Revista Romana de I nteractiune Om-Cal culator 9 (2) 2016, 103- 118 © MatrixRom

Semantic Analysis of Source Code in Object
Oriented Programming. A Case Study for C#

Claudiu Epure, Adrian Iftene

Universitatea Alexandru loan Cuza din lasi
Genera Berthelot 16, lasi
E-mail: {claudiu.epure, adiftene} @info.uaic.ro

Abstract. This paper describes the CSCRO ontology and the Sharp RDF system, used
together to semantically analyze the C# source code. The CSCRO ontology formally
describes the domain of C# programming language, in which the concepts are represented
as classes, properties and individuals. The purpose of the project is to provide the ability to
retrieve information about the source code in form of metadata. The first step to achieve
this is to incrementally build a graph-oriented knowledge-base from plain source code,
based on the ontology. This is done using a convenient format like the Resource
Description Framework (RDF). Having the knowledge base in place, it is easy to query the
system (e.g. SPARQL) about its interacting components and services, retrieving datain a
machine readable format. Going further, an answering mechanism could be applied for
enabling natural language questions on the knowledge base.

Keywords: C#, static analysis, syntax tree, ontology, RDF, OWL, graph-database, triple
store, linked data, natural language, SPARQL.

1. Introduction and Related Work

Computer programs have become the most frequently used tools in our
modern society. Nowadays, they are present at large scale in industry in the
form of applications, platforms and services, covering multiple areas such as
science and education, finance, commerce, etc.

Developing a software system is not an easy action. Instead, it is a complex
process comprised of several phases, which are completed during a
significant period of time. However, factors like customers high demand
and market competition lead to acceleration of the process with negative
impact on quality.

As complex software systems are built at afast pace, they need to remain
maintainable through time. For this reason, software quality must be at its
highest level, yet in most cases, it decreases as the systems are getting
bigger.

104 Claudiu Epure, Adrian Iftene

Testing the code is the way for assuring the required functionality from
the perspective of the users. From the programmers point of view, the code
needs to be clean and easy to extend or reuse. Design patterns, coding
standards, static code analysis are software engineering methodologies
serving such a purpose (Esposito, 2011). But till, there are old systems,
hard to refactor and production source code that is not implementing any
engineering technique, which is very easy to bresk at any smal try to
redesign.

Another key aspect of software development is the use of version control
systems in order to keep track of changes and make possible for teams to
collaborate. They aso provide a general view on the projects and backup
service aswell. Although they help to keep track of the physical file changes
over time, they do not provide a way of tracking the logical structure inside
aproject.

Some of the existing approaches that are based on similar ideas are
mentioned below. They address singular or specific problems, so for the
proposed system, the intent is to adapt, extend and combine some of the
ideas, in order to achieve the goal.

None of the above mentioned techniques address the problem of
retrieving meta information from the code, in a semantic manner. Large
software projects involving thousands of source code files would be easier
to understand, control and extend if they would be complemented by a solid
information retrieval system.

1.1 Existing Systems for Extracting Structured Data from
Source Files

Fuzzy Ontology Framework (FOF, 2016). The Fuzzy Ontology
Framework is a library that helps to integrate a fuzzy ontology (Fuller,
2008) (Calegari and Sanchez, 2014) with object-oriented programming
(OOP) classes written in .NET. It is a hybrid integration, i.e. some OWL
concepts can be mapped directly to OOP classes, yet most OWL concepts
are derived just from OOP instance properties, with no direct mapping to a
.NET class. Hence the OOP instance-OWL concept(s) mapping can evolve
dynamically in the course of time.

SCRO (SCR, 2016). SCRO is an ontology created to support major
software understanding tasks by explicitly representing the conceptual
knowledge structure found in source code (Alnusair, 2010).

SCRO captures major concepts of object-oriented programs and helps

Semantic Analysis of Source Code in Object Oriented Programming. A Case 105
Study for C#

understand the relations and dependencies among source code artifacts.
Supported features include, encapsulation, inheritance (sub-classing and
sub-typing), method overloading, method overriding, and method signature
information. It is designed for Java.

