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Abstract. While visual information is essential for humans as it models our environment, 
language is our main method of communication and reasoning. Moreover, these two human 
capabilities interact in complex ways, therefore problems involving both visual and natural 
language data became widely explored in recent years. Thus, visual question answering aims 
at building systems able to process questions expressed in natural language about images or 
even videos. This would significantly ease the quality of life for visually impaired people by 
allowing them to get real-time answers about their surroundings. Unfortunately, the relations 
between images and questions are complex and the current solutions that exploit recent 
advanced in deep learning for text and image representation are not reliable enough. To 
improve these results, the visual and text representations must be fused into the same 
multimodal space. In this paper we present two different solutions for solving this problem. 
The first performs reasoning on the image by using soft attention mechanisms computed 
given the question. The second uses soft attention not just on the image, but the text as well. 
Although our models are more lightweight than state of the art solutions for this task, we 
achieve near top performance with the proposed combination of visual and textual 
representations. 

Keywords: visual question answering, deep learning, natural language processing, computer 
vision, visual impaired users.  

1. Introduction 
With the advances in both Natural Language Processing (NLP) and 

Computer Vision (CV) attributed mainly to deep learning models, there has 
been a recent trend to tackle problems that require methods and techniques 
from both domains. One of the most promising such tasks has been question 
answering based on images and videos. The most successful image-based 
question answering task has been the Visual Question Answering (VQA) 
challenge introduced by Antol et al. (2015). This is indeed a multi-
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disciplinary research problem that combines not only CV and NLP, but also 
Knowledge Representation and Reasoning and other Artificial Intelligence 
subdomains. The authors consider this challenge more complex than other 
CV-NLP joint problems, such as image captioning that only requires a scene-
level understanding of an image paired with word n-gram statistics. 

The challenge consists of four tracks, all of which require fine-grained 
recognition, activity recognition, knowledge base reasoning and 
commonsense reasoning. All four tracks consist of building a model that 
receives as input an image and a question based on that image and that has to 
output an answer or choose one out of a list of possible answers. The first two 
tracks contain open-ended questions on real and abstract images. The 
difference between those is that the abstract images were generated and 
require more precise attention over the spatial relations in the image. The 
other 2 tracks contain the same questions, but offer multiple-choice answers. 
In all 4 cases, there are 3 questions per image, with 10 possible answers, 
unknown at input time, out of which only one needs to be computed by the 
model, for the open-ended tracks, and 18 possible answers, known 
beforehand, out of which only one is correct and needs to be computed by the 
model, for the multiple-choice tracks. In this research, we have only 
considered the real open-ended track as it has been shown that the models 
designed for the open-ended track perform very well, with minor tweaks, for 
the multiple-choice track as well (Fukui et al., 2016; Lu et al., 2016). 

VQA is also relevant for Human-Computer Interaction in several ways. 
First, such a solution can be used for various real-life situations, such as 
providing accessibility to visual information for visually impaired users or, 
further down the road, being integrated in personal assistants that can extract 
information from images based on the user’s questions, such as asking an 
assistant where you were in a particular picture. Solving this task for static 
images can also be a first step in solving question answering based on video 
input, as each frame can be considered as a still image, while still needing to 
solve the problem of capturing the context of the previous frames. 

Given the fact that the human baseline for the proposed dataset is 
surprisingly low (at 83.30%), there is also a potential at some point in time 
that computers might be able to provide answers to questions about visual 
context with an accuracy that surpasses humans. The human baseline for the 
VQA v1 dataset also proves that the questions themselves are particularly 
difficult and that some images are genuinely hard to interpret. 
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In this paper we propose two neural models with attention that improve 
the results of existing baselines for VQA. We show that the attention is an 
important mechanism for solving this problem efficiently and that combining 
visual and textual attention offers better results. Although there are several 
other more complex models combing visual and textual attention, the 
proposed methods are original, lightweight (with a smaller number of 
parameters) and competitive with existing state of the art. 

The paper continues with a section describing the VQA dataset and 
challenge, together with existing methods for solving this task. Then we 
continue by introducing the two neural models with attention proposed for 
solving the problem. In Section 4 we present the results obtained by the 
proposed models together with a detailed discussion about the advantages of 
the attention mechanism. The paper ends with conclusions and future work. 

2. Related work 
In this section we describe in more detail the VQA v1 dataset and also 

introduce some of the techniques necessary for solving this task. Afterwards, 
we present some of the current state-of-the-art models that solve the VQA 
task including several models with attention.  

