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Abstract. This paper presents our methodology to capture and model multimodal 
interactions in Intelligent Tutoring Systems (ITS). We are specifically interested in 
perceptual-gestural interactions combining perceptions, gestures and other type of actions. 
Traces of such interactions are multisource and heterogeneous. The challenge is to foster 
their representation into sequences that render their multimodal nature. In this work, we 
want to show how the proposed representation yields the analysis of the influence of visual 
perceptions on learners’ performance. Our case study is the ITS TELEOS, a simulation-
based Intelligent Tutoring System dedicated to percutaneous orthopedic surgery. We also 
conducted an experiment on PILOTE 2, a flight simulation environment, to give a proof of 
concept of the genericity of our propositions. 

Keywords: Intelligent Tutoring Systems, perceptual-gestural knowledge, eye-tracking, 
multimodal interactions.  

1. Introduction 
Knowledge is considered as perceptual-gestural when it can be described as 
a combination of different types of knowledge, specifically: theoretical 
knowledge, perceptual-knowledge and gestural knowledge. It is underlined 
in Intelligent Tutoring Systems, by interactions involving actions and/or 
gestures along with perceptions. Perceptions are used as controls for 
deciding on these actions/gestures execution or validation (Luengo et al., 
2011). We assume that they provide useful insights on the information 
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gathered by learners to support their decisions and thus, are non-negligible 
in a didactic point of view. 

However, this type of knowledge is empirical and often tacit. As a 
consequence, it is hard to capture and model. In fact, capturing perceptual-
gestural knowledge in a learning environment requires the use of 
complementary sensing devices that generate heterogeneous traces. In this 
study, we are specifically interested in learner’s visualizations as support to 
executed actions and gestures. 

Our case study is TELEOS (Luengo et al., 2011), a simulation-based 
Intelligent Tutoring System dedicated to percutaneous orthopedic surgery. 
Knowledge involved in this domain is perceptual-gestural (Ceaux et al., 
2009; Mathews et al., 2012). In this type of surgery, visual analyzes require 
the perfect mental coordination of 2D images (X-Rays) and 3D objects (X-
Rays unit, patient’s body, surgical tools) to insure the safe trajectory of 
surgical tools through the targeted anatomical area. The conducted 
experiment puts the focus on the influence of learners’ behavior related to 
visual analysis on their performance. Also, we propose a second case study 
to analyze the replicability of our approach. 

The rest of the paper is organized as follows. The second section presents 
related works on capturing and analyzing perceptions in Intelligent Tutoring 
Systems; the third section describes the methodology to capture multisource 
traces in our case study; the fourth section presents our proposition to 
formalize these traces into perceptual-gestural sequences; the fifth section 
presents the conducted experiment and results; and the sixth section draws 
our conclusion and perspectives. 

2. Related work 
The literature reports many prominent pieces of work on Intelligent 
Tutoring Systems dedicated to domains where perceptual-gestural 
knowledge is involved. We can mention ITSs that have been proposed for 
training helicopters (Mulgund et al., 1995) and planes (Remolina et al., 
2004) piloting as well as for car driving (de Winter et al., 2008; Weevers et 
al., 2003). 

As one of the most recent related researches, we can also cite 
CanadarmTutor that was designed to train astronauts of the International 
Space Station for handling an articulated robotic arm (Fournier-Viger et al., 
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2011). However, the emphasis is generally carried in these works on actions 
and gestures and not on the perceptions accompanying these latter. In 
CanadarmTutor, the manipulation of the robotic arm from one configuration 
to another is guided by cameras through the operation scenes. Visual 
perceptions that are likely in play for this guidance would be worth further 
analysis. 

Other works have been conducted on the analysis of perceptions in 
learning contexts. For example, visual perceptions are captured and 
analyzed to deduce learners’ cognitive abilities (Steichen et al., 2013) or 
their metacognitive skills in exploratory learning (Conati & Merten, 2007). 
Some researchers would rather use collected perceptual information for 
measuring the learners’ mental workload or cognitive effort (Lach, 2013), 
or for inferring their behavior in the learning process (D’Mello et al., 2012; 
Mathews et al., 2012). In other studies, sensing devices are used for 
capturing postures, facial expressions and body language as emotional 
signals (Steichen et al., 2013). 