Similar, (Smeureanu and lancu, 2013) used Protégé built to identify
source code plagiarism and (Alboaie et a., 2004 and Buraga et al., 2005)
used XML and RDF to exchange information in a multi-agent system.

1.2 Existing Systems for Information Retrieval based on
Questions

Treo (Treo, 2016). The main ideas behind this system are: entity
recognition and pivot determination through entity search, query syntactic
anaysis. partial ordered dependency structure (PODS) determination, and
spreading activation using semantic rel atedness.

The agorithm first determines the key entities present in the natura
language query. The entity search engine receives the key entities and
resolves pivot entities (URIS) in the Linked Data Web. The query is then
analyzed and parsed to obtain partial ordered dependency structure (PODS).
The spreading activation search takes the URIs of the pivots and the PODS
structure, and thus, starting from the pivot node, the agorithm navigates
through the neighbour nodes in the Linked Data Web computing the
semantic relatedness between query terms and vocabulary terms in the node
exploration process. The navigation process builds the answer to the query
(Freitas, Currry, Oliveria, 2011, Freitaset a., 2011).

TBSL (TBSL, 2016). The ideas of this system are to use SPARQL
Template from question and to map between NL expressions to the domain
vocabulary.

The user’s input is a natural language question which is processed by a
POS tagger. The result is the semantic representation of the natural language
query, based on lexical entries that are created using a set of heuristics. In
the next step, this is converted into a SPARQL query template which
contains slots. missing elements of the query that have to be filled with
URIs. The URIs are determined using sophisticated entity identification
approaches, based on string similarity as well as on natural language
patterns which are compiled from existing structured data in the Linked
Data cloud and text documents.

106 Claudiu Epure, Adrian Iftene

2. C# Sour ce Code Representation Ontology

For many years, the traditional way of storing data was by using relational
databases. The entities in atable are restricted to follow this schemain order
to provide consistency.

A different approach was the introduction of the document-oriented
databases using a hierarchical model (e.g. XML, JSON files). This type of
storage doesn’t use the concept of schema, but the drawback of a document-
oriented database is that it uses a hierarchy of elements (nodes) in the form
of atree, so there are elements that have a bigger importance/priority against
others (e.g., parent node vs. child node).

Although there are advantages and disadvantages of using each of the
above database model, a new type of database is preferred when the absence
of concepts like schema and element hierarchy is required: graph-oriented
database.

2.1 RDF and Graph-Oriented Databases

The Resource Description Framework (RDF) is one important building
block of the graph-oriented database (LinkedDataTools, 2009). A resource
can have an infinite number of properties and there is no restriction that it
should follow. The underlying mathematical model is a labelled directed
multi-graph in which the nodes are the resources and the edges are the
relations. As aresult, all the nodes are equal in importance/priority.

For example, the following RDF graph expresses the relationships
between a person identified “John_Doe’ and some information about it:
type (an object property) and age (a data property) (see Figure 1). By
convention, the resource nodes are represented in ovals, the values are
represented in rectangles and the properties are represented as arrows
(Mostarda, 2010). The associated RDF codeis:

<rdf :RDF
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmlns:ex="http://example/org#" >
<rdf :Description
rdf :about="http://example.org#John Doe">
<rdf:type rdf:resource="http://example.org#person"/>
<ex:age>25</ex:age>
</rdf :Description>
</rdf :RDF>

Semantic Analysis of Source Code in Object Oriented Programming. A Case 107
Study for C#

For querying, RDF has its own query language: SPARQL (SPARQL
Protocol and RDF Query Language). Because RDF can be seen as a
collection of relationships between resources, SPARQL queries are based
on triple patterns, providing one or more patterns against such relationships,
using variablesin place of some resources. The result of the processed query
isthe set of resources for al triples that match these patterns.

http://example.orgi#lohn_Doe

/ http://fwww.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://example.orgiage

25 http://example.org#person

Figure 1: A visua representation of a RDF graph

For example, the query “Select all the people being 25" can be
transformed in the following SPARQL query:

PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>
PREFIX ex: <http://example.org#>
select ?s where {?s rdf:type ex:person . ?s ex:age "25"}

2.2 RDF Schema and Web Ontology L anguage

There are two principal syntaxes for annotating RDF data with semantic
metadata: RDF Schema (RDFS) and Web Ontology Language (OWL). Both
of them are W3C specifications.