2.1. Neural models for question representation 
Models developed for VQA make use of recent advances in NLP and deep 
learning for word and sentence representation, mainly distributed word 
embeddings and Recurrent Neural Networks (RNNs). 

Word embeddings 
Vectorial representations of words are widely used in various NLP 
applications, such as question answering models, machine translation and 
information retrieval. Distributed word embeddings improve over basic bag 
of words models using tf-idf or other one-hot encodings for words. Two of 
the most used distributed word embeddings models are word2vec (Mikolov 
et al., 2013) and GloVe (Pennington, Socher and Manning, 2014). 

Word2vec (Mikolov et al., 2013) proposed two different strategies for 
computing word embeddings: a Continuous Bag-of-Words model, which 
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takes multiple words from the past and future in order to predict the current 
word, and the Continuous Skip-gram model, which does the opposite, taking 
the current word and predicting the surrounding words. GloVe (Pennington, 
Socher and Manning, 2014) is another unsupervised learning algorithm, 
which can be used to get vector representations for words. As opposed to 
word2vec, though, GloVe is a log-bilinear model with a weighted least-
squares objective, based on the intuition that ratios of word-word co-
occurrence probabilities have the potential for encoding meaning. By log-
bilinear model, we mean that the training objective is learning word vectors 
whose dot product equals the logarithm of the words' probability of co-
occurrence.  

As in our research we obtained better results with GloVe embeddings than 
with word2vec ones, we have only reported the results obtained with GloVe 
word embeddings. The embedding model was pre-trained on the Google 
News dataset, which consists of approximately 100 billion words. The model 
produces 300-dimensional vectors for the most common 1 million words and 
phrases in the dataset. An advantage of the skip-gram model over the other 
approaches that were considered is that this model allows the training of high-
dimensional vector words on large amounts of data. This allows for querying 
much more subtle semantic relationships between words, such as finding the 
country in which a city is located, based on word analogies (Mikolov et al., 
2013).  

Modeling questions using Recurrent Neural Networks 
Recurrent Neural Networks (RNNs) are a type of neural networks specialized 
in processing sequences of data of varying lengths. Its main use-case is to 
provide persistence between several inputs, which is something that regular 
neural networks cannot do. The underlying idea in the case of text 
interpretation is to treat each new word with respect to all the previous words 
in the sequence.  

RNNs suffer from a couple of issues, and cannot deliver on its promise of 
connecting previous information to the current task. The problem with 
learning long-term dependencies is that gradients propagated over many 
nodes in the past tend to either vanish or explode. While the latter can be 
solved with little to no elegance by simply clipping the gradients, the former 
does not have a simple solution. The intuition is that we do not always need 
to look to every single word shown in the past, as many of them might not 
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have any significance in interpreting the current word. Therefore, the main 
contribution of Long Short-Term Memory Networks (LSTMs) (Hochreiter 
and Schmidhuber, 1997) is the introducing of self-loops that produce paths 
where the gradient can flow for long durations, with a learn-able weight 
conditioned on the current context. Therefore the self-loop is gated and the 
network can decide when it no longer needs to keep the context in memory 
and can remove it, partially or totally. 

Another way of using LSTMs for text representation is presented in 
Karpathy and Fei-Fei (2015). They use two LSTMs, one interpreting the text 
from the first to last word, and one interpreting the text the other way around, 
called BRNN (or BLSTM, BiLSTM), is said to provide context from both 
directions to a word embedding, also helping to create concepts from 
groupings of nearby words. 

2.2. Neural models for image representation 
The representation of the input images are constructed using deep 
convolutional neural networks (CNNs) pre-trained on the ImageNet 
classification task (Krizhevsky, Sutskever and Hinton, 2012). In order to 
reduce training time, we opted to pre-extract the image embeddings using the 
models described in this section and then to use these embeddings as input 
for the proposed VQA models. 

The ResNet model (He et al., 2016) has been widely used by the solutions 
developed for the VQA task (Lu et al., 2016; Nam, Ha and Kim, 2016; 
Kazemi et al., 2017). This is a deeper convolutional neural network that is 
based on the principle of residual learning. A large problem of deep models 
is that the deeper they get the harder it is to backpropagate gradients that can 
significantly steer the weights of the first layers in the optimal direction. To 
tackle this issue, He et al. (2016) introduce the idea of residual blocks in 
which the input is also added at the end of several convolution layers forming 
a block that can ensure unaltered the propagation of the gradient backwards 
through the deep network. We have used two popular variants of the ResNet 
model, namely ResNet-50 and ResNet-152 (see Figure 1), pre-trained on the 
ImageNet dataset. There are several ways of getting the image representation 
from a ResNet model. In the case of a single embedding per image, we can 
use the output of the last average pooling layer, cutting just before the final 
classification Fully Connected (FC) layer, which gives a 2048-dimensional 
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embedding per image.  
 