For our part, we believe that perceptions denote knowledge states along 
with actions they are related to and, therefore, should be analyzed from an 
epistemic point of view. They can bring more precision to generated 
pedagogical feedback as experts strongly underline the importance of 
verifying specific anatomic points on the X-Rays to support decision or 
validation of surgical gestures (Ceaux et al., 2009). 

The aim is to point out the benefits from studying perceptual-gestural 
knowledge up on its original multimodal characteristics. To realize this, we 
need first to foster the consistent representation of perceptions-related 
behaviors and actions/gestures into perceptual-gestural sequences.  

3. Capturing visual interactions 

3.1 Recording visual traces 
The simulation interface of TELEOS is composed of sections that represent 
the main artifacts of a percutaneous operating room. Namely, as illustrated 
in Figure 1.a, it includes a 3D model section where the patient’s model is 
displayed; the current and previous X-rays sections and the settings panel 
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models (Luengo et al., 2011). The simulation environment is dynamic. As a 
consequence, the occurrences of the above-mentioned AOIs are also 
dynamic. In fact they can move, appear and disappear from the interface 
based on learners’ activity and interaction with the system. 

In other words, the presence of an AOI at a given location is neither 
stable nor predictable because it depends on the co-evolution of the activity, 
the learner and the state of the simulation. As an illustration in TELEOS, the 
position of the points of interest that mark the pedicles of a vertebra, 
changes with respect to the angle of capture of the X-rays. For addressing 
this challenge, a specific tool has been implemented to capture learners 
behaviors related to visual perceptions in a dynamic context (Jambon & 
Luengo, 2012). 

3.2 Categorizing visual perceptions 
Perceptions should be differentiated based on the cognitive efforts they 
demand or the intent they underlie. In fact, some perceptions intend a 
precise analysis of the environment whereas others are simple information 
gathering on the environment state. Other parameters can also help at 
differentiating learners’ perceptions and inferring their intent, their 
resolution strategy or their profile. Considering visual perceptions, those 
parameters are possibly the fixations duration, their frequency, the most 
gazed areas and points or a combination of all those. We propose that visual 
perceptions should be considered into two different categories: (1) visual 
perceptions of verification/validation type and (2) visual perceptions of 
decision type.  

The first kind of perceptions, of verification type, underlies cognitive 
activity that aims at analyzing the environment by putting into play precise 
knowledge elements. They target specific points of the environment that 
reflect the consequences of executed actions or gestures. More than a simple 
information gathering, their role is to verify and validate those latter. For 
instance, in vertebroplasty, visual analysis of the position of the spinous of a 
vertebra as a landmark to decide on the correctness of its centering, underlie 
perceptions of verification and validation. 

The second kind of perceptions, of decision type, is less precise than 
perceptions of verification/validation type. Their role is limited to general 
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information gathering on some specific artifacts of the environment. 
Generally, those artifacts are related to the tools that are used to act on the 
environment. As an illustration from our case study, we can cite the 
controller used for handling the X-Ray unit (cf. Setting panels in Figure 
1.a). 

3.3 Heterogeneity of recorded traces 
Visual traces are recorded in TELEOS along with punctual actions executed 
on the simulation interface and gestures executed with a haptic arm that 
simulates the trocar. Traces from these three sources are recorded 
independently. They are heterogeneous both in their content type and 
format, but also in their time granularities (Toussaint et al., 2015). 

4. Formalization of perceptual-gestural sequences 
Learner’s interactions involved in a simulation session are captured into 
three different modalities. From this point, the challenge is to link those 
latter into sequences that reflect properly all aspects of underlying 
knowledge elements. These sequences are referred to as perceptual-gestural 
sequences. We describe their representation in the following sections. 

4.1 Characterizing perceptual-gestural sequences 
For representing the different modalities with their temporal order, we 
consider each element of the sequence as an item. Each group of items with 
similar time of occurrence is considered as an itemset. A sequence is 
composed of several itemsets. 

The formal definition of perceptual-gestural sequences is as follows: 

S = <(Ai, i=1..p [aij, j=1..q]; | Gi, i=1..r [gij, j= 1..s]; [Pk, k=1..v [qkl, l=1..w]]); (Pk, k=1..v 
[qkl, l=1..w])> 

The parentheses "(" and ")" define the itemsets in the sequence. There is 
no restriction to represent items from different categories in the same 
itemset if their occurrences are simultaneous. For example, an action will be 
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represented in the same itemset as a visualization item if this action is 
performed simultaneously with the visual information capture.  

