
Revista Romana de Interactiune Om-Calculator 11 (1) 2018, 63-75 © MatrixRom

Modern techniques of web scraping for data
scientists

Mihai Gheorghe, Florin-Cristian Mihai, Marian Dârdală
 The Bucharest University of Economic Studies
6 Piata Romana, 1st district, Bucharest, 010374 Romania
E-mail: mihai.gheorghe@gdm.ro, fcmihai@gmail.com, dardala@ase.ro

Abstract. Since the emergence of the World Wide Web an outstanding amount of
information has become easily available with the use of a web browser. Harvesting this data
for scientific purposes isn't feasible to be done manually and has evolved into a distinct new
field, Web Scraping. Although at the beginning automatically collecting data in a structured
format was at hand with any programming language able to process a text block, which was
the HTML response of a HTTP request, with the latest evolution of web pages, complex
techniques to achieve this goal are needed. This article identifies problems a data scientist
may encounter when trying to harvest web data, describes modern procedures and tools for
web scraping and presents a case study on collecting data from the Bucharest's Public
Transportation Authority's website in order to use it in a geo-processing analysis. The paper
is addressed to data scientists with little or no prior experience in automatically collecting
data from the web in a way that doesn't require extensive knowledge of Internet protocols
and programming technologies therefore achieving rapid results for a wide variety of web
data sources.

Keywords: human-computer interaction, web scraping, data harvesting, content mining.

1. Introduction
A web page is basically the interpretation a web browser gives to an HTTP
success response which includes an HTML document. The HTTP response,
which is plain text, might drive the browser to initiate other HTTP requests
for resources such as images, style sheets or client-side scripts. The
information is visually rendered by the browser for the human user to assess.
Therefore, in order to collect relevant data from a web page, we can either
manually identify and store it in a structured data format or we can
programmatically process the response the browser receives, extract the
information and push it to the desired data container for storage and analysis.

For Big Data scenarios, manually collecting the information is both
unfeasible and prone to copy/paste errors. Web scraping usually refers to the

64 Mihai Gheorghe, Florin-Cristian Mihai, Marian Dârdala

automated process of data transfer between a web page and a structured data
format implemented using a toolkit called a web robot, scraper or crawler.
Despite sharing some of the same processes and challenges, web archiving
and web scraping are two distinct fields. There is a growing number of non-
profit organizations, university-backed initiatives, and government data
services currently working to archive web sources for various research
purposes such as The Internet Archive, PANDORA, and the Internet Memory
Foundation. Unlike archiving, web scraping selectively stores data, ignoring,
for instance, images, multimedia content and style sheets when dealing with
a text-driven project.

Apart from the technical challenges, an impediment to easy web
harvesting is the legit effort of website owners to limit or completely block
automated access to their data. Confidentiality, security or business related
concerns may lead to this decision. For instance, without being limited to this,
web scrapers can be used for real-time monitoring of competitor prices, which
can generate business decisions with significant impact for the target of
automated data extraction. They can as well generate the loss of
advertisement revenue or increase costs with server infrastructure.

Given their ability to initiate a large number of requests over a short period
of time, web scrapers may add significant server load to the detriment of the
usability degree for regular human users. This study identifies methods used
to prevent web scraping and describes techniques to completely or partially
avoid these methods.

Non-malicious data retrieval can be separated into two categories:
formally supported and informally permitted (Black, 2016). Formally
supported data retrieval is usually performed through Application
Programming Interfaces (API) or other frameworks designed explicitly to
handle and respond to automated data requests, while the second is based on
techniques which involve downloading the same resources used to render
web pages on-screen for human users and searching through their HTML
code for specific types of information.