 
Figure 1. ResNet neural architecture used for image classification (He et al., 2016) 

2.3. VQA dataset  
The VQA dataset (version 1) consists of the MS COCO dataset (Lin et al., 
2014) with approximately 200k images, 600k questions, and 6 million ground 
truth answers. To this real-life images dataset, other abstract scenes were 
added for the abstract image tracks, and these contain 50k scenes, with 150k 
questions, and 1.5 million ground truth answers. The answers are generally 
one word long (over 89% for both real and abstract images). 

 
Figure 2. Histogram of the top 10 answers’ frequencies 
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From Figure 2 we can infer that we can filter out some of the unpopular 
answers in order to avoid overfitting and simplify the learning for the models. 
Thus, most previous solutions transform the question-answering problem into 
a classification problem by training models to only output one of the most 
common 1000 or 3000 answers.  

The real open-ended dataset consists of 123,287 training and validation 
images and 81,434 test images, which contain multiple objects and rich 
textual information. The questions are extremely varied, requiring either low-
level knowledge, such as asking for colors of objects or agents in images, or 
commonsense knowledge such as asking how many people fit in a bus that is 
shown in the image, while also making sure that the questions cannot be 
answered correctly with commonsense knowledge alone. The open-ended 
answers can be clustered in multiple categories.  
Many questions require a simple answer, but given that some answers are 
not obvious, the dataset provides 10 acceptable answers per question, which 
are not necessarily different from each other. These answers are gathered 
from ten separate workers on Amazon Mechanical Turk, and the correctness 
of an answer is verified using (1) by counting how many people offered a 
particular answer: 

 

(1) 

This means that an answer is considered 100% accurate if at least three out 
of ten people agree with it. Before any comparison, the answers are 
transformed to lowercase, numbers are converted to digits and punctuation is 
removed. 	

The questions can be binned into several types considering the first four 
words. The great variety of these question types also helps emphasize the 
complexity of this challenge. The majority of the questions are 5-6 words 
long, although some do reach lengths of up to 26 words.  

Over 23k (unique) answers are one word long, comprising 89.32% of the 
total number of answers. 6.91% of the answers are two words long, while 
2.74% of them are three words long. The short length of these answers can 
be attributed to the fact that the questions generally ask for specific facts or 
pieces of information from the image, and are not conversational in nature, 
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as opposed to the labels usually generated in image captioning tasks, where a 
generative model is almost mandatory. 

Out of those answers, 38.37% of them are either "yes" or "no", with a 
strong bias towards "yes", with 58.85% out of the two. A second main type 
of answers is numerical, namely the answers two questions starting with 
"How many...", comprising 12.31% of the total. Out of those, the most 
popular numerical answer is "2", making up 26.04% of these answers. 

2.4. Existing solutions for VQA 
All competitive models proposed for visual question answering need to 
combine the textual (extracted from the question) and visual (extracted from 
the image) embeddings. The main difficulty is to align specific features from 
the image (or parts of it) with features from the question (or parts of it). The 
best performing VQA models use complex methods for achieving this 
alignment by employing attention mechanisms (Xu et al., 2015) both for the 
image and the text. 

The winning solution for the VQA 1.0 challenge was developed by Fukui 
et al. (2016). Their main focus is to find a method for combining image and 
word embeddings in a manner in which all elements can interact, while 
maintaining a multiplicative interaction. This means that a general embedding 
of a sentence or an image would lose information about particular items in 
each one, and therefore would not be of much use to observe the interaction 
between those items. Therefore, by using a multiplicative interaction, they 
ensure that they can find similarities between image segments and words 
representing the same entity. While concatenation of the general embeddings 
solves the first problem, that of all elements being able to interact when 
classifying the answer, it does not allow a multiplicative interaction between 
features. The reverse happens with an element-wise multiplication of the 
embeddings.  

The solution to provide interaction between all elements and of a 
multiplicative nature is an outer product / bilinear pooling. The problem in 
doing so with embeddings of size 2048 for both image and text is that you 
would produce too many activations and too many parameters to learn, and 
thus would not be feasible in practice. For this the authors propose to use a 
Compact Bilinear Pooling operation (Gao et al., 2016) that lowers the number 
of parameters significantly from about 4 million to 16k. 

