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Abstract. Human-computer interaction (HCI) was revolutionized by the emergence of new 
technologies, be they proof of concept or fully functional, which created a more immersive, 
integrated and interactive experience, interactive systems being now able to understand user's 
activities and respond accordingly. Our study presents an original knowledge-based model 
to be used to semantically describe – in terms of the OWL and RDF standards – human 
gestures and poses tracked by a motion sensor-based device. To prove the feasibility of the 
proposed conceptualization, two use cases were designed: one for manipulating 3D shapes 
on a board and one for usability testing by using different Kinect-based applications. 

Keywords: natural user interaction, knowledge modeling, human gesture, Kinect, 
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1. Introduction 
As technology advances, it is important that it also continuously immerses 
into humans’ everyday life, changing the way society interact and perceive it, 
up to the point that one is no longer aware of its existence. Nowadays, people 
are looking for ways to control their environment without being restrained to 
using a traditional interaction paradigm – based on mouse and keyboard, only 
– and, why not, not even a smart phone. In this context, new interaction 
paradigms and technologies have been developed, be they proof of concept 
or fully functional. From motion tracking to brain weaves reading, they all 
try to tackle the idea of an immersive smart environment, helping the user 
naturally interact with everyday objects. 

Consulting the scientific literature, we observed the lack of a proper 
knowledge-based model able to specify complex natural interactions, by 
representing sensor information, motion tracking, and gestures. Our aim is to 
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specify a conceptualization of main aspects concerning these natural 
interactions – discussed in Section 2 of this article. To accomplish this goal, 
the actual standards of semantic Web are used to denote body poses, user 
gestures, sensor information and others – see Section 3.  

Several use cases are also described in Section 4, by using the Microsoft 
Kinect (Han et al., 2013) – a motion tracking device that introduced a major 
shift in the way we interact with technology, by converting the whole 
environment into a canvas, with users’ moving body acting as a stylus. 

The paper ends with conclusions and further directions of research. 

2. Natural Interactions: Motion Tracking and Gesture 
Recognition 

2.1 Motion Tracking 
Motion tracking (Yilmaz, Javed & Shah, 2006) represents the ability to track 
the motion of some object over time. In the most often cases, this object is 
the human body, but the tracking is not restricted only to it. In essence, motion 
tracking requires identifying particular points or shapes or objects, and 
tracking their individual movements. The difficulty of motion tracking 
consists of identifying a specific object that is being tracked, which implies 
first detecting movement in general. Once an object that is being tracked is 
recognized, the goal of motion tracking is to determine in which direction the 
object is moving, usually in a three-dimensional space. If a particular object 
has been identified and its movement is tracked, then the gathered data can 
be used to perform actions such as controlling a cursor on a screen, or it can 
be examined over time to detect certain gestures, which are useful for creating 
a language to communicate with a specific software application. 

To perform our research, the Microsoft Kinect device was selected. Kinect 
has already a large number of practical usages – for example, those described 
by Lun & Zhao (2015) and Webster & Celik (2014). 

Using its range of sensors, Kinect can track up to six people at the same 
time, constructing skeletal tracking – i.e. tracking of various body parts – for 
each of them individually. While in full skeleton tracking mode, 25 joints are 
being recognized, whereas while in seated mode, only 12 are analyzed. These 
joints include hand tips and thumbs. The API (Application Programming 
Interface) provides access to various sensors through its frame readers, 
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significant data being provided by Body and BodyIndex.  

Also, for further processing additional data could be gathered via Color, 
Depth, Audio, Infrared, and LongExposureInfrared sensors14. 

The skeletal body tracking – depicted in Figure 1 – is obtained by using a 
BodyFrame item, accessed from BodyFrameReader. The BodyFrame 
represents a set of 25 joints’ positions, for each of the maximum of 6 persons 
that can be simultaneously tracked. Each joint is placed on the 3D Cartesian 
coordinate system < X, Y, Z >, having a specific orientation and is assigned a 
specific number to identify it. 
 

 
Figure 1. Human body joints tracked by a Kinect device. 

