
Revista Romana de Interactiune Om-Calculator 9(2) 2016, 155-176 © MatrixRom

Methodology for Identification and Evaluation of
Web Application Performance Oriented Usability
Issues

Mihaela Ciugudean, Dorian Gorgan
Computer Science Department, Technical University of Cluj-Napoca
Str. G. Baritiu, 28, 400027, Cluj-Napoca
E-mail: ciugudeanmihaela@yahoo.com, dorian.gorgan@cs.utcluj.ro

Abstract. This paper aims to illustrate a methodology for identifying and assessing a set of
performance issues encountered in a particular web application, with impact on the
usability level. Throughout this methodology, several visual techniques are determined and
investigated by taking advantage of the functionalities offered by available performance
monitoring tools such as JMeter and VisualVM. This way, the major performance concerns
and their impact on the web application usability are easily determined. Therefore, by
identifying the problematic parts of a system, corrective measures could be taken,
particularly designed to operate on the root cause of the problem, thus leading to the
targeted objective. Moreover, some performance improvement recommendations are
further on presented in order to enhance the overall usability and the user experience, the
actual goal of the research and development activities conducted. These performance
concerns might be designed and implemented after fixing the critical parts causing usability
problems and consequently, maximizing the user satisfaction and comfort when exploring
the functionalities offered by a particular web application.

Keywords: Interactive software application; usability; performance improvement; JMeter;
VisualVM; user experience; visual techniques.

1. Introduction
Over the last past decades, the web has evolved into a growing universe of
interconnected web pages and applications, offering the end user a wide
variety of services and functionalities. With the web development, the
interactive web applications have become easily accessible regardless of
place and time concerns and without any installation requirements (Rossi et
al., 2007). As a consequence, end users have begun to favor web
applications over traditional desktop applications. On the other hand, the
rapidly increasing mobile application market has shown that web
applications can be easily installed on devices.

In particular, the web enables marketers to get in touch with the visitors

156 Mihaela Ciugudean, Dorian Gorgan

of their websites or applications and start communicating with them.
Furthermore, the web might be perceived as an excellent sales channel for
millions of applications, either large or small.

More precisely, end users take advantage of the wide variety of tools and
services offered by web applications, by means of web browsers. Therefore,
the customers have the opportunity to access, retrieve and interact with data
and content located on different software applications available over the
web, as stated by Mohler (Mohler and Duff, 2000).

However, due to the fast growth of the web, an intensive competition has
been created among web applications. According to Stoneham and Dastbaz
(2006), the web, perceived as an application platform, has raised the
standard for the provided web applications, establishing a norm for highly-
interactive dynamic user interfaces with real time collaborative features. In
case a certain web application fails to completely fulfill the customer’s
needs and gets him unsatisfied, he will start using services offered by a
similar website. Therefore, application developers have begun to enhance
the accessibility, usability and user experience when providing specific
services and products in order to meet end users’ demands.

When creating a web application, it is not sufficient to provide an
intuitive, self-explanatory user interface that will allow even an
unexperienced computer user to perform the desired actions. As specified by
Shivakumar (2014), designing a consistent and standardized UI may still not
satisfy the customer, determining him to abandon your website and switch
to a similar one that completely fulfills his demands. All this frustration and
annoyance that might lead a user to discard your application is very often
caused by a series of usability problems occurring in the website.

Considered one of the most important quality factors for Web
applications, usability has been receiving great attention, being recognized
as a fundamental property for the success of web applications (Barish,
2002). As previously said, it is not sufficient to satisfy the functional
requirements of a web application in order to ensure its success. According
to Purba (2001), the ease or difficulty experienced by users of these web
applications is largely responsible for determining their success or failure.
Consequently, usability evaluations and technologies that support the
usability design process have therefore become critical in ensuring the
success of web applications.
The scalability should be an important characteristic of the web application.
The main requirement on the usability concerns with keeping a high level of
usability at any level of scalable application. It is not enough to check the
usability level for single user, but to check usability of the application for a

Methodology for Identification and Evaluation of Web Application Performance
Oriented Usability Issues

157

great or huge number of users.
The aim of this study is to present the way by which the visual techniques
allow to recognize the root cause of the usability issues encountered in a
scalable web application, thus allowing for immediate identification of the
technical reason. The paper presents a way of highlighting the usability
issues and a direct causal link to the corespondent technical issues.
By taking advantage of the various performance indicators when
automatically testing a web application, a particularized methodology might
be applied in order to remove, or at least reduce, the encountered system’s
weaknesses. This way, time and effort invested in unsuccessful operations
to improve the overall usability of a web application are saved by starting to
design and implement a solution centered on the specific issue that acts as a
bottleneck in the system. By means of technical and technological solutions
implemented to fix the determined root cause, the overall application
usability will be enhanced.

The rest of this paper proceeds as follows. In Section 2, state of the art is
presented and the contribution of the current work is highlighted. Section 3
details the proposed methodology by presenting and exemplifying each step.
Finally, some concluding remarks and recommendations are proposed.