They further improve upon this model by adding an attention mechanism 
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(see Figure 3). By combining embeddings from sections of the input image 
with the tiled embedding of the input question using the same MCB Pooling 
operation mentioned before, as well as running the result through a series of 
Convolution, Relu and Softmax layers, as well as a weighted sum with the 
original image embedding, they are able to obtain a soft attention of the image 
in relation to the question, which is then combined again with a full 
embedding from the question using MCB Pooling and ran through Fully 
Connected and Softmax layers to obtain a classification of the 3000 most 
common answers. While this model was initially trained on the VQA 1.0 
dataset, the final results reported in the competition were after training on the 
v1.0 dataset augmented with several others, in order to provide more 
examples for training. With the augmented dataset, this model achieves an 
accuracy of 66.9%, while the model trained on the v1.0 dataset alone has an 
accuracy of only 64.2%. 

 
Figure 3. Multimodal Compact Bilinear Pooling model with attention for visual question answering 

(Gao et al., 2016) 

In a different approach, Nam, Ha and Kim (2016) propose a Dual Attention 
Network, that uses both textual and image embeddings to produce attention 
maps on each other, which are then concatenated to produce a final answer. 
In addition to this, they show that there is a potential increase in accuracy if 
this attention block is thought of as a recurrent unit. This way, the first image 
attention can focus on, say, a general idea of the subject of a question, while 
the second image attention can focus on an action described in the same 
question.  
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Figure 4. Dual Attention Network with 2 recurrent blocks (Nam, Ha and Kim, 2016) 

This model uses a BLSTM to embed the textual input and ResNet152 to 
embed the image. The attention mechanism consists of a soft attention 
produced by the point-by-point multiplication of the outputs of two fully-
connected layers, each ran through the visual and textual embeddings, 
respectively. This result is then ran through a softmax activation and then 
multiplied (via regular matrix multiplication) with the image input, or the 
textual input, to obtain the image attention, or the text attention, respectively. 
The model achieves an accuracy of 64.3% on the test-dev set and a 69.0% 
accuracy on the test-standard set. 

3. Proposed models 
In this section we will present a baseline model as well as two attention 
models, which are capable of identifying subjects of interest in the input 
image based on the given question. 

3.1. Baseline model 
The baseline model is similar to the "deeper LSTM Q + norm I" presented in 
(Antol et al., 2015). This was a good starting point to figure out the 
importance of each element of a network that can get a respectable result on 
the VQA challenge. At its simplest, the model tries to take textual and image 
embeddings and project them into a similar vectorial space, such that by 
multiplying the embeddings, the result will have high activations where 
similar features meet from both the input embeddings. The reasoning for 
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attempting such a model is presented in (Jabri et al., 2016), where it is stated 
that despite the popularity of attention networks or memory networks, there 
is still significant value in these baseline methods, which come very close in 
terms of accuracy and are less computationally intensive. We have explored 
several variations of this model, changing the image embedding model, the 
LSTM hidden size, using a CNN textual embedding model instead of the 
LSTM, varying the size of the output classification, and trying various 
methods of merging the visual and textual embeddings. 

3.2. Attention models 
For this type of model, instead of obtaining a single image embedding we use 
an earlier cut of the VGG or ResNet models, that produces a feature map that 
can be represented as a set of embeddings for a grid of segments over the 
image. There are several approaches for attention models, depending on the 
type of attention that we want to obtain. For instance, we could use the textual 
embeddings in combination with the feature map for the image in order to 
determine which image segments are important for answering the question, 
or we could use an overall image embedding to determine which words in the 
question are the most important to search for in the image. First we will 
present a Visual attention model that tries to learn an intermediary image 
heatmap focused on what in the image might be useful to answer the question. 
Then we will present a Dual attention model that uses both ideas in parallel, 
and merges the image combined with the attention maps and text embeddings 
to produce an answer. 

Visual attention model 
As we have observed in the related work that attention models perform better 
due to their reasoning capabilities, this subsection presents our own version 
of a stacked attention model. The high-level design of the model is presented 
in Figure 5. We will describe the model by splitting it into five components: 
the image embedding component, the question embedding component, the 
first attention layer, the second attention layer and lastly the two FC layers 
used for classification. 
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Figure 5. Attention model with stacked attention layers. The question representation is shown in 

yellow and the image and the fused components representation for the MLP are displayed in light 
blue. The red line shows that the question embedding is changed for the second attention layer, 

whereas the green lines highlight the components used to obtain it. Lastly, the blue lines distinguish 
the components that are used as input for the classification MLP. 