 

                                                
14 Microsoft Kinect – https://developer.microsoft.com/en-us/windows/kinect 
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2.2 Gesture Recognition 
The gesture is a specialized term for a whole range of different disciplines, 
which make it buckle under its weight various overlapping and sometimes 
conflicting meanings ascribed to it. From the human computer interaction 
point of view, “a gesture is a motion of the body that contains information” 
(Laurel & Mountford, 1990). For example, waving goodbye or rotating a 
picture are considered gestures. According to Mitra & Acharya (2007), 
gesture recognition represents the foundation for developing applications 
using natural user interfaces, in order to provide support for actions like 
navigation, data input, performing various tasks, etc. 

In the Kinect context, gestures are defined as the relative positions of some 
specific body joints for a given number of frames. By default, Kinect offers 
only three predefined gestures, as states for hands: Open, Closed, and Lasso. 
Gestures can be both static, consisting of a single state, such as pointing, 
dynamic and continuous, as a sequence of multiple parts, with each part of a 
gesture as a specific movement. Therefore, all these segments combined will 
then form the whole gesture. Taking the wave gesture as an example, it 
happens when users raise one of their hands above the corresponding elbow, 
moving it from side to side, with the elbow being still. This means the base 
of the wave gesture would consist of two segments with the following states: 
“hand above the elbow and hand to the right of elbow” and “hand above 
elbow and hand to the left of elbow”. 

However, recognizing segments is not enough, if a degree of confidence 
is not taken into account. For instance, in the case of the wave gesture, if the 
hand would drop right after completing the segments tracking its movement 
from the left to the right of the elbow, it would still be matched as a wave 
gesture, even if that was not the intended purpose. Thus, in order to acquire 
the degree of accuracy when tracking it, we require the user to repeat the 
segments three times and wait for the successful completion of all. 

Offering the tracking for the 25 joints is all that the Kinect does, with no 
further conceptualization of the human body. For an accurate measurement 
of a rather simple gesture such as waving, we need to compare every time the 
two joints – Elbow and Hand – on all three axes. It would be so much easier 
if we could manipulate them using a more natural manner (i.e. relative natural 
language constructs) instead, having relative comparisons between the two.  

To accomplish this goal, a knowledge-based model should be envisioned 
in order to specify the structure of tracked human body. 
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3. A Knowledge Model for Representing Natural User 
Interactions 
In order to properly recognized gestures and perform associated tasks, the 
main components of the human body should be to formally specified as 
formal components of the desired conceptual model. 

3.1 Considerations regarding Body Poses 
First step is to define the joints as more than simple enumerators, but as 
objects which can be compared – from a point of view of relative positioning 
in the Cartesian space – one to another using comparisons similar to natural 
language constructs as follows:  

• “Above”, “Below”,  
• “After”, “Before”,  
• “ToTheLeftOf”, “ToTheRightOf”,  
• “AtTheSameLength”, “AtTheSameHeight”, “AtTheSameDepth”, 
• “OverlapsWith”. 

Next, these joints are merged into segments, to specify certain body poses. 
This results in having a bone-like structure, from hands to feet which permits 
identifying the pointing direction for each of them. Because there are some 
poses, such as both arms raised above the head – the equivalent of the 
“surrender” action –, we also provide the possibility to tie together mirroring 
segments as one entity. 

A pose represents the most fine-grained part of a gesture – G Í P, where 
P = { pi, i = 1,...,N } –, as it can be defined as small as just a simple comparison 
between two joints. However, the whole purpose of this conceptualization is 
to offer an ease of use in manipulating and creating gestures. Therefore, the 
possibility of combining multiple atomic parts is important.  

Consequently, the following logical constructs are provided: 
• Merging two poses – “and” operation defined by the “&” symbol. 
• Assuming the correctness of only one – “or” denoted by the “|” symbol. 
• Matching the opposite of a pose – “not” logical operator specified by the “!” 

symbol.  
For example, a given pose p ∈ P could be considered as a composition of 

three sub-poses: p = p1 & (p2 | ! p3). 
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From the computational point of view, in order to determine a joint’s 
position relative to another one, it is necessary to determine the length 
between them in 3D space. However, as the distance between the wrist and 
the hand is smaller than between hand and elbow, the difference in height and 
angle between the two should be proportional, resulting in the same 
confidence rate when comparing both. For maintaining this proportion, we 
needed to calculate the shortest distance between any two given joints and 
add the positions of each intermediary joint to the final ratio. 