RDF Schema is a semantic extenson of RDF, which provides a
vocabulary for data modelling of information written in RDF (Brickley and
Guha, 2014). Unlike other kind of type system, it is designed to be property
centric. This means the focusis on properties, which exists on their own.

Web Ontology Language is an ontology language for the Semantic Web
(Group, 2012, 2014). It provides the syntax for defining an ontology, which
is a formal description of a domain of interest. The syntax is divided into

108 Claudiu Epure, Adrian Iftene

three categories. entities, expressions and axioms. A summarized view of
OWL isavailablein Table 1:

Table 1: General view of OWL

Entities

Properties Individuals
Object Properties | Data Properties Datatypes

Classes

Expressions
Axioms
Annotations

2.3 Building the C# Source Code Representation Ontology
(CSCRO)

For creating an ontology that covers C# programming language, the SCRO
ontology, described in (SCRO, 2016), was used as a model. For this reason,
the new ontology is named CSCRO (C# SCRO). As aresult, CSCRO can be
considered a variation of SCRO that works for C#.

At first, the intention was to use SCRO concepts to annotate the
resources extracted from C# source code. But the ontology uses entities like
package, java.lang.Sring, final method, Java based access modifiers, so it
was clear that it was designed to work with Java programming language.
Therefore, anew ontology for C# was needed.

The new C# ontology, CSCRO, keeps the main ideas from SCRO
ontology, but adds new concepts specific to the programming language
itself, based on MSDN references. There are some significant differences
between the two ontologies both in structure (taxonomy) and individuals.
These differences are discussed in parallel in the following lines.

Different Access Modifiers. In CSCRO ontology, AccessModifier is a
subclass of Modifier (instead of AccessControl). Also, C# has a dlightly
different set of access modifiers. It uses internal and protected internal as
C# specific access modifiers (see Figure 2).

Class hierarchy (inferred) Class hierarchy (inferred)
Class hierarchy ¢ x Class hierarchy ¢ x
& private # internal
& private
¥ owl:Thing ¥-- & owl:Thing : Dr';tl?ded
¥-- @ AccessControl -~ Attribute public
. ¥ AccessModifier ¥ @ Modifier
: & © PrivateModifiel [@ AccessModifie:
- & ProtectedModifier - CompilationUnit
- & PublicModifier v DataType
: Package-Private k4 ReferenceType
¥ O AnnotationTvpe -0 Del e

Figure 2: SCRO vs CSCRO (access modifiers)

Semantic Analysis of Source Code in Object Oriented Programming. A Case
Study for C#

109

Different Modifiers Taxonomy. In SCRO ontology, the modifiers are
not represented by class of their own. Instead, they are spread under the
taxonomy of datatypes.

For example, there is no static modifier itself, but there are
StaticMemberClass and StaticMemberInterface classes. The same is vaid
for other modifiers too (e.g. final — FinalLocalClass, FinalMemberClass,
abstract - AbstractL ocalClass, AbstractM emberClass, etc.)

In CSCRO, there is the Modifier class under which there is an individual
for each modifier (abstract, static, override, etc.). Besides, there are some C#
specific modifiers: async, sedled, const, new, partial, etc. In the same
manner, private, protected, public and internal are individuals of
AccessModifier class.

The differences are marked with red in Figure 3.

Different Data Types Taxonomy. SCRO has a complicate taxonomy for
data types. Thereis no single parent node in the hierarchy from which every
typeis derived. Instead, there is a parent class for each type (e.g. ClassType,
EnumType, InterfaceType, etc.).

DataType class is used in another context than in the type hierarchy
context (i.e., for specifying the “primitive” types: int, float, double, etc.).
CSCRO rewrites completely the taxonomy of data types. Here, there is one
parent class DataType from which every subclass defines a new hierarchy
level of types.