The image embedding component uses a pre-trained ResNet152 model, φ, 
to obtain a tridimensional representation of the input, dividing the input image 
into a 7x7 grid. The features of each grid, Ii,j, are normalized and then each 
set of 2048 features is reduced to 1024 features through a FC layer with a 
tanh nonlinearity. By doing this, they are moved into a more similar space to 
the question embedding. After this step, the image is reduced to a cube of size 
7x7x1024, imgc, and this is its final vectorial representation. 

 

 

 
 

 

(2) 
 
(3) 
 
 
(4) 
 
(5) 
  

Because the input from the VQA dataset requires reasoning on both image 
context and question context, the latter can sometimes become cluttered when 
using only a forward pass, as some tokens might have more meaning and 
influence over the entire context when they are enriched with the context from 
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both directions. For most of the longer questions, the subject is influenced by 
tokens surrounding it. In order to capture the question context, this 
component uses a Bi-LSTM to concatenate the contexts from the two 
directions. Having the enriched context for the words, those are passed as 
input to a forward LSTM, because most tokens influence the future tokens of 
the question. During testing we observed that this subcomponent for question 
embedding maximizes the importance of the question context for this 
attention model. The question context is a 1024 sized vector, qc

(1). Let Qi be 
the ith token and Q = [Q1 , Q2 , ..., Qd ] the question containing d tokens. 
Furthermore, we will denote Q ∈ Rd×n as the word embedding matrix, where 
d is the number of words in the question and n is the word embedding size. 
The question embedding becomes:	

 

(6) 

where BRNN concatenates the two passes for each token Qi.	
In order to start the first stacked attention layer, the two representations 

need to be fused. Therefore, the question embedding is tiled to have the 
tridimensional size of the image embedding, obtaining a 7x7 matrix q(1)

c-tiled. 
For the first attention layer, the two embedding matrices, imgc and  

q(1)
c-tiled , are concatenated on the last axis and now each cell from the 7x7 

grid has a 2048 feature vector (here [,] denotes the concatenation operation): 

 

 
(7) 

We apply a 2D Convolution of size 1x1 with 512 filters, followed by a tanh 
activation layer. In order to obtain the attentions, we apply another 2D 
Convolution of size 1x1 with only one filter. We have tried to use two 
attention maps, similar to what Kazemi et al. (2017) have proposed, but the 
results were not improving.	

 
(8) 
 
(9) 
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The resulting matrix is flattened and transformed using a softmax activation, 
so the 49 attention values, atti,j,1 ≤ i,j ≤ 7, sum to the value 1. The highest 
values represent image regions that are important in relation with the 
question.	

 

 

(10) 
 
(11) 

Afterwards, a weighted sum is done between the image regions and the 
attention values, resulting a one dimensional vector of size 1024. This is the 
attended image after the first attention layer.	

 

(12) 

The second attention layer is similar to the first one, except that the initial 
question embeddings are enhanced by an additive element-wise operation 
with the attended image embedding img(1)

 att, thus obtaining qc
(2):	

 

(13) 

After the second attention layer obtains the weighted sum of the image, 
img(2)

att, this representation and the initial question embedding are fused 
through an element-wise multiplication, obtaining a 1024-dimensional vector 
that is passed to the fifth component, the two layer MLP, which has a softmax 
activation at the end for classification:	

 

 

 

(14) 
 
(15) 
(16) 
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Dual attention model	
We have also created a model that follows closely the one presented by Parikh 
et al. (2016), but instead of comparing two sentences, we will compare the 
input question with the image segment embeddings from a pre-trained 
ResNet-152 network. The model that follows is the result of several iterations 
and minimizations in order to reduce overfitting. 

 
Figure 6. Dual-Attention model. The model can be split into 4 components: Attend (yellow), 

Compare (green), Aggregate (red) and Classify (blue).  

The dual attention model makes use of 4 components which are highlighted 
in Figure 6. The Attend section extracts the image and text attention and 
combines each of those with the visual and textual embeddings. The Compare 
section is tasked with combining the “attended” image and question with the 
original question and image embeddings, respectively, in hopes of finding 
where there is correlation between a focused area of the image with a section 
of the question, or the other way around. The Aggregate section computes a 
weighted average of the previous layer and passes those through a FC layer. 
The Classify section concatenates the two embeddings and produces the final 
answer after 2 FC layers. Additional to the model from Figure 6, we represent 
the image embedding space as V∈Rt×n, where t is the number of image 
segments and n is the embedding size, same as for words. 