• Ai = A1 … Ap is the set of actions ; p ൒ 1 

൜if	r ൐ൌ 1	then	p ൐ൌ 0else, p ൐ൌ 	1  

• Gi= G1… Gr : is the set of gestures ൜if	p ൐ൌ 	1	then	r	 ൐ൌ 	0else, r ൐ൌ 	1  

ܣ| • ∪ |ܩ ൒ 1: a perceptual-gestural sequence comprises at least one 
action or gesture. 

• aij=ai1… aiq : set of actions parameters ; q ൐ൌ 0 
• gij=gi1 … gis : set of gestures parameters ; s ൐ൌ 0 
• Pk=P1… Pv : set of perceptions ; v ൒1 
• qkl=qk1…qkw: set of perceptions parameters; w	൒ 0. 

In layman’s terms, a perceptual-gestural sequence includes actions and 
gestures with perceptions that support their execution and that occur or not 
at the same time. 

4.2 Characterizing enriched perceptual-gestural sequences 
In the perspective of increasing the precision of learners’ interactions 
reported in a perceptual-gestural sequence, we propose to enrich it with 
information from the system. Specifically, we propose to take into account 
the “reactions” of the learning environment related to learners’ interactions. 
Typically, we consider two types of interactions from the system: (1) the 
simulation states and (2) the automatic evaluations based on expert rules. 

The simulation states denote the current positions of the different 
artifacts represented in the simulation interface. The automatic evaluations 
based on expert rules refer to the evaluations of learners’ actions produced 
by the diagnosis module of the ITS. These evaluations are based on expert 
rules provided by experts of the domain and are termed as “situational 
variables” (Minh Chieu et al., 2010). The integration of this information 
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produce what we call “enriched perceptual-gestural sequences”. These 
sequences are formally defined as follows: 

Sa: < ([�i], Si [�ij, j=1..μ]) i=1..η (�q=1..v[υr=1..w])> 

As presented in (2), an enriched perceptual-gestural sequence contains 
one or several perceptual-gestural sequences. These latter are characterized 
by information related to simulation states and annotations based on 
automatic evaluations from expert rules (situational variables). An 
evaluation can possibly assess several sequences: 

• �i represents the temporal tag stating the order of the sequence Si in 
the enriched sequence ;  

• Si is the set of perceptual-gestural sequences composing the enriched 
sequence 

• �ij is the set of simulation states recorded in a sequences Si 
• �q is the set of situational variables in the enriched sequence 
• υr are the values of the situational variables 

5. Reifying the proposed model 
The model described in the previous section is reified with the tools of the 
framework PeTRA (Toussaint et al., 2015). PeTRA is a framework of 
treatment developed specifically for handling treatment of multisource and 
heterogeneous traces and transforming them into perceptual-gestural 
sequences with respect to the model described above. 

Figure 3 gives an overview of the framework and its tools (also referred 
to as “operator”). After preparation and transformation operations, the 
obtained base of sequences can be exploited for Learning Analytics and 
Educational Data Mining purposes. We will not present the framework in 
extension in this paper. Detailed presentation of the treatment process with 
PeTRA can be found in Toussaint et al. (2015). We briefly present below 
the main operators of the framework used to obtain perceptual-gestural 
sequences on which this study has been conducted, namely, the merger, the 
annotator and the semantizer. 
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The graph of Figure 5.a summarizes the distribution of visual 

perceptions, incorrect situational variables and validation errors for each 
session. Pearson correlation indicates strong negative relationship (-0.62) 
between visual perceptions and incorrect situational variables. On the other 
hand, correlation between visual perceptions taken as a whole and 
validation errors is rather moderate (-0.31). However, strong negative 
correlation is noticed between visual perceptions of verification type and 
validation errors (-0.53). 

6.3 Discussion 
The session with the highest rate of perceptions (24.6) reports 19% fewer 
incorrect situational variables than the others, in average. The same is 
observed between visual analysis and validation errors for all the sessions, 
except for S08.This can be explained by the fact that the subject performed 
few corrective actions and visual analysis to support these actions. In fact, 
in the graph b of figure 7, we can notice that this session has one of the 
lowest averages of corrective sequences (1.7) along with the lowest average 
of visual perceptions (15.5) associated to these sequences. As a comparison, 
session S02 reported the lowest average of corrective actions (1.0, see 
Figure 7.b) but numerous visual analyzes (20.5) for supporting validation 
decisions and consequently limiting the number of errors (4. Cf. Figure 7.a). 
Moreover, it can be seen in Figure 7.c that few visual analysis in S08 are of 
verification type (7.7 against 13.8 of exploration perceptions). 