Active Ontology = | Entities = | Individuals |Active Ontology = | Entities x| Individuals by class =
Class hierarchy (inferred) Class hierarchy (inferred)
Class hierarchy Class hierarchy ¢ x
@ abstract @
@ async
¥ & owl:Thing ¥ owl:Thing : const
v AccessControl Attribute event
v AccessModifier v # extern
: PrivateModifier - AccessModifier ® new
ProtectedModifier @ CompilationUnit #® override
: PublicModifier V- @ DataType @& partial
- & Package-Private V- Referllam:eType # readonly
v 8 AnnotationType - Delegate # sealed
[O staticMemberAnnotationfl] @ static :
v ClassType - Interface . p
b @ AbstractClass @ ValueType u.nsa e
v- @ ConcreteClass . - Enum @ virtual
~ b-OFinalClass ® = - Struct # volatile
- @ InnerClass v @ Member
e StaticMemberClass @ b Constructor
r ilatinnllnit Einld

Figure 3: SCRO vs CSCRO (modifiers taxonomy)

110 Claudiu Epure, Adrian Iftene

Hence, on the second level there are ReferenceType and VaueType and
on the third level there are Delegate, Class and Interface — as subclasses of
ReferenceType and Enum and Struct — as subclasses of VaueType.
Eventualy, the “primitive” types are in fact individuals of class Struct. The
differences are explained in Figure 4, by assigning numbers to similar
concepts.

Class hierarchy (inferred) Class hierarchy (inferred)
Class hierarchy ¥ % Class hierarchy
boolean
byte
v-- 0 owl:Thing @ char ¥-- 1 owl:Thing .
#- @ AccessControl ¢ double - @ Attribute 1 e DatfaTlme
»- @ AnnotationType 1 # float » Modifier # decimal
¥- 0 ClassType 2 # int - CompilationUnit 3 # double
»- @ AbstractClass % long v- @ DataType 4 # float
»-- @ ConcreteClass # short ¥ @ ReferenceType & int
.5 [nne_rclass H Delegate @ long
StaticMemberClass 10 @ sbyte
- CompilationUnit 3 Interface 7 # short
p-- 0 ControlStructure ValueType .
v DataType 4 Lo @Enum 6 * T!meSpan
v & ComplexDataType : 5 # uint
- (0 StructuredDataType p-- & Member & ulong
;=@ UnstructuredDataType - () Namespace & # ushort
[© PrimitiveDataTypel - ® Program 9
¥ @ EnumType 6 10
: StaticMemberEnum
b @ Field
v @ InterfaceType 7
- (0 StaticMemberInterface
#-- @ Localvariable
b & Method
- Package 8
- & Program 9

Figure 4: SCRO vs CSCRO (data types taxonomy)

Different Object Properties and Data Properties. There are aso
difference between the properties of the two ontologies, both object
properties and data properties. In the case of object properties, the
differences appear mainly because of the changes in the class taxonomy.

Data property hierarchy: owl:topDataProperty

Data property hierarchy: owl:topDataProp IEEE
= b = b

A& owl:topDataPropel

\ 2 wl:topDataPropel

mhasName
m hasIdentifier
® hasComment

enclosedWithinMethod
hasComment
hasMethodName

m hasOriginalName

m hasSignature

Figure 5: SCRO vs CSCRO (data properties)

Moreover, there are differences because of the terminology used in C#
versus Java (eg. package vs namespace: hasPackageMember vs

Semantic Analysis of Source Code in Object Oriented Programming. A Case 111
Study for C#

hasNamespace; import vs using: imports vs uses, etc.).

C# source file

OWL file
Parser AP|

synlax ree

input \

OOF Ontology

Knowledge
Base
Creator

| =" rarme
=1

SPARQL Query

Query Creator SPARQL Result

Query Answer Crealor

NLP
Engine

Natural
Language
Answer

@r‘“j
Language

Figure 6: System Architecture

In the case of data properties (see Figure 5), CSCRO contains fewer
properties that SCRO (e.g. hasName, hasldentifier, hasComment). In
CSCRO, the properties are only for basic functionaity of the system.
Complex properties can be added in case of complex requirements.