2. Related Works
The exponential growth of the internet and of web applications leads to the
necessity to evaluate them from a quantitative point of view. In the past
years, valuable methodologies have been used to evaluate the quality of
specific web applications and discover possible issues. More precisely,
inspection methods such as Cognitive Walkthrough for the Web (CWW)
and Web Design Perspectives (WDP) are proposed by Haralambos and
Colette (2011) to identify usability problems. According to them, the
aforementioned methods are characterized by a high degree of subjectivity
in usability evaluations. In order to overcome this drawback, these methods
are sometimes replaced by inspection metrics-based ones which are likely to
reduce the subjectivity degree, such as WebTango and Web Quality
Evaluation Method (WebQEM). More precisely, WebTango provides
quantitative metrics, based on empirically validated metrics for user
interfaces to build predictive models in order to evaluate other user
interfaces.

158 Mihaela Ciugudean, Dorian Gorgan

On the other hand, WebQEM performs a quantitative evaluation of
usability aspects, aggregating them to obtain usability indicators. As stated
by Singh (2016), the purpose of this method is to systematically assess
characteristics, sub-characteristics and attributes that influence products’
quality, finally yielding to global, partial and elementary quality indicators
that can help different stakeholders in understanding and improving the
assessed product. According to Olsina and Rossi (1999), by implementing
the four major technical steps of WebQEM methodology, it can be
employed in assessing and comparing quality requirements in the operative
phase of Web sites and applications as well as in early phases of Web
development projects. By using the methodology, either absent attributes,
absent sub-characteristics, or requirements poorly implemented might be
easily discovered. As concluding by Mendes and Mosley (2006), WebQEM
can be used to assess diverse application domains according to different user
views and evaluation goals.

Nowadays, more and more companies are concerned with addressing
usability aspects when designing their website. This concern has developed
as a consequence of the competitive market in which each organization
strives to continuously enlarge the variety of users by providing an intuitive,
self-explanatory and accessible website. Usability is an even broader goal
than accessibility, which refers to how easily a website can be used,
understood, and even accessed by people with disabilities.

Starting with 2015, even Google has started to evaluate the usability of
web applications, mostly their mobile version, and announced by email their
owners on the poor rated usability results. Moreover, there was included a
list of aspects to be addressed in order to overcome these usability concerns.

One example of receiver of such an acknowledgement was WordPress,
which begun to assess the concerns presented in the email received from
Google and check their behavior in the mobile version of the web
application.

A similar case study of a website trying to enhance its usability and
accessibility features is The American Foundation for the Blind. Their
strategy was to undergo a major redesign in order to improve the site's
usability and create a more logical, user-friendly information architecture.

However, these are only two examples of websites dealing with usability
and accessibility concerns in order to maximize the user experience,
maintain and enlarge the number of customers. Many other web applications
have realized that a consistent and intuitive user interface is sometimes not
enough to please the customer’s needs and therefore, started to analyze and
fix their usability issues.

Methodology for Identification and Evaluation of Web Application Performance
Oriented Usability Issues

159

3. Methodology for Identifying and Solving Usability Issues
The purpose of this paper is to briefly describe the methodology used for
identifying the usability issues in a specific web application and inferring
the technical reason. Therefore, the considered context is for instance, the
following one: starting from a particular web application, its usability is
defined as the system’ capability to successfully handle a variable number
of concurrent users. This case the usability is evaluated by the reported error
percentage for each case scenario. Therefore, the main step is to measure the
application’s responsiveness-oriented behavior when successively
increasing the number of users, by taking advantage of the functionalities
offered by JMeter tool (JMeter, 2016). After concluding the existence of
such usability issues, their root cause is to be determined by means of
VisualVM performance monitoring tool (VisualVM, 2016), thus obtaining
accurate information regarding the sources of the problem centered on two
diagnosis indicators (CPU and Memory consumption). The further step is to
analyze the situation, propose and implement specific solutions to overcome
the usability problem. Finally, by measuring the application’s behavior after
applying the established solution, the followed methodology is validated
and conclusions related to its accuracy may be stated.

3.1 Usability
Being one relevant component of web applications’ quality, defined as the
extent to which a system is able to satisfy its customers in efficiently
achieving their goals, usability is recognized as a fundamental property for
software applications’ success. In the context of software lifecycle, usability
is perceived as being relevant to all its stages, not only at the end of the
product development.

According to Olsina and Rossi (1999), a software product quality might
be defined in terms of fundamental characteristics (usability, functionality,
reliability, efficiency, portability, and maintainability) as defined in the
ISO/IEC 9126-1 standard, usability being one of them.

Specifically, for the considered web application, usability metrics are
assessed by monitoring the system’s capacity to handle a reasonable amount
of concurrent usage. More precisely, the Application Performance
Monitoring tests are executed in the context of successively increasing the
workload expressed as the number of concurrent active users and

160 Mihaela Ciugudean, Dorian Gorgan

monitoring the system’s behavior. Therefore, the exemplified attribute in
usability evaluation is the number of concurrent users that is successively
increased and obtained results interpreted from the reported error percentage
values.

