 3D structure in a virtual scene. In order to be visible 
to the user it is brought to the screen by a process called rendering, which is 
composed of a series of operations known as graphics pipeline. Aiming to 
reproduce the model as it would appear in reality, with colors, overcast 
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shadows, etc. we hope “to display an image that approximates the real 
object closely enough to provide a certain degree of realism” (Phong, 1975). 

Advanced Shapes 
In order to model the desired object, the user has at its disposal basic 
primitive shapes which he is able to instantiate with different parameters 
such as position, size, and color. The more challenging primitive shapes are 
the Bézier Curves. A Bézier curve is defined by a set of points known as 
control points. Due to the nature of its parametric function, it has the 
property that, once the control points are defined, it represents a smooth 
curve that runs through the first and the last of the control points and 
presents an approximation of the other control points in between, offering 
an intuitive way to describe continuous curves and a pleasant-looking result. 

6. Experimental Validation 

6.1 System Configuration 
The application is built using the Android software development kit 
(Android SDK) on a Windows 10 machine. The IDE used for this was 
Android Studio, which is the official IDE from Google for native Android 
application development since 2015. Android Studio is based on JetBrains' 
IntelliJ IDEA software but designed specifically for Android development. 

The image processing part in the application is done using the OpenCV 
Java library for Android. OpenCV (Open Source Computer Vision) is a 
library of programming functions mainly aimed at real-time computer 
vision. The library is cross-platform and free for use under the open-source 
BSD license. 

In order to communicate with the phone’s GPU for rendering the virtual 
scene, OpengGL ES 2.0 is used. OpenGL ES (OpenGL for Embedded 
Systems) is a subset of the OpenGL computer graphics rendering API for 
rendering 2D and 3D computer graphics, such as those used by video 
games, typically hardware-accelerated using a graphics processing unit 
(GPU). It is designed for embedded systems like smartphones, computer 
tablets, video game consoles and PDAs. 
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6.2 Visual Results 
The user may edit 3D virtual objects working directly within the 3D real 
space (Figure 8). The feeling and the manipulation of the tree dimensions 
(i.e. x, y and z; width, length and deep) is more natural than within the 
known 3D graphical editors. 

6.3 Performance Evaluation 
As have been already experimentally checked, the load on the GPU and 
main memory consumption is moderate and is not detrimental to the 
system’s performance. The system’s most important aspect is how to make 
use of the CPU in order to ensure real-time interaction. 

The main and only relevant way to measure time performance in this 
application is by counting how fast the system is able to process incoming 
camera frames – this means the time between the frame arrival from the 
camera as input to the system, and the displaying of the AR scene to the 
user, in concordance to the frame, the model and user input. This processing 
is done continuously, such that as soon as a frame is finished processing and 
displayed the system starts working on the new one.  This is the system’s 
most time-critical path as it represents the work done for the AR scene 
which is the application’s main feature. All the other tasks such as user 
input coming from the UI are short and direct, rather determining how the 
main task is executed and not actually doing anything. 

During the application’s most heavily loaded use case (the AR editor), 

  
Figure 8. Building up complex 3D virtual objects by working directly within the 3D real 

world   
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measurements show that the application works at an average of 17 frames 
per second (fps). While this value is enough to enable a steady use of the 
application, it is not a very good value considering that most video formats 
operate at a minimum frame rate of 24 fps. The frame rate does not directly 
affect the user experience in the AR editor as it does not lag and is still 
perceived by the brain as motion, however it is not perfectly fluid and does 
put stress on the eye indirectly and especially over time. 

More than 90% of the frame processing time is spent in performing 
image processing on the camera frame in order to compute the camera pose 
and the pencil position, and, despite being heavily optimized, the resulting 
frame rate shows that this is a part of the application that still needs 
improving. As such, at this point in time the quality requirement of a 
minimum frame rate of 24 fps is not fulfilled. 

6.4 Functional Evaluation 

Static Factors 
The user experience is affected by certain aspects of the environment where 
the application is used. The factors covered here are static – once 
established, they do not change during the usage of the application 
Marker Uniqueness 
By marker uniqueness we refer to the condition that the color of the scene 
and pencil marker object is not found in the environment in significant 
amounts.  