To investigate the angle between two interconnected segments, there was 
also necessary to define the concept of limbs. From the biological perspective, 
limbs are defined as the peripheral parts of the human body – arms and legs, 
more precisely. In this particular case, we considered as limbs the connecting 
bones between hip and ankle (as feet) and the ones between shoulder and 
wrist (as arms). This allowed to analyze and combine the rotation and angle 
for hands and feet. 

A model of the pose we want to achieve is being created and then it is 
compared to the actual position of the body from a Kinect frame, resulting in 
a degree of confidence that the two are similar. Correctly identifying the pose 
is vital, as we would not want to misinterpret the user’s intention and execute 
an unwanted, possibly irreversible action. 

To avoid receiving false positives, we only considered as valid matchings 
of over 80%. 

3.2 Aspects concerning Gestures 
As specified by Kinect guidelines, gestures can belong to three types: static, 
dynamic, and continuous. Since the difference between dynamic and 
continuous is in the way each interacts with the application, it has not been 
the subject of modeling it. Instead, we represented gestures by a combination 
of segments which are performed in a specific order in a certain time frame – 
formally, the gesture set is G = { gi, i = 1,...,M }. 

Each segment is described by a range of poses, depicting the positions of 
certain joints or bones. Therefore, we can create both static gestures – such 
as crossed arms, which is formed out of one single gesture segment – and, at 
the same time, we can create a model for more complex gestures – for 
example, wave or clap. Yet, when it comes to more complex gestures, the 
more complex they are, the trickier they are to detect, as the exact sequence 
of segments must be performed by the user in the exact same order. States for 
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each gesture segment exist precisely for preventing early dismissal of a 
gesture as a whole. 

Considering the wave gesture as an example, the hand would have to 
swing from the left of elbow to its right. If, for some reason, the captured 
frame is not conclusive of whether the hand moved from the left side to the 
right side (meaning it still detects the hand as being lifted and open, but not 
certain about the position relatively to the elbow), it will wait another F 
frames – for practical considerations, we chose F = 10 – to reanalyze the same 
segment matching, keeping the validity of the previous ones, by yielding the 
outcome of the current evaluation as UNDETERMINED.  

If any of the base conditions (the hand must stay up and open) are not met, 
then the result will be considered as FAILED, reverting all previous segments’ 
validity. 

3.3 KONTO: An Ontology for Representing Sensor Information and 
Gestures 

To model the user movements, including poses and gestures, and the 
interaction with a Kinect device, an ontology – named KONTO – was 
designed. This conceptual proposal is able to represent both sensor 
information and gesture-based interactions. The conceptualization is 
expressed in OWL – Web Ontology Language (Allemang & Hendler, 2011), 
a well-known W3C standard for expressing knowledge on the Web based on 
the < subject, predicate, object > triples defined by the RDF (Resource 
Description Framework) model. 

To create the terminology – TBox (Baader et al., 2003) logical component 
– of the knowledge base, the following classes are defined to mainly denote: 

• Data provided by a device (in this case, Kinect): Sensor class. 
• General information regarding a user (User), plus observed anatomical body 

parts and joints: Body, BodyPart, Part, Limb, Arm, Leg, Bone, and Joint 
classes. 

• Detected gestures and poses: Gesture, GestureSegment, HandState, and 
Pose classes. 

Main classes of the KONTO ontology are depicted in Figure 2. 
Several details are presented in the next subsections. 
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Figure 2. KONTO – main concepts. 

Sensor 
This class represents the generic sensor which is used to identify the user. 

The object property detectsUser could be used to define the relation between 
a Sensor instance and a detected user.  

Further knowledge about a user could be expressed by FOAF (Friend Of 
A Friend) ontology (Graves, Constabaris & Brickley, 2007) or the Person 
class provided by the schema.org specification (Guha, Brickley & Macbeth, 
2016), both well-known conceptual models. 

Body 
The class is identified using the trackingId functional property, having as a 
value a RDF literal. Also, it can include multiple instances of the BodyPart 
class, specified with the property hasBodyPart.  