Although in most cases, the information rendered by a browser seems
visually organized, thus making it easy for a human operator to identify
certain logical structures, HTML is an unstructured data format and
extracting relevant and consistent data generates a couple of challenges. In
order to overcome these, various strategies have been developed. These
include text pattern matching, HTML and DOM (Document Object Model)
parsing for textual content and Computer Vision and Machine Learning for

Modern techniques of web scraping for data scientists 65

images and multimedia content. Although web crawling and indexing is a
large-scale phenomenon, which includes core features for Search Engine
giants like Google Search or Microsoft Bing, the current study is focused only
on the textual content extraction challenges and techniques for Data
Scientists.

2. Modern web applications and implications on scraping
Present-day websites are modeled around higher user expectations and
greater performance metrics than ever before. Modern web apps are desired
to have 100% uptime, be available from anywhere in the world, and usable
from virtually any device or display size. Web applications must be secure,
flexible and scalable to accommodate traffic spikes in demand. More than
this, complex scenarios should be taken care of by rich user interactions, such
as single page apps, built on the client using JavaScript, and communicating
effectively through web APIs (Hernanez et al., 2018; Zheng et al., 2007).
These developments have influenced the methods scraping can be
implemented.

2.1 Advanced user interfaces of web applications
In the first years of the Internet, web pages were simple static HTML
documents or generated HTML code blocks using server-side programming
languages. For publicly available pages, the main effort in the web scraping
process was held by initiating the HTTP request and the interpretation of the
response containing the HTML. However, in the recent years, due to a variety
of concerns, including security, scalability and software maintainability,
many web applications have been built around an evolved architecture which
separates data and presentation layers (Angular, 2018; Paterno, 1999; React,
2018).

The HTML in the response is usually created for the visual template of the
page, while relevant data, subject to data extraction, is dynamically filled in
using advanced front-end techniques among some of the most popular are
Angular (developed and maintained by Google) and React (developed and
maintained by Facebook).

These are JavaScript libraries designed to help create dynamic user
interfaces which pull data from API architectures. The following example,

66 Mihai Gheorghe, Florin-Cristian Mihai, Marian Dârdala

written using React, depicts the explicit code the browser receives and what
the HTML code looks after the browser has rendered it.

<div id="myReactNewsApp"></div>
<script type="text/babel">
 class Headliner extends React.Component {
 render() {
 return <h1>{this.props.title}</h1>
 }
 }
 ReactDOM.render(<Headliner title="News Headline" />,
document.getElementById('myReactNewsApp'));
</script>

Code example 1. Explicit source code for retrieving the Title of an article using React

<div id="myReactNewsApp">
 <h1>News Headline</h1>
</div>

Code example 2. HTML code after the page has been rendered by the browser

It is easily understood that by interpreting the HTTP response alone
through a web scraping program, it would be counter-intuitive to identify the
title in our example, which otherwise would have been extracted using a
simple JavaScript regular expression: regex = /<h1>(.*?)<\/h1>/g;

For scenarios where data is pulled from an API response after the initial
HTML was sent to the browser, this would be impossible. Also, in order to
build a modern web page, a browser makes on average 75 HTTP requests
[10]. Building a scraper to deal with this amount of complexity would be
highly inefficient.

Also, there are circumstances where social media posts, blog posts,
products or other abstract data types are continuously revealed on preset user
interactions, such as scroll-down on the bottom of the page (infinite scrolling)
eliminating the need for pagination. Therefore, parsing the DOM (Document
Object Model), which may be rebuilt after each user action, rather than the
initial HTML, would resolve these shortcomings. However, the DOM is a
structure generated by the browser after it processes all the server responses
and also interprets all the client side scripts associated with a web page. This
means that, apart from the core scraping solution, a web browser needs to be

Modern techniques of web scraping for data scientists 67

included to accommodate with modern websites.
Compared to conventional web scraping, having a browser to create a

DOM for each page requires additional computing resources, thus processing
times. For instance, loading Facebook's first page, without being
authenticated, measured with Gtmetrix (a public web performance analysis
service which was set to use the Google Chrome browser) resulted in 0.8
seconds since the initial request until the DOM was first constructed, while
the final DOM was rendered in 2.1 seconds (GTMetrix, 2018).

