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Abstract. This paper presents an approach to terrain synthesis from minimal-detail user-
provided heightmaps. There is no assumption regarding the level of detail provided, in 
order to allow users without access to powerful heightmap tools and/or resources to 
generate useable terrain based on a self-provided crude feature plan. We present the issues 
stemming from a lack of detail in user input, notably sharp altitude increases and 
oversimplified feature edges, and proceed to elaborate on using the terrain synthesis 
algorithm to solve the issues and create a level of detail that more closely resembles 
realistic terrain models. The algorithm pipeline is presented and parameterized to show how 
the user can influence the resulting model. 
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1. Introduction 
Over the past decades, computational power has become less expensive and 
more powerful thanks to technological advances. Alongside it, computer 
generated imagery (CGI) increased in availability and potential. CGI is one 
of the mainstays of technology, used in various fields like video games, 
movies, art, simulation software and anywhere else image generation is 
beneficial. One of the reasons for its popularity is the artistic freedom it 
entails, coupled with the potential to mimic something that does not exist in 
the real world. 

When compared to physical props and background, computer generated 
imagery becomes evidently advantageous. There is a large number of 
images unable to be accurately reproduced without the use of computers, be 
it spaceships, hellish creatures, otherworldly plants or simply vast, 
expanding landscapes. Creating a quality physical replica would incur costs 
unreasonable for any budget, not to mention unfeasible if we’re considering 
the entire landscape of an alien planet. A virtual reproduction’s costs can 
easily be quantified in the artist’s and/or programmer’s work and the 
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required hardware. 

Thus, the industry’s needs have fueled the development of an array of 
algorithms and generation software tailored specifically at creating this kind 
of models. Among them, terrain generation is one of the most used fields 
due to it contributing significantly at reducing production costs of 
backgrounds. 

The terrain model can be created procedurally (using a set of rules) or 
based on a set of given input data. The latter is usually combined further 
with algorithms to refine the given data and produce something usable. 
Purely procedural terrain suffers from restricting the user control over the 
final location of terrain features like mountains, hills, plains, rivers or 
islands. On the other side of the spectrum, some synthesis algorithms 
working with input data such as heightmaps, feature graphs or guides 
require at least part of the data to be highly specific. This can prove 
inconvenient to the casual user, forcing him to spend increasing amounts of 
time researching the software used and finding ways of creating the 
necessary input. 

The casual user, then, raises new issues when trying to create terrain with 
specific features. He will, in most cases, be unable to properly form input 
data relevant for the application that would lead up to the desired terrain 
model. It can become tedious and time-consuming to master a new skill or 
software in order to obtain decent results. 

One issue will be the sudden altitude increases caused by the user 
creating the input heightmap by hand. Painting the heightmap with only a 
handful of colors or grayscale values leads to the creation of a layered 
terrain which does not conform to reality nor has any kind of transition 
between layers, hence the sharp, perfectly vertical, altitude changes. 

Another issue is the lack of detail on such models. The layman will have 
neither the time nor experience to paint “rough” edges, as seen in nature at 
the delimitation of two differently elevated areas. There is a high probability 
of encountering very uniform edges, if not downright straight, thus breaking 
the illusion of natural, chaotic, form. 

This paper elaborates on a simple algorithm which tries to solve these 
issues by detailing very crude input to a point where it becomes usable, 
either as the final terrain model or as a more precise input heightmap for 
more complex algorithms. It also reflects the extended content of another 
paper (Mangra et al., 2016), published by the RoCHI2016 conference. 
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2. Related Works 
The high demand makes it such that a variety of techniques for procedural 
or user-guided generation already exists. As information becomes 
increasingly available, more and more people try to expand the horizons by 
either improving existing methods or finding new ones. Terrain synthesis is 
one of those expanding domains, with entire companies being built around 
terrain generation software and a growing number of research papers 
detailing new algorithms. 