At a syntax level, this could be denoted by the following RDF statements 
– expressed in Turtle15 format – which are included in the assertion 

                                                
15 RDF 1.1 Turtle. Terse RDF Triple Language (W3C Recommendation, 2014) –

https://www.w3.org/TR/turtle/ 
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component (ABox) of the defined knowledge base: 

 
Body rdf:type owl:Class . 
 
trackingId rdf:type owl:DatatypeProperty ,  
                    owl:FunctionalProperty ; 
  rdfs:domain Body ; 
  rdfs:range  rdf:Literal . 
 
hasBodyPart rdf:type owl:ObjectProperty ; 
  rdfs:domain Body ; 
rdfs:range  BodyPart . 

 
The BodyPart class could represent some elements of the human body and 

is a class parent of the Limb, Bone, and Joint sub-classes.  
In the case of Limb, this class is a parent for Arm and Leg sub-classes and 

has at least one instance of the Bone class, defined through property hasBone. 
The Arm class has only two disjoint individuals belonging to the RightArm 
and LeftArm classes. Similar constructions are made for the Leg class. 

The Bone class is a sub-class of BodyPart and is formed of exactly two 
instances of the Joint class defined through property hasJoint of cardinality 2 
(each bone have only two joints). 

Joint 
This class specifies the human body joints and is a sub-class of BodyPart. 
Also, it has 25 individuals defined, according to the model used by a Kinect 
device discussed in Section 2.1 and depicted by Figure 1. 

Part 
This class denotes the tie between two instances of the BodyParts and an 
action (specific to a certain context, platform, application, and/or paradigm 
of interaction). The action could be defined by external conceptual models 
such as the Action class defined by schema.org model (Guha, Brickley & 
Macbeth, 2016). 

Additionally, the class has useful properties defined in relation to itself: 
isAbove, isBelow, isAtTheSameHeightOf, isAtTheSameLengthOf, 
isAtTheSameDepthOf, isToTheRightOf, isToTheLeftOf, overlapsWith.  

These properties could be useful to perform further processing (in this 
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case, reasoning) in order to detect complex gestures and/or poses, depicting 
the relationships between different instances of the BodyPart class. An 
example: RightHand totheLeftOf RightElbow – this RDF triple specifies that 
the right hand of the tracked user is placed to the left of his/her right elbow. 

Pose 
The class represents a union of instances of the Part classes, defined through 
the object property hasPart, and is used to specify the relationship between 
different parts of the user’s body.  

For example, in order to describe a specific pose, following two RDF 
constructs are generated: 

 
aPose rdf:type Pose ; 
      hasPart RightHandToTheLeftOfRightElbow ;  
      hasPart RightHandAboveRightElbow . 

GestureSegment 
In addition, the class GestureSegment embodies a multitude of poses defined 
with the hasPose property and is used to illustrate the connection between 
poses such as: 

 
aGestureSegment rdf:type GestureSegment ; 
  hasPose RightHandTopLeftOfRightElbow . 
 
anotherGestureSegment hasPose  
  LeftHandBelowAtTheSameLengthWithLeftElbow . 

Gesture 
This class denotes a gesture and has defined at least one instance of the 
GestureSegment class, by using the hasGestureSegment object property. 

4. Use Cases and Experiments 
In order to demonstrate the potential of the concept presented, several use 
cases were necessary to be analyzed. For this purpose, we chose to envision 
two projects: one regarding the manipulation of shapes in 3D space and one 
concerning the usability testing of the Kinect-based applications. 

Similar experiments are described by Kim et al. (2016), Sridhar et al. 
(2016), Grădinaru & Moldoveanu (2016), and Mocanu et al. (2016), but they 
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are not focused on using the ontological models. 

4.1 Shape Manipulation in 3D Space 
The easiest way to test the validity of the model was by having direct visual 
of how the user can control and interact with an application.  

Therefore, we chose a representation of shapes in 3D as a playground 
considered an interactive virtual zone of natural interaction. 

Initially, the board presents itself filled with three shapes, rendered using 
OpenGL16: a sphere, a cube and a pyramid. This playground for 3D shapes 
represents the first proof for the ease of modeling gestures using the above 
presented conceptualization. 

Since the main manipulators of our shapes are the hands, we want to keep 
track of every move they make. Consequently, we also represent them on the 
board, as spheres. For better visualizing their position on the X—Y—Z axes, 
lines are also drawn from origin in each direction, for each hand. We also 
display the raw frames captured by the sensor to better map the interaction. 
Moreover, as soon as the body is starting to be tracked, a skeleton overlay 
shows up directly on the image, to have a better sense of how the body is 
being perceived by the sensor – see Figure 3. 