We need to place each word of the question in context with the rest of the 
sentence. This idea is also considered by Karpathy et al. (2015), where the 
argument is made that a Bidirectional RNN (or Bi-LSTM in our case) would 
learn to embed the concept of "dog running" from a question such as "Is the 
dog running?" when reaching the word "running". The bidirectional nature of 
the network makes sure that the word "dog" receives the same treatment 
regardless of word order. After observing intermediary outputs, we have 
noticed that the model would try to attend on the image for words in the 



16 Cosmin Dragomir, Cristian Ojog, Traian Rebedea 

 

question that are non-descriptive, such as "where", or "the", as each word 
embedding would not gain enough context from nearby words. Therefore, it 
did not make much sense to attend on each word, so we chose instead to 
produce an image attention for each trigram in the question. This produced a 
significant improvement, which is why, after the Bi-LSTM we follow with a 
Conv1D layer, followed by a FC layer with "tanh" activation to bring the 
visual embeddings in the same vector space as the image embeddings. 

The visual and textual embeddings which were brought to a similar vector 
space are then multiplied (by matrix multiplication) to produce an alignment 
matrix. Ideally, the matrix would get high activations for image segment 
embeddings which match with certain trigram embeddings. After obtaining 
the alignment matrix C∈Rd×t, we want to know for each word, what is the 
image segment we should be focusing on, and vice-versa for image segments. 
To do this, we compute Qatt and Vatt, which are essentially soft-attention maps 
over the words and image segments, respectively. 

 

 

 
 

 
(17) 
 
 
(18) 
 
 
(19) 
 
(20) 
  

The attended visual and textual embeddings are then concatenated (here 
[,] denotes again the concatenation operation). 

 

(21) 

Finally, the answer is obtained through a FC layer followed by softmax. 

 

(22) 
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4. Results and discussion	
This section starts by presenting the evaluation method used on the VQA 1.0 
dataset for the VisualQA Challenge and continues by describing the 
experimental setup for our solutions. Afterwards we discuss the results for 
the proposed models and highlight the importance of the attention. 

4.1. Evaluation metrics 
Every question from the open-ended track of the VisualQA Challenge has ten 
answers and a response is considered to be 100% correct if at least three 
annotators gave the same response. Otherwise, the score for that input pair is 
proportional with the number of matched responses out of the ten from the 
dataset, as can be seen in (23). Unfortunately, sometimes even the annotators 
do not agree on a response and multiple questions do not have an answer that 
appears at least three times. In order to be consistent with the human 
accuracies, the VisualQA Challenge uses (24) as the evaluation metric, 
meaning that accuracies are averaged over all 10 choose 9 subsets of 
annotators’ answers.  

 

 

(23) 

 
(24) 

4.2. Experiments	
All experiments were conducted on the real open-ended VQA 1.0 dataset. 
The models evaluated on the val subset were trained on the train subset and 
the models evaluated on the test-dev subset were trained on an aggregated 
subset of train and validation. 

Model hyperparameters 
The baseline model was trained with the RMSProp optimizer (Tieleman and 
Hinton, 2012), with a learning rate of 0.001, ρ of 0.9, ε of 1e-08. The model 
was trained for 80 epochs when on the train set and 120 epochs when on the 
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train + validation sets. After half the training epochs, the learning rate is 
halved. The word embeddings are obtained using SpaCy (https://spacy.io/), 
which determines embeddings starting from pre-trained GloVe vectors. The 
best results for this model were obtained with ResNet50 and ResNet152 
embeddings for the images. 

Because the dataset has a predisposition for overfitting due to the biases 
created by the unique questions, as mentioned in Section 2, regularization 
techniques are essential to improve the results. Dropout (Srivastava et al., 
2014) is the most important method for the presented models and is used 
before all FC layers and also before convolutional layers for the attention 
model. For the final layers the dropout rate was 0.5 and on the initial layers it 
was 0.3 or 0.4. Another aspect which improved our results was to use a small 
dropout rate of 0.1 on the input embedding of the question and of 0.2 on the 
input embedding of the image. Also, we have used max-norm constraint of 
0.3 on all FC and Convolutional layers. Lastly, another improvement was 
provided by the use of l2 regularization on the internal weights of LSTMs, 
with a penalty term of 0.05. 

The visual attention model was trained with the Adam optimizer (Kingma 
et al., 2014), using a configuration of β1 = 0.9, β2 = 0.999, ε = 1e−08 and a 
variable learning rate, depending on the type of the model. For the simple 
models, we have used an initial learning rate of 0.00015, and for the attention 
model, we have used an initial learning rate of 0.001, both of them using 
exponential decay. For the simple models, α was varied between  
-0.0015 and -0.0025, and for the attention model its value was -0.0002. The 
minimum capping value for the simple models was 0.00002 and for the 
attention model it was 0.0002. 