2.2 Methods for preventing automated data extraction from
websites

As previously mentioned, in some cases, web scraping is not encouraged by
owners of websites with public access for human users. Therefore, a handful
of techniques have been developed in order to minimize the impact of such
practices.

Voluntary compliance is usually implemented through the robots
exclusion protocol, which is a standard meta-document with simple syntax
(robots.txt), placed in the top-level directory which website owners use to
instruct web robots (typically search engine crawlers) if and how often they
prefer to have their pages indexed. The following example indicates Google
Bot to crawl the pages at intervals of 120 seconds, allows indexing of the
/ads/public/ directory while forbidding indexing of /ads/. It also forbids all
crawlers to index the /archive/ folder.

User-agent: googlebot
Crawl-delay: 120
Allow: /ads/public/
Disallow: /ads/

User-agent: *
Disallow: /archives/

Code example 3. A robots.txt file

Human vs. Machine tests have been introduced to block access for
automated scripts to certain web pages. Out of these, CAPTCHA (which
stands for Completely Automated Public Turing Test To Tell Computers and
Humans Apart) is the most acknowledged. Initially, CAPTCHA tests

68 Mihai Gheorghe, Florin-Cristian Mihai, Marian Dârdala

displayed distorted bitmap images of words or simple expressions, prompting
the user to submit the text representation in order to gain access to
information. The images were generated in a way that regular OCR (Optical
Character Recognition) algorithms were not able to solve the test. However,
along with advancements in Machine Learning, the efficiency of these tests
started to drop, culminating in 2012 with automated scripts that could solve
the tests at rates higher than 99% (Burszstein et al., 2011; Stillwalker, 2018).
Also, using cheap human labor to solve batches of tests as a service started to
be used.

Increasing the complexity of the tests led to criticism regarding
accessibility (edwards & Bagozzi, 2000), and although alternatives for
visually impaired users were introduced, in 2013 reCAPTCHA (a free service
developed and maintained by Google) began implementing behavioral
analysis. The current version, called NoCAPTCHA, prompts the user to move
the mouse pointer to a certain checkbox, which results in less interaction
friction and performs a back-end advanced risk analysis based on various
criteria such as speed and trajectory of the movement to determine if the user
is a human or a computer program. For high-risk scores, conventional
CAPTCHA tests might follow before granting access (Google, 2014).

Obfuscation of sensitive data, such as contact details, by converting it to
images is a practice which indeed pushes web scraping solutions to have
advanced architectures to include OCR components and to approach more
educated strategies on the target website, but also comes with notable
drawbacks. Real-time generating images is a greedy computing task.
Responding with images instead of plain text has a significant impact on
network bandwidth and also adds more HTTP requests for retrieving a web
page. Layout concerns in regard to the web page's responsiveness to a wide
variety of displays also become apparent.

Monitoring the server access logs is a method for identifying excess
traffic, unlikely access patterns for a human user or if the user-agent header
in the HTTP request does not have the correct format for human-operated
web browsers (HTTP, 2018). The monitoring process can be performed either
manually or automated through various firewall applications. IPs initiating
requests falling under these circumstances can be temporary or permanently
blocked. However, there are means to bypass these scenarios by
implementing crawl politeness features, make requests with fake user-agents
and imply proxy services for distributed IPs.

Granting access to certain web pages after mandatory password

Modern techniques of web scraping for data scientists 69

authentication increases the required complexity of the scraping solution,
even if credentials are known. Authentication involves HTTP redirects,
sessions, and cookies which are difficult to manage without a web browser.
Consequently, this makes the information virtually unavailable for broadly
used scrapers and crawlers like the search engines bots. Adding an extra layer
of security, such as multiple factor authentication (SMS confirmation codes
for example), or CAPTCHA tests makes completely automated scrapers not
worth considering for usual data science projects. A multi-step process where
a basic human input is needed is thus more feasible in these scenarios.