This comes with the drawback that there are times where the color of the 
marker is similar to the color of the environment visible in the background, 
leading to false pencil and scene marker identifications. The step where the 
user selects the colors of the scene and pencil marker, as well as the radius 
in the HSV color model around which they are to be searched for, is to be 
treated with great care. 
Illumination 
Environment illumination is also an important factor since the detection of 
the markers is color-based. The environment is to be brightly and uniformly 
lit. Otherwise, the pencil marker’s shadow may fall hard enough on the 
underlying scene marker, thus affecting its proper detection. 
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Marker Size 
The size of the pencil and scene marker directly affects the accuracy of the 
camera pose and pencil position retrieval. 

While the size of the scene marker should be small enough to entirely fit 
in the camera frame but large enough to deliver a proper estimation of the 
camera pose, experiments showed that this value is not an issue, as it can 
vary a lot (from 50 mm to 300 mm) without affecting the accuracy of the 
camera pose. 

As for the pencil marker, it represents a colored disk of some diameter, 
whose value represents a trade-off. The smaller the value, the smaller the 
pencil marker will be. This will make the user pencil appear more natural to 
the user as it resembles more and more a normal pencil, and it will decrease 
the probability of obstructing the scene marker during the drawing phase. 
However, we rely on the size of the diameter to retrieve the distance of the 
pencil marker to the camera; the smaller this value is, the less precise our 
estimation will be. A value of 30 mm turned out to be a good compromise 
between these two options 

Dynamic Factors 
Besides the static ones, there are two factors influencing the correct 
functioning of the application that change during the usage. 
Distance 
The distance to the markers is closely coupled to their size. The camera 
must not be too close, so that the markers fits inside the camera screen. The 
pencil marker must always be fully visible in order to be correctly analyzed, 
and the scene marker must have at least 3 out of 4 edges detected, while 4 
edges are desirable for an increased pose accuracy.  

The maximum distance depends again on the marker’s size. In the case 
of a pencil marker of 30 mm diameter and a scene marker with the side of 
200 mm, the maximum distance is 40 mm for the pencil detection and 1300 
mm for the scene marker detection. The detection of the scene marker 
without the pencil marker would allow the user to visualize the AR scene 
but not interact with it, as the pencil position is missing. 
Speed 
A correct marker detection is also influenced by the speed with which the 
camera moves through the environment, as well as the speed of the markers. 
However, this value turned out to be of no concern during normal use of the 
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application. 

6.5 Usability Evaluation 
The application was given to three persons from different categories to test 
its usability.  

The first individual is a computer science student with high expertise in 
the image processing domain. The second person has high knowledge skills 
in engineering such as control theory and thus strong logical thinking is 
shaped, however he is not aware of the exact implementation details. The 
third person has little to no knowledge in the field, though she is very 
familiar to the smartphone technology (hence she is representative for the 
majority of potential users out there). 

The testing process was done for each person individually. He was 
notified that the test was done to evaluate the usability of a research project, 
the purpose of the application was clarified, the way to operate it, and to 
some of the testers a short life demo was shown. Next, each tester was 
allowed to freely use the application as desired, and at the end he was given 
the task to draw a smiley face. First, the testers’ feedback is presented and 
then my personal notes and conclusions on the tests. 

Critical feedback from the testers 
The critics and the recommendations of the testers could be concluded by 
the followings: 
• Dependency on color in order to identify the markers is a problem; the 

constant care for a proper marker detection (in order not to be 
confused with the environment or covered by shadow) is tedious; 

• More primitive shapes should be available; 
• Working with the application provides a good feel for grasping the 

3rd dimension; 
• Additional to the color picker, a color palette should be visible where 

the user can quickly pick a color among a set of basic predefined 
colors; this would speed up the process of selecting the color in cases 
where the user is not interested in a very specific color; 

• More customization options should be offered; 
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• A useful addition would be an extra functioning mode in which the 
angle from which the virtual scene visualized is not set according to 
the AR scene, but can rather be set manually by the user, using 
swiping gestures over the touchscreen. 