112 Claudiu Epure, Adrian Iftene

3. System Architecture

The proposed system (see Figure 6) is designed to follow two main ideas.

First, there is the process of extracting structured data from C# source
files, based on an existing specific ontology (e.g. C# object-oriented
ontology) and store that data in a way such that it can be easily retrieved
later. In this case, the data will be saved in atriple store.

Second, there is the process of retrieving data from the store, having
hierarchical levels of querying. While SPARQL queries are used for this
purpose at the lowest level, at the highest level, the goal is the use of natural
language questions. In the middle, annotated questions are used, based on
NLP techniques.

OWL file
> Parser API

syntax tree

input
QOP Ontology
e

Knowledge
Base
Creator

_ Il s rdf file
Triple —
Store : tl file
| —

output

C# source file

Figure 7: Knowledge base builder module

3.1 TheKnowledge Base Builder Module

This module is designed to build a knowledge-base of the components
found in a C# project or in C# source files. The result is represented as a
collection of RDF graphs, known as a triple store. The graphs are built by
following the CSCRO ontology defined in (2.3) (see Figure 7).

The Ontology class encapsulates the ontology built in OWL. Its main
responsibility is to load the ontology file and create an instance of Graph
classfromit.

Semantic Analysis of Source Code in Object Oriented Programming. A Case 113
Study for C#

The ISyntaxTreeBuilder interface is responsible for creating the syntax
tree of a source file content. The class that implements this interface is
SyntaxTreeBuilder. Internally, it usesthe .NET Compiler API to do this.

SPARQL Query
Query Crealor
SPARQL Result

Natural)
Langu_age l C‘@M‘g
Question Language ¢

Figure 8: Information retrieval module

The 1GraphBuilder interface is dealing with creating and populating a
graph with data. The data is extracted from a syntax tree that is given as
input. The class that implements this interface is KnowledgeBase.

The KnowledgeBase class has a dependency on Ontology. Its main
purpose is to create graphs and populate them with data, according to the
ontology. The graph data has the form of a syntax tree. A syntax tree is an
abstraction that is used to model the internal structure of a source code file.
The root of the tree is a compilation unit, the child nodes are namespaces,
type declarations and so on.

The ontology uses a similar approach in the classification of the entities.
Therefore, having the syntax tree and the ontology, the RDF graph is created
by traversing the syntax tree and mapping the nodes to ontology entities, in
order to create nodes in the new graph.

114 Claudiu Epure, Adrian Iftene

The Engine class is the entry point of this module from the externa
environment. It has dependencies on the KnowledgeBase and Ontology
classes and it contains methods that create RDF graphs by receiving source
code as input.

3.2 Thelnformation Retrieval M odule

In every information store/database/knowledge base there is the need to
have a good mechanism of retrieving data. Query languages have evolved in
order to fulfil this need (e.g. SQL, SPARQL). In recent years, because of the
new technologies of mobile devices, the trend is to create and use query
languages that are more human friendly, much closer to the human
language. Natural Language Processing techniques are used to answer
questions about things stored in a knowledge base.

The information retrieval module of the system presented in this paper is
based on the source code knowledge base. The information is kept in aform
of atriple store server that can be queried viaa public endpoint.

The purpose of creating this module is to enable users to query the
knowledge base in SPARQL and eventually to ask for information it in
natural language. At this point, the natural language part is a work in
progress, only SPARQL query being available.

Regarding natural language questions, these can vary in difficulty from
simple to complex, depending on the number of compounding sentences
(number of predicates). Simple questions (with only one predicate) are
mapped directly to a RDF triple based on keywords, whilst complex ones
needed a pre-processing step to divide them in sentences before mapping to
triples. The module contains the following entities (see Figure 8):

e The NaturalLanguageProcessor class is a text annotator component. It
receives plain text (representing the question) and returns the list of
annotated compounding words. For each word the following properties are
provided: text, part of speech, and lemma, begin offset in the sentence, end
offset in the sentence. It uses Stanford Core NLP for text processing.

e The TripleBuilder is the component that, given an input list of keywords
and URIs, it builds a list of triples of the form: TriplePattern {subject
keyword, subject pattern (regex), predicate keyword, predicate URI, object
pattern (regex)}.

e The QueryBuilder class is the component that, given the list of annotated
words (from 1) and the list of triples (from 2) it builds the query in
SPARQL as follows: For each triple, checks if there are matching subject
key or predicate key in the list of words lemmas. If predicate key is

Semantic Analysis of Source Code in Object Oriented Programming. A Case 115
Study for C#

matching, the URI for that predicate provide us the subject type and the
object type. If the subject keyword is not matching, then the object pattern
will be found and the query is built based on that.