The mapped behavior of the drawing board is represented by both static, 
and dynamic gestures which should be detected and further processed by our 
developed library. 

                                                
16 Open GL ES – https://www.khronos.org/opengles/ 
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Figure 3. Tracking the user’s pose: shape module. 

Crossed Arms Static Gesture 
For instance, the CROSSED ARMS static gesture is depicted by having one 
segment kept for 30 frames. This segment consists of having the right hand 
overlapping the left shoulder, the left hand overlapping right shoulder and 
both elbows below hands – these constraints are also checked by using the 
RDF assertions generated by the tool, according to the conceptual model 
described in Section 3. When only one hand is detected to be in the right 
position, the gesture is not entirely dismissed, but declared UNDETERMINED, 
in the wait for the second hand to come to the desired position. 

This gesture is linked to the “X” symbol which is associated with closing 
or deleting a program or activity. In this particular case, when CROSSED ARMS 
gesture is detected, the drawing board erases all its shapes. 
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Wave Dynamic Gesture 
The WAVE dynamic gesture is modeled using two segments, repeated three 
times: one segment for detecting the movement of the hand to the right of 
elbow and one for detecting the movement to the left of elbow. Each segment 
consists of two poses as follows: one for determining that the hand is above 
the elbow and one for determining the hand’s position on the X-axis in rapport 
with the elbow. 

While the hand remains still up, but the confidence of the movement on 
the X-axis is yet below the 80% imposed threshold, the outcome of the 
segment evaluated is going to be UNDETERMINED. If the user decides to drop 
the hand, the outcome of both current segment and total gesture will become 
FAILURE (according to the discussion from Section 3.2). A successfully 
completing the two-way movement, three times in a row, will result in 
successfully recognizing it – i.e. the DONE state. 

The waving gesture stands both for salutation and for erasing a drawing 
board. Combining the latter with the already familiar shake gesture necessary 
for undoing written text on the iOS devices, we mapped this gesture to 
undoing the previous movement on the 3D board. 

Clap Dynamic Gesture 
The CLAP dynamic gesture is formed of two segments, repeated two times: 
one for joining the hands in the middle of the torso, and one for separating 
them to the sides of it. While the joining hands segment starts by making sure 
the hands are in front of the shoulders, then that they both are between 
shoulders and hips and finally, that they overlap one another, the second one 
is represented the opposite way. 
The CLAP gesture is already familiar to the user for signaling the beginning 
of a new sequence of actions (for instance, those provided by the Dance 
Central application) or a new game (e.g., Kinect Sports). Therefore, when 
detecting it, the board will reset to its initial state. 

Grab Action 
For manipulating the objects on the playground, one needs to position the 
right hand on one of the objects and then grab it. Having the right hand closed, 
the user can move the shape similarly to the movement of an object in real 
life. While the right hand is still in grabbed position, having the left hand 
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closed as well, will determine rotating and zooming of the current object. 

4.2 Usability Testing Experiments 
Movement tracking and gesture detection are used in all applications which 
are destined for the Kinect motion sensor. The model we created can be 
extrapolated and used for developing any of them. 

Currently, every application has its own – better or worse – manner of 
detecting gestures. Gestures are all arbitrary and this implies that, depending 
on the context, each gesture has a different meaning, which is more or less 
intuitive.  

What is signified as a gesture is in fact an intent of having an action 
executed. Movements have no meanings outside the ones we ascribe to them. 
Pointing and shrugging are the only two gestures which anthropologists have 
found as universal. While the first one has a generally agreed upon use, the 
second is too subtle to identify.  

Any other gesture must be based on an agreement between the designers 
of an application and its users. Therefore, the designers must either teach the 
users the significance of the gestures or they must depend on pre-established 
conventions (Webb & Ashley, 2012). 

This is why, for the second use case presented below, we designed a 
module meant to analyze the user’s interaction with different applications, in 
order to detect the flow in which the users are engaging. All gathered data is 
stored as RDF documents, by using the conceptualization presented in 
Section 3, in order to be further processed.   

We chose for the conducted experiments the following two Kinect 
applications:  

• A virtual dressing room – Fitnect. 
• A Mathematics educational game – Jumpido. 