One such example is World Machine Software, LLC and their sole 
product: World Machine (Discover, 2016). An immensely powerful terrain 
generation software which allows users to create terrain from scratch by 
layering algorithms and directing data through the pipeline they create as 
they see fit. It also supports user-guided generation, by allowing the input 
for algorithms to be provided through external files. At first glance, 
however, it does not offer ways to process low-detail input. Elevation 
discrepancies remain sorely visible throughout the processing pipeline. A 
person trying to control the features will be unable to do so unless he or she 
invests enough time in learning how to use this complex software. If such 
procedures exist, they are unintuitive at best. 

A case should be made for Gaia (Gaia, 2015), procedural terrain software 
created by Procedural Worlds, which, among other capabilities, allows users 
to define where they want certain features to be placed by inserting 
specialized markers called “stamps”. This greatly alleviates the input issues 
but restricts the user to the set of available stamps (currently over 150) as an 
advantageous tradeoff between control and power. The only downside is its 
reliance to the Unity game engine since it is provided as a Unity “asset”, a 
plug-in of sorts. 

Aside from terrain synthesis software, the number of papers detailing 
new and experimental algorithms for synthesis is on the rise. The focus is on 
giving as much power as possible to the user, creating new ways of 
synthesizing terrain from different input data-sets. Somewhat 
unsurprisingly, the tendency is to reach for improved reproduction quality. 
To give the end-user the power to remake relief forms based on certain 
patterns and to do so at the best quality level possible. 

For example, one of the more well-known papers on the topic is the work 
of Zhou et al. (2007), describing an algorithm to map a relief style onto a 
simplistic user-provided sketch. As long as the user finds a heightmap 
describing the desired relief shape and pattern, he can utilize the algorithm 
to great results. This only partially solves the issue of low-detail user 
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guidance. Firstly because only one type of pattern can be applied at a time, 
preventing, for instance, both a mountain range and a river or lake to be 
mapped in the same map instance. Secondly, because obtaining such 
patterns may or may not prove difficult, depending on what the user intends 
to obtain and the available patterns on the internet. These problems arise, of 
course, because of the high specialization of the algorithm and are perfectly 
acceptable in the context of the goal set for this procedure.  

Another such work is that of Cruz et al. (2013), with an objective similar 
to that of Zhou et al.: user-guided terrain synthesis. This paper focuses on 
having an input graph besides the simplistic sketch, called “guide” here. 
They try to create geomorphically correct terrain from a collection of real-
world data. Very similar in both scope and surfacing issues to the previously 
presented work: it requires information the layman may not immediately 
have available and it becomes hard to model several terrain features at once. 

In the quest for improving the obtained terrain, most researchers 
specialize their work, leaving the inexperienced user dead in the water. Even 
when a software product implements something with general availability, 
the learning curve is almost never shallow. Large amounts of time must be 
invested for the average user to obtain usable results from most of today’s 
software implementations. 

3. User-Guided Terrain Synthesis 
While procedurally generating terrain has plenty of advantages, such as 
speed of generation, variety and realistic detailing, the main drawback is the 
lack of user involvement in the placement of terrain features. This makes it 
hard to create something specific and which conforms to the user’s 
requirements.  

As described in the previous section, this gave birth to a series of 
algorithms and software which do exactly that: create terrain based on a set 
of specific user input data. They give more freedom to affect the end 
product and allow one to model the shape of the terrain based on their own 
wishes. Artists and designers gain tremendous power by being able to create 
terrain in drawing that is then converted to a highly-realistic 3D model. 
Researchers and other technical-oriented people gain an equal amount of 
power by being able to convert data obtained from the real world to create 
incredible virtual replicas. 

For the hobbyist, however, or any other inexperienced user the challenge 
becomes much greater. One has no use for powerful tools if they require 
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large time investments to master. Furthermore, there is a definite possibility 
that said user is not interested in highly-detailed or geomorphically correct 
terrain. The main interest point is the creation of a terrain model simulacrum 
that abides by the user’s requirements. Most of the people interested in 
terrain synthesis will not be artists, capable of creating detailed heightmaps 
to provide to the software nor experienced enough to find the other 
resources needed as input, such as real-world data, formatted in a way which 
the software expects. 