The future work will be focused on the Triple Builder module, trying to
automate the process. The goal is to get lists of keywords/'URIs from linked
data sources over the Internet instead of using manual lists. Also, the system
will try to answer not only simple questions (one sentence) but complex
ones too (Ungher et a., 2014).

4. Project Details and Technologies

The building process of the project was divided in two parts: (1) Creating
the C# Source Code Representation Ontology (CSCRO); (2) Building the
system (Sharp RDF).

The ontology was built using Web Ontology Language (OWL) based on
Protégé tool. The system is developed in Visua Studio using .NET
technologies: C# programming language, .NET Compiler APl (Roslyn),
ASP.NET MVC framework. It is organized in a solution named shar prdf,
that contains the following projects.

e Sharprdf.Core - thisis the main project.

e Sharprdf.Cmd - thisis a command line application desighed to be used as a
tool in an automation process like continuous integration. It exposes the
functionality to create RDF graphs in a configurable manner, using
command line arguments.

e Sharprdf. WebApp - this is an MVC web application that exposes the
functionality online, as a service.

e Sharprdf.NIp - this is the module that deals with text processing, used to
transform natural language questions in SPARQL queries. It depends on
Stanford Core NLP library and it iswork in progress.

e Sharprdf.NIp.Cmd - this is a command line application that is used to
expose the functionality of Sharprdf.NIp project. This is also work in
progress.

The project uses Git as version control system so the log history is

available on the Github at: https://github.com/ claudiuepure/sharprdf. In the
future, a NuGet package will be also available.

116 Claudiu Epure, Adrian Iftene

5. Conclusions and Future Work

This paper presents a system that was created to offer a different perspective
on the applications written in the C# programming language, in terms of
structure and content. Regarding large projects, it is easier to retrieve
information about them having a helper data structure in aform of a graph.

Before creating the system, a detailed analysis was made on the existing
projects that follow similar ideas, learning from them. However, none of
them combines the ideas introduced in this paper.

One important contribution to the project is the C# Source Code
Representation Ontology (CSCRO). Although it is created based on the
existing SCRO ontology (2.3), in the end the new ontology differs almost
completely from the original one, in terms of taxonomy and properties.

Another contribution is the idea and the method of creating a RDF graph
from C# source code based on a given ontology. There is a similar idea in
Fuzzy Ontology Framework (FOF, 2016), but the final purpose of this work
is different.

The new .NET Compiler API, which was released in the first quarter of
this year is afresh technology that helps programmers to develop new tools
for source code analysis (Parson, 2015). The project was built using this
state of the art API.

The idea of combining the Stanford Core NLP library with a model of
patterns for recognizing question format based on the compounding words
isanother contribution to this project which will be extended in future work.

For the future, we intend to build a system with three main components:
(1) Knowledge Base Builder module (that will support detecting advanced
object oriented characteristics like inheritance, polymorphism, etc.); (2) a
module for the detection of design patterns in source code, like in (Kirasic
& Basch, 2008); and (3) an Information Retrieval module (to support
guestions in natural language). Also, we want to provide a web application
or apublic API for this functionality.

Acknowledgements

The research presented in this paper was funded by the project MUCKE
(Multimedia and User Credibility Knowledge Extraction), number 2
CHIST-ERA/01.10.2012.

Semantic Analysis of Source Code in Object Oriented Programming. A Case 117
Study for C#

References

Alboaie, S, Buraga, S., Alboaie, L. (2004). An XML-based Serialization of Information
Exchanged by Software Agents, International Informatica Journal 28(1), 13-22.