Fitnect 
Fitnect17 is a virtual store which uses augmented reality (AR) to create a 3D 
fitting room interactive environment. This allows users to try on different 
clothes and accessories without actually having to wear them physically. 
Since its main objective is to facilitate the ease of trying on clothes, the 
gestural interaction should not be too complex. 
                                                
17 Fitnect, a 3D Virtual Fitting Room – http://wiki.fitnect.hu/ 
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The application begins with a silhouette in the center of the screen and a 

circle surrounding its feet, as a stage. Even though it can easily fully detect a 
silhouette, it does not start right away, requiring the user to be in a “surrender” 
pose. 

We specified the mapping of this pose by using the bone structure, defined 
as the connection between two neighboring joints, in order to be able to 
analyze the angle formed by the clavicle and elbows and forearms and 
shoulders. Therefore, the “surrender” pose is achieved when the right elbow 
is to the right of right shoulder, left elbow is to the left of left shoulder, the 
forearms together with shoulders’ joints form an angle of 90 degrees on each 
side and upper arms and clavicle form a straight angle. 

The movement of lifting one leg at a time was modeled as a combination 
between positions and angles, consisting of two gesture segments. More 
precisely, when checking the match for the gesture of lifting right leg, the first 
segment is checking whether the angle formed by the right shin and right hip 
is either obtuse or right, the right knee is in front of spine base joint. Because 
we had to differentiate between kicking and lifting the leg, an additional 
condition had to be fulfilled: the right ankle must not be situated before the 
right knee. To avoid identifying a squat as a lifting of the legs, the left knee 
had to be at the same depth as spine base. The lifting of the left leg was 
achieved mirroring the behavior described for the right one. 

Due to the fact that the accessories and try-ons were all accessed through 
hovering the hands over certain positions on the X—Y axis, corresponding on 
the screen, we were unable to track whether the users would lift their hands 
to analyze the piece of clothing or in order to change the outfit, therefore we 
excluded it from tracking. 

To assess the application’s usability, a user testing experiment was 
conducted following the processes described in (Negru & Buraga, 2012). 

From our observations, the first-time users of the application that we 
tracked had some difficulties figuring out the trigger for starting the try-on, 
managing to conform to the position in the first 30 seconds, representing only 
16% of all 104 interaction gestures from all 12 involved persons.  

The choosing of an outfit took another few seconds and, afterwards, the 
users intuitively lifted the legs to see if the outfit had any reaction to that. The 
lifting of the right leg had the biggest percentage – 43%, whereas the left leg 
only 38%. The wave gesture was also detected, with 3%, which could mean 
the feeling of lack of application’s responsiveness. The average interaction of 
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one user lasted 90 seconds. 

Jumpido 
Focused on children as target audience, Jumpido18 is an application meant to 
complement teacher’s activities in Mathematics classes. It embeds a series of 
mini games which teach the children notions such as sorting, addition, 
subtraction and percentages. Each game’s controls differ, from simple hover 
and hold actions over predefined areas to more complex moves, such as 
jumps, squats and kicks. 

For our experiment, we chose to analyze a game with a familiar theme: 
football. We can control the game using jumps, squats and kicks using any 
leg. Each round consists of a question and a series of answers, through which 
we must navigate through by either squatting (move to the answer below) or 
jumping (move to the answer above). Marking a result as correct is done by 
kicking the football into the net with either leg. 

As we mentioned above, all detected gestures were specified and 
annotated by using ontological assertions expressed in OWL/RDF according 
to the conceptual model described in Section 3.3.  

For each detected gesture of a given user, a RDF dataset is generated by 
using additional conceptual models like FOAF, schema.org and Usability 
Testing extensions proposed by Negru & Buraga (2012). An excerpt is 
presented below: 

 
usabilityTest1 rdf:type ut:UsabilityTest ; 
  ut:participant user1 , ..., user12 ; 
  ut:userTask [ ut:taskType "gesture" ;  
                ut:taskResult "kick" ; 
                ut:action kick ] ; 
  ut:successCriteria "0.35" .    
 
kinectBodySensor rdf:type Sensor ; 
                 detectsUser user3 . 
 
user3 rdf:type foaf:Person . 
 
kick rdf:type Gesture .  

... 
 