Figures 1a (the input heightmap) and Figure 1b (the resulting model) 
illustrate the problem with a hands-on example using the World Machine 
software. We have created a relatively simple test image and loaded it into 
the software. It was an attempt to synthesize a terrain model based on a 
given input which lacks detail. The resulting model is the result of 
approximately 15 minutes of experimenting. It is painfully obvious that it is 
not a good result. The model lacks any kind of detail with regard to the 
edges, which remain almost perfectly straight. All the added detail 
circumvents these sharp altitude changes and regular shapes and there was 
no visible way of altering the model in such a way as to make these edges 
better looking. 

Following is the algorithm proposed to solve this problem by interpreting 
low-detail heightmaps and synthesizing a terrain model that, while not 
necessarily accurate from a realistic point of view, meets the requirements 
set by the user through the input heightmap and places the terrain features 
where they are expected. It is assumed that an input is provided in the form 
of a crudely-drawn heightmap, lacking detail. 

Figure 1a. Example crude highmap. 
 

Figure 1b. World Machine 15 
minute test. 

. 
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3.1 Related algorithms and concepts 

Heightmaps 
Heightmaps are exactly what their name suggests: images which store 
values representing height data encoded in color values. The simplest way 
of storing this kind of data is through grayscale information. Grayscale is 
simpler than true color because it only has two poles: black and white, and 
everything in between. A heightmap also only stores a scale of values, from 
the lowest point to the highest one. Hence, the coupling is nigh-perfect, 
limited only by the range of grays the image file can support. A color image 
could theoretically improve upon the range of values, depending how each 
color encodes height information. One disadvantage to this kind of data 
storing is that it can only store height value information. This means no 
vertically concave terrain can be represented. Heightmaps are essential to 
this project’s existence, since they provide a reliable input option and also a 
sturdy output configuration possibility. Figure 2 presents such a grayscale 
heightmap example. To illustrate what information heightmaps contain, 
Figure 3 presents the same heightmap, rendered in three dimensions based 
on the heightmap values. 

Voronoi diagrams 
A Voronoi diagram is a distribution of segments in a plane based on a 
number of seed points distributed across said plane. Every point inside a 
specific region is closest to the seed point inside it. In other words, a point 
inside the plane will become part of the region surrounding the closest seed 
point. They were named after Georgy Voronoi, Russian and Ukrainian 

Figure 2. Highmap, greyscale. 
 

Figure 3. 3D rendered highmap. 



TSCH Algorithm - Terrain Synthesis from Crude Heightmaps 125 

 

mathematician who defined this type of diagrams (Voronoi, 1908). The first 
considerations of them were recorded as early as 1644 by Descartes then 
later by Dirichlet in 1850 in his work „Über die Reduktion der positiven 
quadratischen Formen mit drei unbestimmten ganzen Zahlen” (Dirichlet, 
1908). Because of this, the regions compounding the diagram are called 
Dirichlet regions and the diagrams may be called Dirichlet tessellations. The 
diagrams have applications in science and technology, with the added 
capacity of aiding visual artists (Figure 4). 
 

There are many uses for Voronoi diagrams. They can produce various 
textures when used in 2D and abstract models in 3D. In 3D they can also be 
used for realistic fracture simulation animation of models, like glass 
shattering and wood splintering patterns. They can also be used for 1-NN 
classifiers in machine learning and finding clear routes in some AI 
applications, among other interesting uses. In the context of this paper, they 
are presented in order to introduce the next segment: Worley noise, which 
has semblances to this kind of diagrams. 

Worley noise 
Worley noise (Worley, 1996) is a type of cellular noise. This means that the 
noise takes form of „cells” inside the given plane (Figure 5). Practically, it 
divides the problem space into regions. This partitioning is based on a 
scattering of seed points, just like in the Voronoi diagrams. The way these 
regions are defined is by a function which takes the N-th closest seed point 
in consideration. What this means is that when N is 1, the cellular noise 
looks exactly like a Voronoi diagram mapped onto the seed points if the 

Figure 4. Voronoi diagram. 
 