3. Proposed Scraping Architecture and Techniques
Prior to harvesting data from a web page or a set of similar web pages, it is
mandatory to manually analyze its structural layout in order to build the logic
of data extraction. Following this analysis, key components such as HTML
tags, CSS and DOM selectors, meta-tags specific to semantic web approach
or API requests that return data in a structured format should be identified.
Modern web browsers feature tools which facilitate this step. With Google
Chrome, to identify a CSS selector for a particular text element, the easiest
way is by right-clicking on it and choosing Inspect. The selector will be listed
in the DevTools console.

3.1 Choosing the programming language, libraries, and proper
environment

Almost every major programming language provides means for performing
web scraping tasks. Notable examples are libraries such as BeautifulSoup for
Python, rvest for R, cURL for PHP or jsoup for Java. However, although
fetching and parsing regular HTML pages is easily achievable, and
processing performance is remarkable, these solutions were not designed to
accommodate with websites featuring modern user interfaces as depicted in
Section 2.

Automating a web browser is a more viable approach through which
concerns like HTTP redirects, cookies or dynamic changes to the page
content and structure are not the task of data scientists. Selenium is an
acknowledged web automation tool which was primarily designed for
automated web testing. Selenium is an open-source software compatible with

70 Mihai Gheorghe, Florin-Cristian Mihai, Marian Dârdala

Windows, Linux, and MacOS and through its WebDriver component is able
to automate all major web browsers by starting an instance, sending
commands and retrieving the result. Selenium is scriptable through a wide
variety of programming languages: Java, Python, PHP, Ruby, C# (Selenium,
2018). For the web harvesting area, a data scientist can thus create a scraping
program in a convenient language with the scope of generating Selenium
commands which automates a browser to fetch arrays of web pages, evaluate,
process and export the results. Figure 1 depicts a proposed architecture to
accomplish the objective.

Figure 1. The proposed architecture for web scraping textual content

3.2 Scraper strategy
Constructing HTTP requests via the scraper isn't required in a configuration
that uses a browser, especially a regular one. Nevertheless, if the script is
using a headless browser and the target webpage should render as if were a
human operator, changing the user-agent is an option. Code example 4 depicts
how to get the DOM output for www.google.com, through the command line,
having the user-agent set as a regular Google Chrome, although the headless
version interprets the page.

C:\Program Files (x86)\Google\Chrome\Application>chrome
--headless --disable-gpu --enable-logging --user-
agent="Mozilla/5.0 (X11; Linux x86_64)
AppleWebKit/537.36 (KHTML, like Gecko)

Modern techniques of web scraping for data scientists 71

Chrome/60.0.3112.50 Safari/537.36" --dump-dom
https://www.google.com/

Code example 4. Via command line, the --user-agent overwrites the default user agent the request is

sent with, while --dump-dom flag prints document.body.innerHTML to stdout

Simulating user flow is facilitated by straightforward methods produced
by the automation frameworks. A script can mimic mouse movements, scrolls
and clicks, keyboard typing actions, or simply add time delays specific to
human behavior. Code example 5 showcases the use of Puppeteer's
keyboard.type and click methods to go through a basic login form. Prior
knowledge about the page's structure is obviously needed in order to assign
the correct DOM selectors such as #login > form > div.auth-form-body.mt-3 >
input.btn.btn-primary.btn-block for the submit button in our example.

const USERNAME_SELECTOR = '#login_field';
const PASSWORD_SELECTOR = '#password';
const BUTTON_SELECTOR = '#login > form > div.auth-form-
body.mt-3 > input.btn.btn-primary.btn-block';
await page.click(USERNAME_SELECTOR);
await page.keyboard.type(CREDS.username);
await page.click(PASSWORD_SELECTOR);
await page.keyboard.type(CREDS.password);
await page.click(BUTTON_SELECTOR);
await page.waitForNavigation();

Code example 5. Using Puppeteer and Headless Chrome for authenticating through a login form,

simulating human user interaction

A key component of a scraping system is the task scheduler. In our
proposed architecture, the task scheduler is the part of the script that initiates
page loading methods after fetching URLs from the input. In order to simulate
human behavior or just to take into account a crawling politeness policy,
which is a practice meant to save server overload, time delays are usually
inserted. If the input URL list is dynamically updated as a consequence of the
data retrieved through the scraping process, the system becomes a web
crawler.