3.2 Use case scenario: Online Scrum tool
To begin with, the web application under analysis represents a system
capable of providing a tool used as an agile project organizer. More
precisely, the application is intended to offer the functionalities of an online
tool which allows the persons involved in the Scrum process to perform it
regardless of any inconveniences such as physically distributed teams,
unreachable customer or any other factors that may negatively affect the
Scrum process and thus the corresponding software project, (Rubin, 2013)
and (Schwaber and Sutherland, 2013).

In this context, one use case that has been studied mainly consists of the
following actions to be undergo by a privileged user, say a Scrum Master:
login into the application, visualize all developers, then visualize the
taskboard, add a new task (together with the required information for it),
visit again the list of developers and finally the log out from the application.

3.3 Steps of identifying and solving usability issues
In order to identify and evaluate the issues encountered in a web application,
by means of visual techniques offered by performance monitoring tools
such as JMeter and VisualVM, several use case scenarios were considered.
Consequently, for these use cases, a series of experiments were conducted
and the visual results were analyzed so that to determine the root causes of
the usability issues and propose technical solutions to successfully solve
them.
We may define visual techniques as the ensemble of differently shaped
graphical representations of the executed testplans that allow evaluation
based on various diagnosis indicators while adjusting the variable
parameters and performing successive measurements. These visual
techniques apply in the context of using dedicated Application Performance
Monitoring (APM) tools, such as JMeter and VisualVM, used as a basis in
building the methodology for detecting potential performance weaknesses
of the system under test and subsequently propose particular solutions to
overcome them.

Methodology for Identification and Evaluation of Web Application Performance
Oriented Usability Issues

161

Step 1: Determine the existence of usability problems
In order to assess non-functional system’s characteristics such as usability,
scalability, availability, scalability, response time, latency, throughput and
many other performance oriented metrics, JMeter monitoring tool was
firstly used and the reported results analyzed by means of different visual
techniques (JMeter, 2016).

The aim is to determine potential usability issues in the context of a high
workload obtained from a large number of concurrent users that access the
web application. The basic idea is that some usability issues are not revealed
at low scale of application. The goal is to identify the context in which such
issues become detectable. It is difficult and sometimes almost impossible to
manually perform all these performance tests, by considering a large
number of online users. As a result, these cases were performed by means of
the JMeter tool which automatically executes the desired scenarios by
simulating the existence of the desired number of users.

The first step of the proposed methodology was to conduct JMeter
performance tests, simulating a variable number of users that
simultaneously execute this use case. In the followed context, the
considered web application as well as all the system’s configuration are the
fixed elements, while the number of concurrent users represents the variable
element. Therefore, specifically for the considered use case, the evaluation
is performed by analyzing the reported error by successively increasing the
number of concurrent users.

A key point to mention is that the use case scenario under test is
characterized by accessing of large amount of data: a list of thousand
developer instances which is twice retrieved from the database. As a result,
it is intended to illustrate the web application’s behavior when operating on
large set of data, context specific to mostly all real life production
environments. However, in order to perform automatic monitoring and
testing of the application’s performance, the number of concurrent users
(configured in the corresponding JMeter testplan) was selected in the range
of tens. The main reason behind this decision is represented by the
considerable amount of time required to execute and collect results in the
context of an increased number of concurrent threads, which would be
outside the scope of testing a small-scaled web application.

Finally, the measurable attributes are the reported error percentage,
standard deviation, throughput, response time, number of KB/sec, latency,
bandwidth etc.

162 Mihaela Ciugudean, Dorian Gorgan

Implementing the first step of the proposed methodology means
following one of the two branches, depending on the measurable element:
percentage error and throughput value. Therefore, the presence of usability
problems might be determined based on the two measurable elements.
Reported percentage error
To begin with, for 10 concurrent threads which simultaneously execute the
sample case scenario (login into the application, visualize all developers,
then visualize the task board, add a new task - together with the required
information for it, visit again the list of developers and finally the log out
from the application), the application successful handles them all, fact
denoted by the reported 0% error.

However, if the number of concurrent threads is increasing up to 30, the
application responds with error for some of these 30 HTTP requests. This
result might be visualized from the View Results Tree image (which was
obtained from JMeter tests) in which the output of each of the 30 user
requests to the application (HTTP requests) is displayed, as well as relevant
information for all of them (Figure 1). The precise error percentage that was
reported for this case scenario is 6.39%, as illustrated in the Summary
Report (Figure 2).

Figure 1. View Results Tree – 30 users.

Methodolo

As the
concurren
much as
system’s b
these resu
the system
number of
performin
100 users
as increas
denoting t
test.