Usability evaluation given by the developers 
The developers performed themselves usability evaluation sessions. The 
conclusions and recommendations are the followings:  
• The tester’s prior knowledge in computer science turned out to play 

an important role; testers with domain knowledge understood from 
start what the marker detection process consisted of, and hence knew 
how to set the parameters accordingly. Whereas the person with 
highest experience figured out on her own to hide an object in the 
background that had approximatively the same color as the scene 
marker in order not to interfere with the detection process, the person 
with no knowledge did not really grasp the conditions necessary for a 
good marker detection until the end; additional effort needs to be 
invested in order to avoid this, by managing more of the tasks that are 
currently done by the user, in order for the application to be less 
dependent on his actions; 

• A visual tutorial (at best a video) is very important to be shown before 
usage; it was much easier to understand what needs to be done at each 
step in cases in which a live demo was shown to the testers at start. 
This is all the more important as the application is not a standard one 
and greatly relies on user cooperation; 

• The application proved to be very appealing and fun to the test person 
that had painting as a hobby; 

• To ease up usability, at various points in the application the main 
commands are launched not by the press of one particular button, but 
by tapping anywhere on the screen; it is more convenient to the user 
to simply touch his finger anywhere on the screen than needing to hit 
exactly one button; however, this created confusion among all users, 
due to the fact that the tapping needed to be done over the AR scene, 
which gave them the impression that the actual position of the point 
where the tapping was done was important, confusing it with another 
form of  input; additional emphasis needs to be put on the instruction 
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that the tapping may be done anywhere on the screen and the exact 
location plays no role; 

• Users did not really comprehend the principle of the Bézier curve; 
when the control points needed to be added at each new editing step, 
they expected the curve to run through the control points and not in-
between as it was the case; some visual representation of the control 
points and their relation to the curve needs to be shown during the 
drawing process in order to avoid this confusion in the future. 

  
Figure 9. Marker selection: (left) search radius too small ; (right) correct color and radius 

parameters 

7. Working Session Calibration 
Using this application supposes executing 5 major steps: 

1. Select the color and intensity of the scene marker 
2. Select the color and intensity of the pencil marker 
3. Calibrate the pencil marker with respect to the scene marker 
4. Select the attributes of the shape to be drawn 
5. Draw the shape in the editor 

Steps 1 to 3 are done only once, at application start. Steps 4 and 5 are 
done repeatedly during the object modeling phase in the AR scene. 

7.1 Define Scene Marker 
The first step after launching the application is to select the attributes to 
search for when looking for the scene marker. These consist of the color to 
be searched for as well as the radius in the HSV color space in which two 
colors will be considered equal. As Figure 9 points out, the parameters shall 



Augmented Space Editor        141 

 

lead to a full marker detection but without having it interact with the 
environment. 

7.2 Define Pencil Marker  
Similar to the scene marker the pencil marker shall be defined (Figure 
10.left). 

7.3 Calibrate Markers 
Once the two markers can be tracked, one thing remains: the system must 
know the size of each marker relative to the other one, so that it will be able 
to compute their distances to the camera on the same scale, and thus their 
transforms in 3D space in the same coordinate system (Figure 10.right). 
This step is important as the camera has no depth information. 

7.4 Select Shape Attributes 
At this stage the main scene featuring the AR editor is visible (Figure 
12.left). The detection of the scene marker and the pencil marker are done 
using the attributes defined previously: shape type, size, and color (Figure 
12.right). 

  
Figure 10. (left) Pencil marker attributes are being selected; (right)  Calibration of marker 

size by placing both markers in the same plane   
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Figure 12. (left)  AR editor on top of the scene marker with the pencil marker position 

tracked in 3D space ; (right) Shape select menu. The created shape will be a blue sphere 
with the diameter specified dynamically with the pencil, after its creation    

7.5 Draw Shapes 
Once the shape attributes are defined, the shape may be drawn on the scene 
(Figure 11). Tap anywhere on the scene once in order start drawing. Tap 
again each time to get to the next editing step. All shapes are drawn in 
editing steps in which the pencil position is submitted, the transition from 
one editing step to the other being the tap on the screen gesture. Simple 
shapes, as for example the drawing of a fixed size sphere, require only one 
editing step (specifying its position with the pencil). More complex shapes 
may require more editing steps, such as a square line of dynamic diameter 
which requires 3 (specifying the start point, end point, and the width of its 

 

Figure 11.  Drawing made with the Augmented Space Editor 
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section). There are shapes such as the Bézier curve that require an indefinite 
number of editing steps (for the Bézier curve, with each editing step a new 
control point is added). In this case, a red button in the lower right part of 
the screen will appear which may be pressed at the end to finish editing the 
current shape. 