Figure 5. Worley noise. 
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function is a simple value assignment function. The noise can look and 
behave very differently depending on what the chosen function does and 
which N has been selected. This type of noise will prove relevant later 
during this paper, when the custom interpolation algorithm is discussed. 

Perlin noise 
Perlin noise was created by Ken Perlin in 1982 for the movie Tron because 
he was unhappy about how CGI looked at that time (Perlin, 2002), 
(Adrian’s, 2016) and (Perlin, 2016). Essentially, it is a sort of gradient noise 
used as a primitive in more involved processes. In time, Perlin developed a 
better version of the noise, called Simplex noise. This improves upon the 
former by simplifying the generation process and reducing complexity and 
any leftover visual artifacts. 

Unlike the usual kind of noise, Perlin noise is homogenous. This means 
that any two neighbors have very close values to one another compared to 
the breadth of the available spectrum. This leads to values that „flow” over 
the length of the entire area by never having sudden value changes between 
regions and, more importantly, between neighbors. Figure 3.3 presents a 2D 
representation of the Perlin noise. Another important fact to mention is that 
Perlin noise can be extended to any number of dimensions. The algorithm is 
perfectly suited for 1D, 2D, 3D, 4D, etc. Furthermore, one can use the next 
dimension to animate the model. For instance, one can model 3D noise to 
represent a cloud formation and then use the 4D values to chain „snapshots” 
of that cloud and effectively animate it, the frames of the animation being 
given by the algorithm itself, guaranteeing smooth transition between one 
another. 

Perlin noise divides the space up in an n-dimensional grid. Then, for each 
segment, it produces pseudorandom gradient vectors on its corners. This 
kind of generation allows the noise to be coherent, meaning the transition 
from a point to its neighbor is greatly reduced. The coherence is usually 
achieved through linear interpolation of the previously-mentioned vectors. 
Each segment’s value is such an interpolated value, given by dot products of 
distance vectors to a point randomly chosen inside the segment and the 
surrounding gradient vectors. Adjacent segments share gradient vectors on 
the common side. 

The first step, that of spatial division, simply creates equally-sized 
regions which are delimited by gradient vectors. One vector is assigned to 
each of the corners of the region. Each region will have two corners in one 
dimension, four corners in two dimensions, eight corners in three 
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dimensions and so on. Consequently, each corner will have its own 
pseudorandom gradient having the same number of dimensions as the space 
being divided. 

This grid of gradients is what the algorithm uses to compute noise. The 
randomness is given by the vectors themselves. For each point in the plane, 
the value of the Perlin noise can be computed by relating the give point to 
the corners of the region the point is in. Figure 6 presents a graphical 
representation of those relations and the set of gradient vectors g. The point 
is evaluated as the set of distance vectors originating in the corners and 
pointing at the given point (x, y). 

The value of the Perlin noise at point (x,y) is calculated by interpolating 
the surrounding gradient vectors using the distance vectors as weights 
(Figure 7). This means that all points inside the region will be an 
accumulation of the gradients weighted by the distance of the point to the 
corners. Because it is an interpolation, the transition of values between 
points is smooth inside the region. When crossing regions, the transition is 
also smoothened by having a number of gradient vectors common on the 
borderline corners of the regions. 

The actual interpolation may involve a number of additional steps, like 
passing the point through another value function to change the way position 
influences the final value. Furthermore, the interpolation can be done in a 
number of ways to customize the algorithm or simply to make value 
handling more efficient. Usually, the values are first interpolated on one 
plane (horizontal, for instance, in a two-dimensional example) then in the 
other plane (vertical, in the same example). This is repeated for all 

Figure 6. Distance vectors (left) and Gradients (right) 
for a given two dimensional segment. 

 

Figure 7. Perlin noise. 



128 Alexandre Philippe Mangra, Adrian Sabou, Dorian Gorgan 

 
dimensions until one single processed value is left, which will be interpreted 
as the Perlin noise value of that specific coordinate set. Because of this, the 
algorithm is also highly parallelizable, being able to compute the noise 
value for all points in the plane at the same time, given the availability of 
the entire set of gradient vectors. 