Conseq
percentage
illustrates
changing t
Reported t
When iden
by using
have to b
indicator a
as a non-
total num
referenced

Being
performan
server, ho
desirable,
other indic
application

ogy for Identif

particular w
nt online use

possible. T
behavior in
lts seem wo
m, the app
f users in th

ng the same
and evaluat

sing the use
the severe s

quently, by
e error as
the system

the number
throughput
ntifying the
the through
be conside
and the way
-functional,

mber of req
d in the liter
perceived a

nce of an a
ow much lo

a system’s
cators such
n context, t

fication and E
Oriented U

web applica
ers, it has to
Therefore, th
n the conte
orrying for a
plication pe
he range of
JMeter per
ting the resu
ers’ number
scalability p

means of t
a performa

m’s behavio
of users co
value

e existence
hput as me

ered regard
y to interpre

performan
quests (tran
rature as TP
as a signifi

application,
oad it can t
s performan

h as respons
throughput

Figure 2. Su

Evaluation of W
Usability Issu

ation is inte
o successful
he purpose
xt of simul
a number of
erforms ev
hundreds. T

rformance te
ults. This ca
r lead to an

problems fac

these visual
ance indica

or evaluated
oncurrently a

of usability
easurable e

ding the sig
et its value.
nce indicato
nsactions)
PS (transacti
icant indica
the through

take. Even
nce should
se time, late
is measured

ummary report

Web Applicati
ues

ended to ser
ly respond t

e of this st
lating a lar
f 30 users c

ven worse
This outcom
ests with an
ase was alm
n unrespon
ced by the w

 techniques
ator, the pr
d in the con
accessing th

y problems
element, de
gnificance
Therefore,

or requirem
in a given
ion per seco
ator that he
hput reflect
though ma

d be evalua
ency, bandw
d as the nu

– 30 users.

ion Performan

rve a large
to all of the
ep was to
rge users’ n
concurrently
when incre

me was dete
n increased
most imposs
nsive applic
web applica

s and of the
roposed me
ntext of sub
he applicati

 in a web a
cision-relat
of this pe
we define t

ment, measu
n time. It
ond).
elps in eval
ts the capac

aximum thro
ated based
width, etc. I
umber of req

nce 163

number of
em, or to as

assess the
number. If
y accessing
easing the
ermined by
number of

sible to test
ation, thus
ation under

e measured
ethodology
bsequently
on.

application
ted aspects
erformance
throughput

ured as the
is usually

luating the
city of the
oughput is
on several
In our web
quests sent

164

to the web
In asse

relevant re
the tested
analyzing
(Figure 4)
same cont
as variable

For 10
the throug

While
throughpu
more deta
request in

b server per
essing the
esults by m

d use case s
the output

) listeners.
text as for t
e element an
threads tha

ghput obtain
the Graph

ut of an exec
ailed view
n the consi

Mihaela

second.
throughput

means of se
scenario, th
t of Graph
Also, the p

the error-ba
nd selecting

at simultane
ned from the
h Results l
cuted test, t
of this m

idered use

Figure 4. S

Figure 3. Gra

140000 ms

Ciugudean, D

t of a we
veral listen
he reported

h Results (F
performanc

ased approac
g 10 and 30
eously execu
ese listeners
listener (Fi
the Summar

measurement
case scena

Summary report

aph results – 10

Dorian Gorgan

eb applicati
ner compon
d throughpu
Figure 3) a
e tests wer
ch, by using
as referenc

ute the sam
s is presente
igure 3) s
ry Report o
t correspon
ario. There

t – 10 users.

0 users.

Deviation

Average

Throughput

Median

n

ion, JMeter
ents. Speci

ut was dete
and Summa
re executed
g the numb
ce values.

mple use cas
ed in Figure
pecifies th

one (Figure
nding to ea
efore, we m

r provides
fically, for

ermined by
ary Report

under the
er of users

e scenario,
es 3 and 4.
he resulted

4) offers a
ach HTTP
may easily

Methodology for Identification and Evaluation of Web Application Performance
Oriented Usability Issues

165

determine which HTTP request consumed most of the CPU’s activities and
propose corrective measures oriented towards reducing the load on the
server and obtaining a better throughput value.

More precisely, by analyzing the output of the Summary Report listeners,
we can easily determine the requests that represent possible sources of
server failure or slow responsiveness, thus acting as real bottlenecks. As a
maximum throughput is desired, high attention should be given to small
values reported per minute time unit.

An essential point to mention is the interconnection among the
throughput and the average response time listed in the same table under the
Average column of the Summary Report listener. By analyzing this
summarized report (Figure 4), one may notice an inverse relation between
these two metrics, thus an increase in the throughput value determines a
decrease of the response time required for the web server to handle the
corresponding HTTP request. Alternatively, the Average response time
column of the Summary Report might be taken as reference for identifying
the system’s bottlenecks denoted as considerable high values for one or
several HTTP requests recorded in the use case scenario. Starting from these
time consuming indicators, the associated throughput is analyzed and
determined as small valued result reported per minute time unit.

Specifically for the case scenario under test (login into the application,
visualize all developers, then visualize the taskboard, add a new, revisit the
list of developers and finally the log out), executed by 10 concurrent worker
threads, Figure 4 illustrates the significantly high response time for the
/showDevelopers HTTP request (as compared to all the other ones recorded
in this use case) associated with a considerable small throughput, perceived
as problematic performance features of the system under test.