Alnusair, A. (2010). SCRO (Source Code Representation Ontology). Retrieved from
http://www.cs.uwm.edu/~al nusair/ontol ogies/scro.html

Brickley, D., Guha, R. (2014). RDF <hema 1.1. Retrieved from
http://www.w3.0rg/TR/rdf-schema/

Buraga, S., Alboaie, S, Alboaie, S. (2005). An XML/RDF-based Proposa to Exchange
Information within a Multi-Agent System, Concurrent Information Processing and
Computing, (Eds. D. Grigoras, A. Nicolau), 336, |0S Press.

Calegari, S.,, Sanchez, E. (2014). A Fuzzy Ontology-Approach to improve Semantic
Information Retrieval. Retrieved from http://ceur-ws.org/V ol-327/pos_paper3.pdf

Esposito, D. (2011). Satic Code Analysis and Code Contracts. Retrieved from
https://msdn.mi crosoft.com/en-us/magazine/hh335064.aspx

FOF, (2016). Fuzzy Ontology Framework - http://www.codeproject.com
/Articles/348918/Fuzzy-Ontol ogy-Framework (accesed last timein April, 2016)

Freitas, A., Currry, E., Oliveriag, G. (2011). A distributional structured semantic space for
quering RDF graph data. Retrieved from http://andrefreitas.org/papers/
preprint_distributional _structured_space.pdf

Freitas, A., Oliveira, G., O'Riain, S, Curry, E., & Pereirada Silva, J. C. (2011). Querying
Linked Data using Semantic Relatedness: A Vocabulary Independent Approach.
Retrieved from http://andrefreitas.org/papers/nldb2011_preprint.pdf

Fuller, R. (2008). What is fuzzy logic and fuzzy ontology? Retrieved from http://uni-
obuda. hu/users/fuller.robert/otaniemi-2.pdf

Group, R. W. (2014). Resource Description Framework. Retrieved from
http://www.w3.org/RDF/

Group, W. O. (2012). OWL 2 Web Ontology Language Document Overview (Second
Edition). Retrieved from http://www.w3.0rg/ TR/owl2-overview/

Kirasic, D., Basch, D. (2008). Ontology-Based Design Pattern Recognition. Retrieved from
http://www.fer.unizg.hr/_downl oad/repository/kes2008[1] .pdf

LinkedDataTools. (2009). Introducing Linked Data And The Semantic Web. Retrieved from
http://www.linkeddatatool s.com/semanti c-web-basics

Mostarda, M. (2010). RDF Coder. Retrieved from https://code.google.com/p/rdf coder/

Parsons, J. (2015). Getting Sarted: Semantic Analysis. Retrieved from
https.//github.com/dotnet/roslyn/bl ob/master/docs/sampl es/csharp-semantic.pdf

Pidcock, W. (2009). What are the differences between a vocabulary, a taxonomy, a
thesaurus, an ontology, and a meta-model ? Retrieved from
http://infogrid.org/trac/wiki/Reference/PidcockArticle

SCRO, (2016). http://mww.cs.uwm.edu/~alnusair/ontol ogies/scro.html (accesed last time in
April, 2016)

Smeureanuy, |., lancu, B. (2013). Source Code Plagiarism Detection Method Using Protégé

118 Claudiu Epure, Adrian Iftene

Built Ontologies. Retrieved from http://revistaie.ase.ro/content/67/07%20-
%20Smeureanu,%20l ancu.pdf

Sudarsun, S. (2007). Introduction to Ontology. Retrieved from
http://www.slideshare.net/sudarsun/ontol ogy

TBSL, (2016). http://svn.aksw.org/papers/2013/KESW_AutoSpargl Thsl_Demo/public.pdf
(accesed last timein April, 2016)

Treo, (2016). http://treo.deri.ie/ (accesed last timein April, 2016)

Ungher, C., Forascu, C., Lopez, V., Ngonga Ngomo, A.-C., Cabrio, E., Cimiano, P., &
Walter, S. (2014). Question Answering over Linked Data (QALD-4). Retrieved from
http://ceur-ws.org/V ol-1180/CL EF2014wn-QA-UngerEt2014. pdf