Session S09 was performed by the same intern. Conversely, in that 
session, less validation errors and fewer incorrect situational variables were 
observed even with approximately the same rate of visual perceptions. This 
is the consequence of the reversal of behavior related to visual perceptions 
and the execution of more corrective actions (Cf. Figure 7.b). 

As a conclusion, the model proposed for the representation of perceptual-
gestural sequences of learners’ interactions so as they render their 
multimodal nature, is congruent. In other words, the proposed 
representation this type of sequences fosters analysis of learners’ 
interactions that take into account their different modalities. In this case, it 
was possible to determine whether or not interns’ visual perceptions 
influence their performance conducting vertebroplasty simulation. 
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7. Experiment 2: Evaluating the genericity of our proposition 
From this point, we wanted to verify from which extent our propositions 
could suit other domains involving interactions that underlie the same type 
of knowledge. For this purpose, we applied our model for the representation 
of multimodal interactions involving visual behavior in the domain of 
aviation, and we gathered traces from a new simulation environment: 
PILOTE2. 

7.1 Multimodal and heterogeneous nature of traces in PILOTE 2 
Aviation apprenticeship combines theoretical and procedural knowledge. 
Theoretical part of knowledge in the domain refers to abstract concepts 
related to the operation of an aircraft (e.g., the necessary speed for taking off 
given the weight of the aircraft and the length of the runway). Procedural 
knowledge of the domain consists of cognitive processes related to 
decision-making and maneuvers execution. These are based on the state of 
the aircraft and the state of the world (the environment of the aircraft), and 
they involve motor skills necessary to the manipulation of the aircraft 
commands (joystick or steering). 

Gathering information on the aircraft and the world states involves visual 
analysis of indicators on the dashboard and the aircraft surrounding area. 
Further, in case of instrument flight due to bad weather, piloting an aircraft 
requires specific knowledge about reading indicators for decision-making 
when the visibility of the environment is reduced or absent. Thus, in this 
case study, activity traces to be recorded include visual perceptions traces 
and procedures execution traces. In the simulation environment PILOTE2, 
this includes traces captured by an eye-tracker and traces of actions 
execution with the simulator’s commands and from the simulation software 
interface. Figure 8 gives an insight of the traces produced from simulation 
sessions in PILOTE 2. The “event” category are traces recorded when an 
actions is executed with the aircraft commands and the “variables” category 
provides information on the state of the aircraft on a regular time interval 
basis or when an action is executed. The state of the aircraft includes the 
state of its main component (e.g., engine, flaps, fuel, brake, etc.) and its 
state relatively to the world (e.g., altitude, speed in the air, vertical speed, 
incline, cape, etc.). 
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In a second experiment, we also provided proof of concept of the 
genericity of our proposition based on traces from flight simulation sessions 
and a simulation environment dedicated to aviation: PILOTE2. 

We plan to go further by extending our analyses to the measure of the 
effective gain from taking into account perceptual aspect of multimodal 
knowledge compared to treatment that discard either facet of this type of 
knowledge. 

References 
Ceaux, E., Vadcard, L., Dubois, M., & Luengo, V. (2009). Designing a learning 

environment in percutaneous surgery: models of knowledge, gesture and learning 
situations. Paper presented at the EARLI Symposium “Simulation-Based Learning: 
Analyzing and Fostering Complex Skills in the Context of Medical Education”. 
Amsterdam. 

Conati, C., & Merten, C. (2007). Eye-tracking for user modeling in exploratory learning 
environments: An empirical evaluation. Knowl.-Based Syst., 20(6), 557–574  

D'Mello, S. Olney, A., Williams, C., & Hays, P. (2012). Gaze tutor: A gaze-reactive 
intelligent tutoring system. Int. J. Hum.-Comput. Stud., 70(5), 377–398 

Fournier-Viger, P., Nkambou, R., Mayers, A., Mephu Nguifo, E., & Faghihi, U. (2011). A 
hybrid expertise model to support tutoring services in robotic arm manipulations. In 
Proceedings of the 10th Mexican International Conference on Artificial Intelligence (pp. 
478–489). Springer, LNAI 7094. 