Digital filters  
Digital filters are algorithms (or hardware implementations) which reduce or 
amplify signal features. They iterate over the input and change it based on 
certain restrictions set up from the beginning. In this particular case, the 
interest lays on noise reduction filters. This type of filters is specially 
designed to algorithmically remove noise from a give dataset by comparing 
all values to the neighboring ones, trying to determine where anomalies are 
present and replacing them with a value considered to be more fitting in that 
particular area (the comparisons made differ from implementation to 
implementation). 

The image processing filters considered here work by utilizing a sliding 
window that goes over the entire input, modifying it as configured 
(Crankshaft, 2016). The size of the window depends on the requirements 
and implementation specifics, but in this case a three-by-three sliding 
window moving inside a two-dimensional plane should suffice. This 
window replaces the value in the center (the fifth value, counted from top-
left to bottom-right) with a value chosen through specific algorithmic 
variations. The window is presented in Figure 8, where N(i,j) represents the 
set of N points to be considered and T is the filter function which chooses 
the new value for the grayed-out cell. 

The two filters whose use is to be considered in this software 

Figure 9. Sharp 
transition example. 

Figure 8. The Sliding Window and the Filter 
Function. 
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implementation are the mean filter (Fisher, 2003a) and the median filter 
(Fisher, 2003b). These are both noise-reduction filters which would be used 
to smoothen out the heightmap outputs. The mean filter works by 
computing the mean of all the encompassing neighboring cells and 
assigning it to the center cell. This obviously eliminates spikes by having 
the other points even out the values. However, this also means that noise 
does affect the final value, since it is taken into account when computing the 
mean. 

The second filter to be taken into consideration is the median filter. This 
noise reduction filter works by replacing the value of the middle cell with 
the median value of all nine cells. The median value is the fifth value taken 
from the ordered list of values composing the sliding window for a 
particular point. This approach ignores spikes and the resulting value is not 
influenced by them. Hence, this filter may prove more useful. 

3.2 Edge smoothing 
The first step is to solve two issues in the same pass. The issues being: 

Sharp elevation level transitions 
The neophyte user will provide a heightmap where one elevation level ends 
and another being with a drastic difference in value/height. Best example 
would be the user wanting a mountain surrounded by sea and drawing with 
a high value in an area of very low values. This will cause a vertical drop 
(value change of 100%) between the value level represented by the 
“mountain” (white) and the one of the “sea” (black), as can be seen in 
Figure 9. Going straight from perfect gray to white or black is also not a 
good use-case, since the value switches by 50% of the total. A lesser but 
still perfectly vertical drop. 

Simplistic edge definitions 
The layman will not have the art skills or appropriate resources to paint 
better edges. He or she will resort to basic straight or curved lines as shape 
delimiters, also exemplified on Figure 2. 
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Both of these problems can be solved by a single, well-chosen algorithm 

which creates a transitory area between levels and breaks the edges up in a 
rougher contour. In this case it is a custom-made algorithm inspired by 
Worley noise. 

Solution 
The first step consists of scattering seed points randomly but evenly across 
the surface of the heightmap, taking the equivalent height values from the 
input. I. e. if point X’s location is above a black pixel, its value will be 0.0. 
If it’s above a white pixel, its value will be 1.0. The number of seed points is 
proportional to the number of pixels in the heightmap and can be adjusted 
for different end results. 

The second step is parsing the entire mesh and adjusting the heights of 
points based on the nearest N seed points as a linear interpolation of their 

assigned height values using the distance between the affected point and the 
seed as a weight. This differs from classical Worley noise, where only the 
N-th closest point is considered in the rendering function. Increasing N 
enlarges the area which affects the mesh point, meaning the transitional area 
between altitudes becomes wider. Exemplified in Figure 10. Circled are the 
seed points used in computing the new point’s height when N = 6. The 
target point will be affected by 4 perfectly black seeds and 2 perfectly white 
ones, meaning it will end up closer to, but not perfectly, black. 

Figure 11. Seed points 
distribution. 