3.3 Extracting Data
Once a web page is fetched and interpreted by the browser, the DOM

72 Mihai Gheorghe, Florin-Cristian Mihai, Marian Dârdala

representation becomes available. In a web scraping architecture which
includes a browser, data can be thus, extracted immediately, or the document
can be stored as XML for later processing. DOM parsing is the technique
used to navigate through the tree structure of the model in search of pre-
identified nodes in order to extract target data elements. Selenium and
Puppeteer are bundled with methods to perform this kind of tasks. Code
example 6 produces the following effects: it identifies the selector for a target
name attribute, it stores the data in a string variable, it identifies the “footer”
section and commands the browser to scroll to it and click on the “next page”
element, with a 3 seconds delay between.

browser = webdriver.Edge()
browser.get('https://www.example.com')
Name =
browser.find_element_by_css_selector('span[itemprop
=
"name"]').get_attribute('innerHTML').replace('\n','
')
browser.find_element_by_class_name('footer').locati
on_once_scrolled_into_view
time.sleep(3)
Next =
browser.find_element_by_class_name('pagination-
next').find_element_by_tag_name('a')
Next.click()

Code example 6. Selenium and Microsoft Edge of retrieving the name attribute from a paginated web
source

Semantic web approaches are usually implemented in websites which
informally permit web scraping. Schema.org is an initiative of Google,
Microsoft, Yahoo and Yandex, yet maintained by an open community, which
proposes a meta-vocabulary meant to increase the level of structured data
over the Internet. It can be included in the body web pages or with data
transfer processes such as JSON Linked Data. With over 10 million websites
using the schema.org vocabulary (Schema, 2018), unsupervised crawling
processes can be performed. One veritable application is the Google
Knowledge Graph which aggregates data from different web sources which
share the same syntax.

Nevertheless, a good analysis of the target page can reveal timesaving
methods to harvest data. Websites with features for continuous loading items,

Modern techniques of web scraping for data scientists 73

such as e-commerce platforms or social networks often use
XMLHttpRequests (XHRs) to retrieve information from APIs. Isolating
XHRs significantly reduces fetching and processing times while saving
network bandwidth which would have been otherwise consumed for
resources unused in the process.

Once fetched and interpreted, data can be pushed to a structured data
format using conventional means supported by the chosen programming
language.

Case Study on Bucharest's Transportation Authority's website
The surface public transportation means in Bucharest count 26 light rails, 16
trolleybuses and 71 bus routes with approximately 2568 geographically
dispersed stations. A geo-processing analysis was required for a research on
identifying areas with public infrastructure issues.

The information about the stations, including 6 digit precision longitude
and latitude coordinates, is publicly available on the Bucharest's
Transportation Authority's website – www.ratb.ro on three distinct sections,
with sub-sections for each route. However, the coordinates are placed as
meta-data and are not displayed to the human user, which is required to
inspect each of the 113 pages for the information.

Manually collecting the needed data would have been time consuming,
prone to data errors and wouldn't have coped with future changes to the public
transportation network in case subsequent simulations were needed.
Therefore, based on the proposed architecture, a web scraper was built using
Python, Selenium and Firefox browser. When executed, the process of
harvesting data consumed less than 5 minutes and had a .csv with the
retrieved coordinates and type for each station, output which was then
imported in ArcGIS, which is a GIS (Geographical Information System)
software suite, and symbolized over the map of Bucharest for the required
analysis.