The dual attention model was also trained with Adam, with an initial 
learning rate of 0.001. The models are trained for 80 epochs when on the train 
set and 120 epochs when on the train + validation sets. After each epoch, the 
learning rate will be decreased via an exponential decay: lr(i) = max(lr(0) · 
exp(decay · (i + 1), lrmin)). The gradients are clipped to 0.1. Every FC layer 
uses a max-norm constraint of 3 as a form of regularization. The LSTM layers 
use an L2 regularization of 0.1. The best results for this type of model were 
obtained with ResNet152 embeddings for the images. Additional model 
hyperparameters are shown in Figure 7. 
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Figure 7. Additional model hyperparameters 

4.2. Results and discussion 
This section presents quantitative results for all proposed models and also 
makes a short analysis of these results. 

Table 1. Accuracy of proposed models on the VQA validation set 

Model Overall Other Number Yes/No 

Baseline - 1k ans - 
ResNet50 

56.46 42.80 34.55 82.06 

Baseline - 3k ans - 
ResNet50 

56.58 42.86 34.85 82.21 

Baseline - 1k ans - 
ResNet152 

57.04 43.40 34.73 82.00 

Image-Stacked-Att 59.61 48.35 36.05 82.56 

Dual-Att - 3k ans - 
ResNet152 

59.64 48.82 36.52 81.84 

 
To interpret the results presented in Table 1, we will go through each of 

the models, starting with “Baseline - 1k ans - ResNet50”. This is the 
implementation of the model presented in 3.1, using 1000 answers as output 
classes and ResNet50 embeddings. With proper regularization and using the 
RMSProp optimizer, this model reaches up to 56.58% accuracy, and is the 
backbone of all the baseline-related models. One massive improvement over 
"deeper LSTM Q + norm I" presented in Antol et al. (2015) is the application 
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of l2-regularization on the image embeddings. Surprisingly, there is no 
significant improvement in choosing the top 3k answers over the top 1k 
answers for the baseline models. A significant improvement is shown when 
moving from a ResNet50 model to a ResNet152 model, as we can see from 
Table 1. However, the per-answer responses show that these models still lack 
in the "number" and "other" categories.  

As expected, a big difference of approximately 2.4% can be observed 
between the stacked attention model and the baseline model. It may be 
surprising that the difference is not bigger, but this shows that even though 
the model is capable of figuring out where to look in the picture, it still cannot 
quite use that information to full effect, which can be a consequence of the 
biased training set. The attention model outperforms the baseline in all 
categories, the most important difference being in the "Others" category 
showing that the model has a fine-grained object recognition due to the 
attention mechanisms. 

Moving to the dual-attention model, we notice that it does a much better 
job at answering questions in the "other" and "number" categories than the 
baseline, while sacrificing a bit from the "yes/no" category, and only slightly 
better than the stacked attention model presented previously. We can also 
notice that there starts to be a significant difference between choosing the 
most common 3k answers over the most common 1k. This might be because 
deeper models capable of reasoning do a much better job at identifying 
different types of situations and adapting to them, unlike the baseline models 
which tend to overfit on specific answer types. 

Table 2. Accuracy on the VQA test-dev set 

Model Overall Other Number Yes/No 

Baseline - 1k ans - 
ResNet50 

60.07 45.63 37.46 82.96 

Baseline - 3k ans - 
ResNet50 

59.97 45.42 37.15 83.06 

Baseline - 1k ans - 
ResNet152 

57.04 46.26 38.19 82.76 

Image-Stacked-Att 63.11 51.50 38.99 83.09 
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Dual-Att - 3k ans - 
ResNet152 

63.12 51.96 38.76 82.63 

 
Finally, we can observe the same behaviour as on the validation set apply 

to the test-dev set (Table 2). The best models are the ones who use visual 
and/or textual attention, reaching test-dev accuracies of ~63.12%, bringing 
them in the top 7 models for the VQA v1 competition (see results online at 
http://www.visualqa.org/roe.html). Also, we can observe that the baseline 
models greatly surpass the ones presented in Antol et al. (2015), validating 
the conclusions of Jabri et al. (2016) that baseline models can reach a high 
accuracy, close to the results of more complex models with attention. This 
proves either that attention models still have more work to do before we can 
accurately label them as capable of reasoning, or that the dataset is heavily 
biased such that simpler models able to overfit on particular answer types 
(effectively "learning the question") are almost as good as attention models. 