Figure 10. Seed points around a fixed point. 
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The randomness of the seed point location creates the rough, natural 
edges that users expect to see and permits infinite variations on the exact 
contour when randomly redistributing the seed points again: at one time, the 
mesh point is affected by 6 low-height points and 3 great-height points then, 
during another run, the same point is affected by only 2 low-height points 
and 7 great-height points because in the new seed distribution, the positions 
change and, hence, distances are altered. 

The issue of sharp elevation transitions is solved by the linear 
interpolation between neighboring seed points by creating transition areas 
which are equally random in appearance, even if this detail is less 
noticeable. 

3.3 Edge smoothing – step-by-step example 
Following is a detailed description of how this algorithm works on a given 
example. The input consists of a crude heightmap drawn in grayscale using 
MS Paint and shown in Figure 9. This kind of input is illustrative for what 
lack of detail really means. White represents the highest points and black the 
lowest, with gray representing an approximately in between height. This 
particular heightmap represents a plateau on the lower-right side of the map, 
culminating in a peak towards the center of the map. The rest of the map is 
drawn at its lowest point, representing either something akin to a valley or 
the sea bottom. This is, of course, very far from a realistic representation of 
the desired map. It contains a bare-bones representation of the desired 
terrain features: a “plateau”, a “mountain” and the “sea-level”. 

If one were to interpret the heightmap as-is, the issues presented 
previously become painfully obvious. Since black is the lowest height and 
white is the greatest height, the transition creates a sharp drop, sharper than 
a natural one. The transition created here would be a perfect straight drop, 
unlike anything seen in the natural world. One may argue that normal 
smoothing would work, creating a transitionary area between the altitude 
zones. However, that will simply alleviate the issue, not remove it, since the 
crude shapes will remain. Moreover, the regular way normal smoothing 
works means the edges will remain the same, utterly un-natural-looking. 
Straight edges will remain straight and all curves will retain their shape. 
This means that all circles, ovals and other standard editor shapes will 
preserve the shape and their distinct edges, making the heightmap unusable 
nor recognizable as a terrain heightmap. 

Both problems can be solved by randomly sampled linear interpolation. 
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This happens by distributing across the entire input heightmap a number of 
seed points which take the height value of the pixel situated at their position 
on the input image, this being a value between 0.0 for the color black, 
bottom altitude level, and 1.0 for the color white, top-most altitude level. 

For exemplifying the procedure, the number of seed points was chosen to 
be one for every 25 pixels and distributed evenly across the surface. I.e. All 
sub-sections should have the same average number of seed points contained 
inside them. Figure 11 shows the seed points scattering. No color has been 
added to emphasize the randomness yet equality of distribution. 

As it can be seen, there is no inherent pattern to the seed points. Any kind 
of random distribution algorithm works as long as the distribution is 
uniform across the entire surface. Uneven distributions will distort the space 
and, while it may be a useful experiment to test the effects of uneven 
distributions on the actual synthesis of the terrain, it is not within the scope 
of this project and will, hence, be avoided. 

The seed points are, however, useless without some kind of data attached 
to them. This data is represented by the value of the underlying pixels by 
mapping the seed point distribution onto the provided crude input 
heightmap. Remember the previously presented example input, showcased 
in Figure 9. The next figure, Figure 12, is a superposition of figures 9 and 
11, showing how the seed points get their values from the underlying input 
pixels. Seed point coloring has been preserved to reflect their grayscale 
values. A red background has been used for contrast with the seed points 

Figure 13. Interpolation result. Figure 12. Seed point values. 
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because no grayscale value would have been appropriate since it would 
possibly blend with some of the seed points. 

Visually, the previous picture already displays random characteristics of 
the edges between different altitude areas. Even though there is a clear 
spatial delimitation of seed point values, provided by mimicking the exact 
pixels from the input, which is delimited very clearly, the edges become less 
defined by the nature of the randomness of seed point positions. Every pixel 
is going to be assigned a value representing the linear interpolation using 
distance as weight between the nearest N neighbors. A point with many 
black neighbors and a few gray ones will be decidedly darker than one with 
many white neighbors and a few gray ones. A point with only 
white/gray/black neighbors will also have that exact color, through the 
nature of interpolation. 