8. Conclusions 

8.1 Results and Issues 
A new concept of human-computer interaction having as purpose the 
modeling of 3D objects has been designed, implemented and evaluated. The 
root idea is to allow the user to define and interact with multiple 3D shapes 
in an augmented reality context, using as input the touch screen and two 
markers, the first representing the scene base on top of which shapes will be 
drawn, and the second representing a cursor which is able to move in 3D 
(unlike the typical mouse cursor which can only be moved in two 
dimensions). 

The main advantage was the ability of the system to mix the real 
perspective from which the scene is looked at with the virtual one, blending 
the two worlds together. The user was able to model shapes directly and 
straightforwardly, without worrying about domain-related terms that would 
appear in a normal graphics modeling software, such as virtual camera, 
coordinate system or scene depth – which where all now linked to the 
reality world.  

There were also some issues identified while testing the system. These 
issues are all related to implementation details of the application, and not to 
the concepts themselves. 

Issues preventing a problem-free usage were mostly caused by its 
physical implementation of the marker detection. The advantage of a color-
based marker detection also turned out to be one of the system major 
problems. The system sometimes failed to perfectly detect markers by either 
not identifying them fully, or confusing them with parts of the environment 
background. This lead to bad pose computations which made the virtual 
scene look misplaced in the AR scene. 

Another considerable drawback is the fact that the system relies heavily 
on the user to do his job right: the user needs to come up with a perfect disk 
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to represent the pencil marker; a perfect square for the scene marker; setting 
the color parameters of the markers needs to be done with optimal settings 
to enable a good identification later on; during the calibration phase, the 
pencil marker needs to be placed on top of the scene marker. These are all 
actions in which the system expects the user to do his task right, with 
limited or no ways to verify if they were done right. 

As general characteristics of the system, we developed an application 
that favors speed and ease of use over precision. Accuracy was limited to 
the precision with which the scene marker and camera marker where 
detected, which were subject to noise. It relies on care and attention on the 
side of the user to use it properly in order to make it work as intended. 

8.2 Further Development 
The application is a proof of concept and is far from being a complete tool 
for modeling 3D objects ready to be released on the market. Additions may 
be implemented in almost every direction pointing out the potential of the 
underlying concept, and only a fraction are presented here: 
• Auxiliary input methods: Besides changing the marker detection 

approach, the application could benefit from auxiliary ways to 
determine the camera’s position in 3D space. This is due to the fact 
that sometimes it happens that the pencil marker obstructs the scene 
marker in such a way that a correct pose computation is not possible. 

• Space partitioning: At the current stage, the virtual scene used to hold 
the data of the model solely consists of a collection of 3D shapes. In 
order to perform operations on the shapes, such as to compute the 
gravity result of the pencil’s current position, we need to iterate over 
the whole collection and check each individual shape, which leads to 
an execution time of O(n), where n is the number of shapes in the 
scene. While this approach is genuine for a scene of medium size 
(runtime was never a problem for scenes containing dozens of 
shapes), it does not scale well for shapes of larger size (keep in mind 
that the computation of the pencil gravity result needs to be done at 
every frame, thus its execution time is critical). 

• New editing operations: At the moment the user can create a custom 
model having at his disposal a series of basic shapes (sphere, line, 
etc.) which may be instantiated with any parameters. A custom 3D 
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model may then be constructed by combining these shapes, as one 
would build a house using several types of bricks. However, there are 
a lot more editing operations to be implemented using the underlying 
concepts. An editing operation that would offer way more flexibility 
to the user is sculpting. The user would then chisel the desired 3D 
shape in the cube, exactly as a sculptor would do on a real block of 
stone. A merging algorithm between two 3D objects must be 
employed, such the one presented in (Decaudin, 1996). 

• Save and export: At this point, the structure modeled by the user 
resides only in the main memory and is lost when the application is 
closed. A useful expansion is the possibility to save one’s work in the 
phone’s storage, such that it can be opened later for visualization and 
further editing. 
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