4.4. Attention map analysis 
This section presents a few examples of attention maps obtained using our 
model best performing models, Image_Stacked_Att, with 2 stacked attention 
layers, and Dual-Att, which has both image and text attention layers. The 
shown examples are from the validation set, after training the model on the 
train set. The visual attention maps are obtained using the values from the 
softmax layers representing the attention maps and by performing a bicubic 
interpolation on the 7 x 7 grid corresponding to the image regions. 
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Figure 8. Two examples of attention maps on each of the two attention layers. For each example the 
given answer with its corresponding probability are shown. The second layer improves the focus of 

the first layer. 

Figure 8 shows examples of attention maps for the first and second 
attention layers, alongside the initial image. It can be observed that the second 
attention layer refines the focus of the first layer, which is a bit fuzzy. 
Interestingly, although sometimes the first attention layer focuses completely 
wrong, as shown in Figure 9, the second layer is able to correct its attention 
map. This phenomenon might explain the small increase in our accuracy if 
we use two stacked attention layers instead of a single one, because 
sometimes the first attention layer helps the overall process and sometimes it 
just complicates the process for the second layer, focusing on a wrong part of 
the image. Even if the focus of the second example from Figure 9 is correct, 
the response is wrong, and this might be because the first attention layer did 
not focus correctly, after which the second layer could have refined its 
attention to the snow. 
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Figure 9. Two examples of attention maps on each of the two attention layers where the first layer 

focuses completely wrong and the second layer corrects its focus. 

Moving on to the Dual Attention model, in Figure 10 we can see what the 
attention layers for each word focus on separate trigram of words in the 
question. We can also see what the weighted sum of the attention of those 
layers looks like, which produces the final visual attention seen in the second 
photo of each figure. Furthermore we can see what the textual attention layers 
look like for each trigram of the question, which shows what level of 
importance the model attributes to each trigram when considering them for 
the final answer. 
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Figure 10. An example of visual and textual attention maps and vectors respectively. In the series of 

photos, the first one represents the original input image and question, the second one is the 
aggregated attention map for the image along with the answer and its certainty. The following four 
are attention maps for each trigram in the question. The last one represents textual attention vectors 

shown as bar charts 

In Figure 11 we can observe the current limitations of our model. These 
are mainly caused by the input image which was resized to 224 × 224, 
effectively throwing away a lot of information and many details. Even if we 
were to resize to 448 × 448 like in Fukui et al. (2016) or Nam et al. (2016), 
the model would still have trouble with the first example, as every end-to-end 
model needs to resize the picture, thus making it incapable of reading small 
text. A solution to this type of question would be a modular network that 
would use a fully-convolutional network with no FC layers, specialized in 
extracting text from images that would permit the input image to be of 
variable size. The second example shows a limitation brought by the dataset 
itself, as the model could not learn the difference between "picture" and 
"icon" from that single example. The third example show a limitation brought 
both by resizing the image to 224 × 224 and by the limited vocabulary from 
the training examples. The model correctly identifies that there is a plant in 
the picture but fails to categorize it as a tree, also probably due to the 
obstruction in the image. 
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Figure 11. Examples showing the limitations of the Dual Attention model 

5. Conclusions 
In this paper we have presented two neural models for the Visual Question 
Answering task that make use of attention mechanisms in order to align the 
image and question embeddings. The two models, image stacked attention 
and image-text dual attention, achieve similar overall performance of about 
63.10% on the test-dev dataset of the VQA v1 challenge, which places them 
in the top 10 solutions developed for this task.  

From a computational point of view, the main findings are threefold. First, 
complex attention mechanisms are mandatory to align text and image 
embeddings and improve the performance of the solutions developed for 
VQA. Second, the developed models achieve a somehow similar 
performance, also in line with the other top performers for the challenge. 
Even the winner of the VQA challenge, using MCB Pooling, achieves only a 
slightly better performance of 64.20% without augmenting the training 
dataset (Fukui et al., 2016). This shows that current approaches are limited 
and there is a need for a fundamental breakthrough in the models. At last, the 
two proposed methods can be combined to achieve a slightly better accuracy 
as the dual attention model achieves constantly better results on the “Other” 
type of questions, while the stacked attention models performs better for the 
“Yes/No” questions. 

At the end, solving the VQA challenge would offer substantial advances 
in the HCI community. Not only this technology would provide a 
substantially better method of interaction with the environment (including 
real-life and online) for vision impaired users, but it would also be a powerful 
means of querying large image and video collections in natural language for 
any user. However, the current performance of the VQA solutions does not 
enable the development of commercial tools and adoption for everyday users. 
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