Proceeding with an increased number of 30 users that simultaneously
execute the considered use case, the Summary Report listener (Figure 2)
serves as source of performance analysis. Therefore, by exploring both
Average and Throughput columns of the table formatted result, the same
issues are identified for the /showDevelopers HTTP request, indicated by a
significantly high response time corresponding to a minimum throughput.
However, by comparing the results obtained from the Summary Report
listener in the context of 10 and 30 concurrent threads (Figures 4 and 2),
respectively, one may denote that the response time (reported under the
Average column) is three times higher in last case (of 30 users) while the
throughput is slightly decreased (from 10.3/min to 9.3/min in average).

166 Mihaela Ciugudean, Dorian Gorgan

Consequently, by measuring the throughput performance indicator in
conjunction with the response time, the presented usability monitoring
approach illustrates the web server’s behavior. The conducted evaluations
were performed in the context of varying the number of users concurrently
accessing the application.

As bottom line of this subsection, we may conclude the problematic
behavior of the web server concerning performance aspects might be
determined by either evaluating the reported percentage error as well as the
server’s throughput and response time metrics. By following any of these
approaches, the performance flaws of the CPU consuming requests were
determined for a variable number of concurrent customers, thus denoting
poor usability, scalability, response time and other performance
measurements.

Step 2: Determine the root cause of the usability issues
The next step in the proposed methodology is to successfully determine the
root cause of the encountered responsiveness-oriented performance issues so
that to further on establish concrete solutions to be implemented in order to
increase the usability and overall performance of the application. To
accomplish this, the simulated test cases executed by taking advantage of
the functionalities offered by JMeter, were associated with the ones
provided by VisualVM performance monitoring tool (VisualVM, 2016).
VisualVM offered performance results reported to different diagnosis type:
CPU time and memory.

VisualVM as an application performance monitoring tool which freely
comes when installing Java JDK, offers several monitoring options, among
which the profiling and sampling ones are of interest for our research. The
profiler and sampler tools accessible from the VisualVM’s IDE are available
for both CPU and memory load as performance indicators.

By instrumenting the web application under test, profiling adds a
constant amount of extra execution time to every single method call.
Sometimes, this results in adding large amount of time to the execution
which may even last hours. VisualVM’s sampler works by taking a dump of
all of the threads of execution on a fairly regular basis, and uses this to
determine how much CPU time each method spends. Usually, sampling
takes a constant amount of time each second to record stack traces for each
thread, thus only adding 5 – 10 minutes of execution time in total, while still
succeeding to provide information regarding the source causes of potential
performance vulnerabilities. However, sampling has the drawback that the

Methodology for Identification and Evaluation of Web Application Performance
Oriented Usability Issues

167

number of invocations recorded is not necessarily accurate, since a short
method could easily start and finish between stack dumps. Therefore, the
recommendation is to use sampling for recording the amount of CPU time
or Memory consumption, rather than the number of invocations, thus having
the chance to identify performance problems, much faster than the standard
profiler.

Therefore, both diagnosis-related results were analyzed and further on
presented in a separate subsection as they represent two alternatives to be
considered in this point of the proposed methodology. By selecting either of
these two cause-oriented performance indicators and conducting a series of
visual techniques, the system’s bottlenecks might be identified and
subsequently, specific solutions proposed so that to overcome the
performance problems.

Consequently, determining the root cause of the performance issues
faced by a web application, might be obtained by using as performance
indicator the CPU load and the memory consumption.
CPU load as performance indicator
The VisualVM’s profile command returns detailed data on method-level
CPU performance, specifying the total execution time and number of
invocations for each method. When analyzing application performance,
VisualVM instruments all of the methods of the profiled application.

As a result, for the presented use case scenario (login into the application,
visualize all developers, then visualize the taskboard, add a new task,

Figure 5. CPU usage information from VisualVM Profiler.

168 Mihaela Ciugudean, Dorian Gorgan

together with the required information for it, visit again the list of
developers and finally the log out from the application) executed in the
context of 10 concurrent threads (configured in JMeter), the main
bottleneck(s) of the system were determined by using both profiler and
sampler tools. The following two images present CPU usage information for
profiling and sampling of the considered use case (Figure 5 and Figure 6).

These two images offer information related to the bottleneck points of
the application, by listing the specific functionalities that consume most of
CPU’s time. By taking advantage of these results, corrective, problem-
oriented solution might be implemented in order to overcome the
performance vulnerabilities faced by the application.
Memory consumption as performance indicator
When analyzing memory usage, VisualVM’s profiler starts instrumenting
the loaded classes and displays the total number of objects allocated by each
class (including array classes) in a tabled format. For each class currently
loaded class in the Java Virtual Machine (JVM), the profiling results display
the size and number of objects allocated since the profiling session started.
The results are automatically updated as new objects are allocated and as
new classes are loaded.
Similar to the previously presented approach to monitor the system’s
performance flaws by analyzing CPU load, the memory-oriented one was

Figure 6. CPU usage information from VisualVM Sampler.