                                                
18 Jumpido, a series of educational games for primary school Mathematics – 

http://www.jumpido.com/en 
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The generated RDF datasets could be further processed by using various 

machine learning techniques (Ibanez et al., 2016; Nguyen & Le, 2015; 
Setiawan et al., 2017). For example, a study of interest can be focused on 
predicting the user’s next gesture or classifying users based on recurrent 
gestures and body poses performed for a class of software applications. 
Another idea is to use a fuzzy logic approach to tackle the uncertainty of 
human behavior (Diaz-Rodriguez et al., 2014). 

The concept of kick is represented by two segments: kicking and returning 
to normal standing pose. Similar to lifting of the leg, kicking has an important 
differentiator in the foot’s depth compared to other joints. Therefore, besides 
analyzing the depth of the knees versus spine base and the angles between 
shins and hips, and respectively thighs and spine base, we must also check 
that the foot of the leg that is producing the kick has the smallest depth of all 
the joints in the body. 

While detecting a waving hand is rather straightforward, gestures such as 
jumps and squats are more complex, as they can be easily mixed up with other 
segments from different movements. 

The squat movement consists of two segments, one for expressing the 
position of the body when squatting and another one for depicting the 
returning to normal standing pose. Therefore, the first one analyzes the angles 
between shins and hips (acute or right), between the thighs and spine base 
(straight or obtuse). The second one checks whether the above mentioned 
angles change back to the ones corresponding to normal standing position or 
not and that the depth of all lower body joints is the same. 

Jumping is besides analyzing body joints, also about considering various 
parameters from the human body and the environment. When modeling it, we 
split it into four segments: slight bending, jumping and returning to normal 
standing position. The first one measures the angles between shins and hips 
(obtuse), thighs and spine base (obtuse) and the depth distance between knees 
and spine base. The second segment checks whether the shins are in straight 
angles with the hips and measures the height of the user as well as the position 
of the head joint. The third one analyzes the angle between shins and hips 
(straight) and thighs and spine base (right) as well as comparing the user’s 
height and the position of the head joint with the ones captured in the second 
segment to be the same and lower respectively. 

In the case of gestures performed by children while playing a Jumpido 
module, we noticed the following: 
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• As the beginning of the game is marked by a single jump, it is visible 
that it is the first gesture registered. However, as the gestures 
necessary for interacting with the application are presented in a visual 
manner in the beginning of the module, we remarked that the subjects 
figure what they have to do from as early as the first 30 seconds of 
interaction. 

• The majority of users were right handed, since 66% of the kicks were 
performed using the right foot, whereas only 34% with the left foot.  

• Out of all 261 detected gestures for 9 involved users, 28% were jumps, 
37% were squats, 23% were kicks with the right foot, and 12% were 
kicks with the left foot. 

A snapshot regarding the participants of the conducted usability test is 
presented in Figure 4.  

 

 
Figure 4. Conducted usability test on primary school pupils. 

5. Conclusion 
Motion tracking and gesture recognition techniques allow designers and HCI 
engineers to depict new ways of interacting with computers, blurring the line 
between imagination and reality. The natural interaction between current 
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devices and users opens new possibilities in the realm of ubiquitous 
computing and computer vision, by allowing ease of access of applications 
through posture analysis. 

The current paper proposed an original conceptual model to be used in 
gesture-based interactive applications. We created the KONTO ontology with 
the purpose of defining, annotating, and interlinking data and knowledge 
modeling postures and gestures in an easier way, by using the existing 
semantic Web standards (RDF and OWL) and various other well-known 
vocabularies, with respect to the Linked Data principles (Bizer, Heath & 
Berners-Lee, 2008).  

While the conceptual model we created was designed having Microsoft 
Kinect as its main focus, it can also be easily extended to other tracking 
devices. The KONTO model could be also used in conjunction to other 
knowledge-based solutions for motion capture (Woodcock, 2015) or Web of 
Things platforms (Raggett, 2015). 

We tested the usefulness of our conceptual approach by creating a library 
used for creating a playground for manipulating 3D shapes and a usability 
testing tool for analyzing several Kinect-based applications.  

Based on observed movements and gestures performed by users, our near-
future research intention is to analyze data in order to automatically create 
(proto-)personas by following the dynamic method proposed by Pichot & 
Bonnardel (2018). 
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