This interpolation process’ result is presented in Figure 13. Notice that 
because of the seed points, the edges are no longer straight nor are the 
transition zones even. Since they are influenced by the random placing of 
seeds, there are plenty of transitory areas between the large, flat altitude 
zones. 

It can be easily seen that between the flat areas (white, gray and black) 
now smoother transitions are being made. Several different shades of gray 
have been added to the edges and they create transitory areas. Moreover, 
these transitory areas are very uneven, reducing the synthetic appearance of 
predefined image editor shapes. These edges present a much more palatable 
terrain simulacrum, even if it is not a perfect or geomorphically correct one. 
This step is, thus, quintessential for the efficacy of this algorithm and can be 
separately implemented for various related purposes. It represents the 
backbone of the entire system. The rest of the steps simply improve upon 
this model and refine it. 

3.4 Adding detail 
After creating transitory areas at the edges, the model is left with large 
expanses of flat terrain. This happens because all throughout the same level 
of value, encompassing seed points will all have the same value, hence 
linear interpolation produces that value repeatedly. 

At this point, another procedural generation algorithm can be used and 
overlaid on top of the model in order to create rough detail across the flat 
areas. We have chosen Perlin noise for this purpose, because it is a 
homogenous noise. The fact that this noise is homogenous means that any 
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two neighboring points have close values and create a pleasing, flowing 
aspect, unlike true random noise. 

The noise will be added as a small increase in height across the entire 
terrain model. This means it will affect both the large areas of flat terrain 
and the previously created transitory ones. This will improve the aspect of 
the terrain and make it more palatable for the human eye. As a side-effect, it 
adds randomness throughout the model, increasing reusability and the 
diversity of potential outputs. However, since the detailing is small 
compared to the overall scale of the terrain, this remark is not of such great 
importance. 

We should add that this step may be replaced by another way of 
imprinting a more realistic texture to the terrain. The caveat is that one 
should take care not to add complexity to the user interaction, like needing a 
secondary input, such as a realistic texture for imprinting upon the model or 
an extended number of added parameters. 

3.5 Detail smoothing 
After applying the Perlin noise as a means for detailing the terrain model, 
the shape of the model needs to be smoothened to eliminate any kind of 
sharp peaks that may occur near the edges. This step also helps make the 
terrain more pleasing to the eye. 

Odd peaks and shapes 
This phenomenon may happen because as Perlin is applied uniformly across 
the mesh, it also affects the slopes previously created. The points on these 
slopes will be displaced and sometimes the displacement goes against the 
desired shape, i.e. a point will increase in height whilst it would be 
aesthetically pleasing to remain fixed or decrease in height. 

Digital filters – image processing 
The chosen solution to the previous problem is to run the whole model 
through a digital noise reduction filter. This will effectively remove any 
“noise” which, in this case, is represented by those seemingly random 
shapes. 

A median or mean filter with a 3x3 kernel is perfectly reasonable to solve 
this issue and any other oddities the terrain model may show. It is applied to 
the entire model. One run through should suffice, since over-applying a 
filter will reduce the level of detail, counter to the initial purpose of this 
algorithm. Likewise, care should be exercised with more powerful filters, 
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some of which will strip too much detail even with a single pass. 
After the completion of this step, one should be left with a reasonably 

detailed terrain model which respects the initial feature placement 
requirements provided by the user through a crudely-drawn heightmap. 
Needless to say, this algorithm will work just as well with more complex 
input, meaning it is suitable for the entire range of possible heightmap 
detail. 

4. Implementation 

4.1 The Unity game engine 
For implementing and testing, the Unity (2016) game engine was chosen 
because of its existing rendering engine and ease of programming using 
self-contained scripts. All steps have been converted into C# scripts and 
linked together. 

The algorithm is implemented using operations on a float value matrix 
representing the terrain model then said matrix is applied onto the heights of 
a mesh, effectively rendering the result onscreen. 

The following testing section has been fully realized using the Unity 
implementation. Due to mesh restrictions, the size of the samples has been 
reduced to under or at 128x128 pixels. 