Methodolo

undergone
use case s
considered
visualize t
logout from

These r
the system
the class a
memory
characteris

Conseq
provide ac
considered
towards bo
designed a

Step 3: A
order to o
By analyz
be used to
the previo
application
consumpti
VisualVM
indicator t

Conseq
proposal

ogy for Identif

e in the con
scenario. Th
d scenario
the taskboa
m the appli
results prov

m under test
allocating th
leak probl
stics, by set
quently, the
ccurate info
d web appl
oth CPU an
and implem

Analyze re
overcome th
zing the resu
o determine
ous step of
n’s usabilit
ion as pe

M’s profiling
type (CPU o
quently, the

is present

Figure 7

fication and E
Oriented U

ntext of 10 u
he outcome

(login in
ard, add a n
cation) is il
vide exact i
t, by indicat
hem. This d
lems and
tting up thec
e association
ormation reg
ication. Fur

nd Memory
mented.

sults and
he usability
ults obtaine

e the root ca
f the propo
y issue was
erformance
g and samp
or Memory
e results in
ted in the

7. Memory cons

Evaluation of W
Usability Issu

users that sim
e obtained f

nto the sys
new task, r
lustrated in
information
ting the amo
data is of g
enhancing
clean-up or
n between t
garding the
rthermore,
usage, whic

propose so
y issues
ed from Vis
ause of the
sed method
s determine

indicators
pling tools
consumptio

nterpretation
e followin

sumption inform

Web Applicati
ues

multaneous
from profil
stem, visua
revisit the l
n Figures 7 a
n regarding
ount of obje
great help fo

the applic
garbage co
the JMeter

e precise sou
the results
ch enable sp

olutions to

sualVM, vis
usability is

dology the
ed using bo
s, the res
are special

on).
n as well

ng sections

mation from Vi

ion Performan

sly execute t
ling and sam
alize all d
list of deve
and 8.
the memor
ects created

for removin
cation’s pe

ollection me
and Visual

urce of failu
obtained ar
pecific solu

 be implem

sual techniq
ssues. More

root cause
oth CPU an
sults obtai
lized for th

as possible
s, separated

sualVM

nce 169

the sample
mpling the
developers,
elopers and

ry usage of
d as well as
g potential
erformance
echanisms.
lVM tools,
ure for the
re oriented

utions to be

mented in

ques might
eover, as in
 of a web

nd Memory
ined from
he selected

e solutions
d by the

170 Mihaela Ciugudean, Dorian Gorgan

performance diagnosis used.
Solutions proposed to solve the CPU-related usability issues
Starting from the results obtained by profiling and sampling activities
(Figures 5 and 6) for the considered use case scenario (login into the system,
visualize all developers, visualize the taskboard, add a new task, revisit the
list of developers and log out from the application), it can be determined
that most of the CPU time is spent on calling functionality at the persistence
layer. This fact is proved by the series of database methods invocation that
are reported in the VisualVM’s profiler and sampler as being the most CPU
consuming spots. More precisely, Figures 5 and 6 illustrate the method call
hierarchy, ordered by their CPU time consumption when the considered use
case scenario is performed:

findAllFromPanelForDeveloper(),
findByName(),
findByUsernameAndPassword(),
findAll(),
findAllFromPanel(),
findAllForDeveloper().

Therefore, the main CPU bottleneck is caused by methods from the
persistence layer (when querying the database) and thus, further
improvements should be implemented at the database level.

More precisely, for removing the database bottleneck, there are several
techniques that may be explored and appropriate solutions implemented. By
studying documentation related to database enhancements and methods to
be applied on a web application to improve the persistence layer access, a
series of rules and guidelines were considered. As one of the main strategy
to be applied at persistence layer is adding database indexes where
appropriate, this topic was studied in detail and best practices taken into
account (Garner, 2007).

According to Singh (1998), in order to fix the database bottleneck which
determined the application to become unresponsive when a large number of
users were trying to access it, the persistence layer strategies were applied
where appropriate and the results analyzed after each step. Specifically, for
the described use case scenario, by means of SQL syntax, slow queries were
determined and database indexes implemented in the adequate manner.

As described by Shirazi (2003), another performance tuning strategy to
remove slow database queries is to add method-level caching. There are
several available methods for caching a certain functionality in Java,
depending on the application specifics and needs. For instance, after

Methodology for Identification and Evaluation of Web Application Performance
Oriented Usability Issues

171

studying optimization oriented best practices and guidelines (Oransa, 2014)
and taking into account the specifics of the web application under test, the
recommendation is to develop method-level caching using Spring eh-cache.
Being the most widely-used Java-based cache, eh-cache methodology is
robust, proven, and full-featured.
Solutions proposed to solve the Memory-related usability issues
As far as Memory consumption concerns, VisualVM’s profiler and sampler
offer accurate information regarding the amount of objects created of a
certain type when the sample use case is being executed. As a result, by
interpreting the results from Figures 7 and 8, one may easily determine that
the largest amount of instances populating the Memory are model classes
used in the web application. More precisely, domain POJO (Plain Old Java
Objects) classes such as Developer, User, Task, are reported to allocate most
of the Memory’ space.