Jambon, F., & Luengo, V. (2012). Analyse oculométrique « on-line » avec zones d’intérêt 
dynamiques : application aux environnements d’apprentissage sur simulateur. In Actes 
de la Conférence Ergo’IHM sur les Nouvelles Interactions, Créativité et Usages. 
Biarritz, France. 

Lach, P. (2013). Intelligent Tutoring Systems: Measuring student’s effort during 
assessment. O. R. Zaïane, & S. Zilles, (Eds.), Advances in Artificial Intelligence (pp. 
346–351). Springer, LNCS 7884  

Luengo, V., Larcher, A., & Tonetti, J. (2011). Design and implementation of a visual and 
haptic simulator in a platform for a TEL system in percutaneous orthopedic surgery. In 
J. D. Westwood et al. (Eds.), Medicine meets virtual reality (vol. 18, pp. 324–328). IOS 
Press. 

Mathews, M., Mitrovic, A., Lin, B., Holland, J., & Churcher, N. (2012). Do your eyes give 
it away? Using eye-tracking data to understand students’ attitudes towards open student 
model representations. In S. A. Cerri, W. J. Clancey, G. Papadourakis, & K. Panourgia 
(Eds.), Intelligent Tutoring Systems (pp. 422–427). Springer, LNCS 7315.   

Minh Chieu, V., Luengo, V., Vadcard, L. (2010). Student modeling in orthopedic surgery 



340 Ben-Manson Toussaint, Vanda Luengo, Francis Jambon 

 
training: Exploiting symbiosis between temporal bayesian networks and fine-grained 
didactical analysis. International Journal of Artificial Intelligence in Education, 20(3). 
269–301. 

Mulgund, S.S., Asdigha, M., Zacharias, G. L., Ma, C., Krishnakumar, K., Dohme, J.A., & 
Al, R. (1995). Intelligent tutoring system for simulator-based helicopter flight training. 
Flight Simulation Technologies Conference. American Institute of Aeronautics and 
Astronautics. Baltimore, USA. 

Remolina, E., Ramachandran, S., Fu, D., Stottler, R., a Howse, W.R. (2004). Intelligent 
simulation-based tutor for flight training. In: Interservice/Industry Training, Simulation, 
and Education Conference (pp. 1–13). Orlando, FL, USA. 

Ríos, H.V., Solís, A.L., Aguirre, E., Guerrero, L., Peña, J., & Santamaría, A. (2000). Facial 
expression recognition and modeling for virtual Intelligent Tutoring Systems. In: O. 
Cairó, L. E. Sucar, & F. J. Cantu (Eds.), Advances in Artificial Intelligence (pp. 115–
126). Springer, LNCS 1793.  

Steichen, B., Carenini, G., & Conati, C. (2013). User-adaptive information visualization: 
Using eye gaze data to infer visualization tasks and user cognitive abilities. Proc. Int. 
Conf. Intelligent User Interfaces 2013 (pp. 317–328). New York, ACM. 

Toussaint, B.-M., Luengo, V., Jambon, F., & Tonetti, J. (2015). From heterogeneous 
multisource traces to perceptual-gestural sequences: The PeTra treatment approach. In 
C. Conati, N. Heffernan, A. Mitrovic, A., & M. F. Verdejo (Eds.), Proc. 17th Int. Conf. 
Artificial Intelligence in Education (AIED 2015)(pp. 480–491). Springer, LNCS 9112. 

Toussaint, B.-M. (2015). Apprentissage automatique à partir de traces multi-sources 
hétérogènes pour la modélisation de connaissances perceptivo-gestuelles, Université 
Grenoble Alpes, PhD Thesis, Chapter 10. 

Weevers, I., Kuipers, J., Brugman, A.O., Zwiers, J., van Dijk, E.M.A.G., & Nijholt, A. 
(2003). The virtual driving instructor, creating awareness in a multi-agent system. In Y. 
Xiang, & B. Chaib-Draa, B. (Eds.), Proc.  16th Conf. Canadian Society for 
Computational studies of intelligence (pp. 596–602). Springer. 

de Winter, J. C. F., de Groot, S., Dankelman, J., Wieringa, P.A., van Paassen, M.M., & 
Mulder, M. (2008). Advancing simulation-based driver training: Lessons learned and 
future perspectives. Proc. 10th Int. Conf. Human-Computer Interaction with Mobile 
Devices and Services (pp. 459–464). New York, ACM 