Figure 2 represents the transportation stations (the left side) on Bucharest's
map using the data which was automatically collected and a preliminary geo-
processing analysis result – a heatmap (on the right), both created using
ArcGIS. The heatmap reveals high or low capacity public transportation areas
which are easy to visualize given the color ramp, an analysis which otherwise
would had been difficult to achieve using other means.

74 Mihai Gheorghe, Florin-Cristian Mihai, Marian Dârdala

Figure 2. Public Transportation stations in Bucharest and a heat-map representation

Conclusions
Compared to conventional parsing of HTTP responses, the proposed scraping
architecture and techniques have the advantage of dealing with modern
websites in a more practical manner, particularly for users who are not
proficient in server administration and Internet protocols. Nevertheless, this
comes at the cost of increased processing times, low portability (a scraper
built for a particular dynamic website is unlikely to be operational for a
different one) and misspending of networking resources (in order to mimic a
normal human behavior, the browser loads elements such as images,
multimedia content and styling scripts which are unusable for achieving the
desired goal).

In this study, we have identified, both through reviewing the academic
literature and assessing industry products and techniques, common barriers a
data scientist may encounter when performing web scraping and suggested
methods to overcome them. Code examples were provided in order to stress
out the facile manner the architecture can be used by a data scientist.

A case study to reveal the practical use of the proposed architecture has
been included as well.

Future research is focused on identifying means to improve the overall
model, especially information retrieval speed and its ability to cope with very
large data sets.

Modern techniques of web scraping for data scientists 75

References
Angular - One framework. Mobile & desktop, July 2018, https://angular.io/
Black, M.L., 2016. The World Wide Web as Complex Data Set: Expanding the Digital

Humanities into the Twentieth Century and Beyond through Internet Research.
International Journal of Humanities and Arts Computing, 10(1), pp.95-109.

Bursztein, E., Beauxis, R., Perito, H., Paskov, D., Fabry, C., Mitchell, J.C., 2011. "The failure
of noise-based non-continuous audio captchas". IEEE Symposium on Security and
Privacy (S&P).

Edwards, J., Bagozzi, R., 2000, On the nature and direction of relationship between
constructs and measures. Psychological Methods 5(2), 155-174.

Getting Started with Headless Chrome:
https://developers.google.com/web/updates/2017/04/headless-chrome

/Google Security Blog, December 2014, https://security.googleblog.com/2014/12/are-you-
robot-introducing-no-captcha.html

GTmetrix – Performance report for facebook.com, July 2018,
https://gtmetrix.com/reports/facebook.com/PdLhObgQ

Document Object Model (DOM), July 2018, https://www.w3.org/DOM/#what
Hernandez-Suarez, A., Sanchez-Perez, G., Toscano-Medina, K., Martinez-Hernandez, V.,

Sanchez, V. and Perez-Meana, H., 2018. A Web Scraping Methodology for Bypassing
Twitter API Restrictions. arXiv preprint arXiv:1803.09875.

HTTP Archive, July 2018, https://httparchive.org/reports/state-of-the-web
Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content, IETF, The Internet

Society, June 2014, https://tools.ietf.org/html/rfc7231#section-5.5.3
Paternò, F. Model based evaluation of interactive applications. Springer Verlag, 1999
PhantomJS - Scriptable Headless Browser, July 2018, http://phantomjs.org/
React - A JavaScript library for building user interfaces, July 2018, https://reactjs.org/
Schema.org, July 2018, https://schema.org/
Selenium - Web browser automation, July 2018, https://www.seleniumhq.org/
Stiltwalker Project, July 2018, http://www.dc949.org/projects/stiltwalker/
Wind, J., Riege, K., Bogen M., 2007. Spinnstube®: A Seated Augmented Reality Display

System, Virtual Environments: Proceedings of IPT-EGVE – EG/ACM Symposium, 17-
23.

Zheng, S., Song, R., Wen, J., & Wu, D., 2007. Joint optimization of wrapper generation and
template detection. KDD