In order to reduce the amount of such model objects creation, study and
research activities were conducted and insights into this topic were gathered.
According to Higgins (2007), one valid strategy to be considered when
trying to overcome the Memory leak problems is to perform clean-up or
garbage collection of the redundant objects instances populating the
Memory.

Figure 8. Memory consumption information from VisualVM Sampler.

172 Mihaela Ciugudean, Dorian Gorgan

Fisher and Murphy (2016) proposed entity-caching as a performance
boost method when facing performance issues caused by large amount of
entity objects. In this direction, Hibernate eh-caching might be easily used
inside a Spring-based web application.

Another solution intended to solve the Memory consumption problem is
to replace the usage of object model classes inside service methods as much
as possible with DTO (Data Transport Object) ones. The reason behind this
recommendation is to create lightweight DTO classes which will contain
only the required attributes from the initial object model. More precisely,
only those attributes of the model class used inside the persistence layer (for
database queries) or service level one will populate the newly created DTO
object that will be further on used in all business logic procedures
throughout the code.

Finally, as a general solution to optimize both CPU and Memory
consumption and therefore tune the application’s performance is to
implement changes at the Apache server level in order to remove the
ProxyError reported by JMeter’s View Results Tree listener (Figure 1) in
the context of a large number of concurrent threads accessing the
application. In order to develop such configurations, additional research and
investigation have to be performed so that to obtain an insight of proper
Apache parameters’ value (timeout, keepalive, and so on).

Consequently, by means of the visual techniques experienced, the root
causes of the encountered usability problems were briefly identified and,
categorized based on diagnosis indicator (CPU and Memory consumption).
Furthermore, taking into account the conducted research, technical solutions
might be proposed and corresponding approached implemented, thus
enhancing the overall system’s performance.

Step 4: Evaluating the implemented solutions
When assessing the performance enhancements brought by the developed
solutions, considerations have to be related to the diagnosis indicators.
Therefore, the evaluation phase is conducted on two separate subsections
regarding the CPU load and the Memory consumption.
CPU load as performance indicator
By implementing the proposed solution for the reported CPU load
vulnerabilities, the encountered bottleneck at database level was completely
removed for the considered use case and the initial error percentages
significantly reduced. The developed technical approach was based on an
algorithm to determine the database queries which are reported as slow and

Methodology for Identification and Evaluation of Web Application Performance
Oriented Usability Issues

173

evaluate the usefulness of adding an index. More precisely, after adding an
index on a database table’s column, the initial reported error was half
reduced. Further on, several analyses were conducted in order to determine
the suitability of database indexing for the problematic SQL queries, and
indexes added where appropriate. This strategy brought successive
performance improvement and the usability, and scalability, issues were
reduced, fact denoted by the minimized reported error percentage for a large
number of concurrent users.

Also, by implementing method-level caching for the long-running
database searches (denoted by the many findX() methods from VisualVM
reports) using Spring eh-cache approach, further performance enhancements
are obtained. For reducing the CPU load, cache is developed on the service-
level functionality which invokes the persistence layer methods reported as
problematic. However, caching has its drawbacks and therefore, should be
carefully used and performance metrics measured.
Memory consumption as performance indicator
By modeling Hibernate eh-caching inside a Spring-based web application,
Memory consuming entity classes might be cached, thus speeding up the
process. Moreover, adding an intermediary layer in the application for
DTOs (Data Transport Objects) will definitely tune the system’s
performance as the heavy loaded entity classes are replaced by their
lightweight clones.

As far as Memory consumption regards, there are clean-up and garbage
collection activities that should be investigated and considered as valuable
solutions to deallocate unused objects from the Memory.

3.4 Validation of the implemented methodology
Therefore, by using the aforementioned visual strategies by following the
described methodology steps, the root cause of the usability issue was
determined and technical solutions were considered and successfully
applied. The overall result was an increase in the user experience,
satisfaction and response time metrics throughout the system. Consequently,
the application will manage not to slow, block or frustrate concurrent
customer requests’ fulfillment, which determine client loss.

Furthermore, apart from the database bottleneck and the Memory
allocation with large amount of object model instances obtained for CPU
and Memory load as performance indicators, the source code was revised

174 Mihaela Ciugudean, Dorian Gorgan

and analyzed. More precisely, some refactoring strategies were proposed for
the functionalities reported as causing performance vulnerabilities.
Consequently, the next step in the usability enhancement process was the
development of these strategies or even re-implementing of the actual
solution (where appropriate) so that to remove possible time or memory
consuming algorithms and replace them with a cleaner, cost-effective
approach. By applying performance improvement methods to other use case
scenarios (apart from the one exemplified in this paper) the system’s
behavior was definitely enhanced.

To conclude this chapter, the proposed methodology was of great help to
determine the existence of usability issues, identify their root causes and
allow proposal of particular technical solutions to overcome them. This
way, the main operations were performed at the very bottleneck points of
the system and immediate recovery occurred. As a result, this boosts the
overall system performance and offered the desired user experience because
of improved usability.

4. Conclusions and Further Work
As briefly presented in the previous chapter, by following the proposed
methodology, the web application’s performance problems, oriented
towards serviceability, operability and user responsiveness, were spotted
and the context clearly defined. Furthermore, by using tools such as JMeter
and VisualVM, the obtained results were visually analyzed and the root
cause of the issue determined. This way, particular strategies were proposed,
centered on fixing the bottleneck, rather than offering a general system
improvement (which would only slightly enhance the performance, the root
cause not being handled yet).

This methodology proved successful for the considered context and it
aimed to enhance the overall system’s performance by focusing on the
problems identified, i.e. its response time capabilities when increasing the
usage workload (defined as the number of concurrent active users).
However, attention must be paid to the specifics of a certain system whose
performance is to be evaluated and further on be improved, because they
may differ and therefore, several adjustments have to be applied to the
proposed methodology in order to fit particular needs.

Therefore, by applying the described methodologies to fix the
encountered problem, system’s usability was enhanced, fact clearly proven
by the conducted experiments. Not only did the conducted results denote the

Methodology for Identification and Evaluation of Web Application Performance
Oriented Usability Issues

175

system’s improved performance-centered features by the considerably
reduced reported error and enhanced throughput, but also the methodology
validation indicates its efficiency. More precisely, the obvious advantages
and strengths of the presented methodology are related to speed in analyzing
the system’s non-functional requirements from the customer’s experience
and serviceability viewpoint, as well as accuracy in determining the main
bottleneck. The specified speed capabilities refer to the automatisation of
the testing process by using the JMeter tool which allows to simulate the
number of concurrent users, otherwise being almost impossible to assess the
system’s behavior in this context (as manual testing would be more than
cumbersome). As far as the accuracy concerns, the presented methodology
offers a precise diagnosis of the encountered response time-based user
operability problems by identifying their root cause. This way, specific
problem-oriented solutions might be designed and implemented. By
focusing on the source of failure, corrective measures are taken at an early
stage in the development process.

However, there are still several strategies to be implemented that would
obviously boost the entire application performance, and offer a better user
experience. More precisely, a technical solution such as setting up a load
balancer represents only one example that involves further study, analysis
and implementation effort. All these potential strategies have to be tested to
determine their suitability for our particular web application and establish
practical solutions to be developed in order to successfully apply them.

References
Barish, G., Building Scalable and High-Performance Java Web Applications Using J2EE

Technology, Addison-Wesley Professional, 2002.
Fisher, P., Murphy, B.D., Spring Persistence with Hibernate, 2016.
Garner, S. R., Data Warehouse Implementation Strategies: A Mixed Method Analysis of

Critical Success Factors, ProQuest, 2007.
Haralambos, M., R., Colette, Advanced Information System Engineering, 23rd International

Conference, CAiSE 2011, London, 2011, Proceedings.
Higgins, K. R., An Evaluation of the Performance and Database Access Strategies of Java

Object-Relational Mapping Frameworks, ProQuest, 2007.
JMeter tool, Online documentation (2016), http://jmeter.apache.org/
Mendes, E., Mosley,N., Web Engineering, Springer Science and Business Media, 2006.
Mohler, J. L., Duff, J. M., Designing Interactive Web Sites, Delmar/Thomson Learning,

2000.

176 Mihaela Ciugudean, Dorian Gorgan

Olsina, L.; Rossi, G.; 1999, Towards Web-site Quantitative Evaluation: defining Quality

Characteristics and Attributes, Proceedings of IV Int'l WebNet Conference, World
Conference on the WWW and Internet, Hawaü, US, Vol. 1, pp. 834-839.

Oransa, O., Java EE 7 Performance Tuning and Optimization, Packt Publishing Ltd, 2014.
Purba, S., Architectures for E-Business Systems: Building the Foundation for Tomorrow's

Success, CRC Press, 2001.
Rossi, G. et al, Web Engineering: Modelling and Implementing Web Applications, Springer

Science and Business Media, 2007.
Rubin, K.S., Essential Scrum: A Practical Guide to the Most Popular Agile Process,

Michigan, USA, Pearson Education, 2013.
Schwaber, K. and Sutherland, J., The Scrum Guide. The Definitive Guide to Scrum: The

Rules of the Game, July, 2013.
Shivakumar, S. K., Architecting High Performing, Scalable and Available Enterprise Web

Applications, Morgan Kaufmann, 2014.
Singh, H., Data Warehousing: Concepts, Technologies, Implementations, and Management,

Prentice Hall PTR, 1998.
Singh, K. K., A Quantitative Method for Evaluation of Websites Quality using WebQEM

Tool, Journal of Global Research Computer Science and Technology (JGRCST),
(2016), http://globalresearch.co.in/Global_Research_Vol_I_Iss_I_1.pdf

Stoneham, R., Dastbaz, M, Building Interactive Web Applications, Addison-Wesley
Longman, Limited, 2006.

Shirazi, J., Java Performance Tuning, O’Reilly Media Inc., 2003.
VisualVM tool, Online documentation (2016), https://visualvm.java.net/