Figure 14. Left: Simple Heightmap; Middle: Detailed Heightmap; Right: 
Complex Heightmap. 
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5. Testing and Validation 
For the purposes of testing, only the aesthetics of the final terrain model 
have been taken into consideration. Completely ignoring the performance 
aspect, since it is reliant on implementation, the testing focuses on 
confirming that the before-stated issues are solved and that the final model 
is at least partially resembling a natural form of terrain. The three 
heightmaps used for testing are: an overly simplistic one, a slightly detailed 
one and a very detailed one. The first twos were made by hand, the third one 
is sampled from the Internet (Hoddminir, 2012); presented in Figure 14. 

5.1 Validating result 
Initial testing was done to prove the algorithm does indeed end with a 
detailed model of plausible terrain. It bears mentioning again that the end 
goal was not realistic terrain. Instead, it was to create a level of detail that 
more closely resembles realistic terrain models. Any sufficiently detailed 
model which may pass for terrain is good enough for confirmation. Figures 
15 shows how the model advances from its initial state to the final, more 

Figure 15. Left-up: Original state; Middle-up: 
Edge smoothing; Right-up: Perlin noise; Left: 

Filtering. 
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detailed output. Figure 15 also showcases visual artefacts (sharp edges, 
noticeable on the “mountain” edge) remaining from previous steps and how 
they are eliminated through filtering.  

Figures 16 shows the effect on more detailed heightmaps. The result is 
proof that when confronted with too much detail, the algorithm overrides 
part of it with its own edge smoothing. 

5.2 Varying parameters for edge smoothing 
These tests have been done to empirically find reasonable value ranges for 
the number of nearest seed points and the total number of seed points by 
altering one of them and keeping the other constant. 

Figure 16. Original and final model. Left: Detailed highmap.  
Right: Complex highmap. 
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Number of seed points 
This number dictates how many seed points in total are scattered throughout 
the plane. The number is related to the total number of pixels available 
(height x width). We shall use the seed point to pixel ratio to mark the total 
number of seeds. Hence, a 1:10 ratio would mean there is exactly one seed 
point for every 20 pixels. As we grow the number of seeds, the area of 
influence for each point in the model decreases, as more seeds are found in 
its direct vicinity. This preserves more of the initial detail of the image, 
counter to what edge smoothing is supposed to do. On the other hand, too 

Figure 17. Seed Point Number. Top-left: 1:1; Top-right: 1:20; 
Bottom-left: 1:50; Bottom-right: 1:250. 
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few seeds mean that the terrain will no longer respect all the details 
provided. There may be entire areas uncovered by seeds and, thus, initial 
detail is not preserved enough. Figure 17 presents a succession of models, 
showcasing this effect. 

There are a few things to be noticed from this empirical evidence. As the 
number of seed points increases, so does detail fidelity, since the saturation 
of seeds is becoming evident, especially when there is one seed of every 
pixel of the image. This is an unwanted result, since this step is supposed to 
add detail to the edges. The first picture highlights this shortcoming. As the 
number of seeds decreases, an increase in variation of detail can be 
observed, however, after a point the detail becomes scarce, since too few 

 

Figure 18. Neighbor number. Left: 5; Right: 15; Bottom: 25. 
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seed points are left to capture the initial values of the image. This test 
suggests that going with less than 1:100 seed points per pixels is bad for 
keeping the detail needed to maintain the useful terrain features displayed in 
the input heightmap. The sweet spot is observed to be somewhere between a 
ratio of 1:10 and 1:50 seeds per pixel, anything more than that risking to 
steal precious detail from the given input.  

Number of nearest seed points 
Testing the number of nearest N points taken into consideration is also a 
worthwhile experiment, to showcase how different values affect the 
outcome. For this test, the number of seed points is TotalPx/25. Results 
empirically show that as the number of neighbors decreases, detail fidelity 
increases, up to a point where the desired smoothing effect is cancelled. 
When there are too many neighbors taken into consideration, the smoothing 
is too strong and the entire map becomes flattened. Figure 18 shows this 
effect. 

Conclusion on the seed point based approach 
While the number of seed points and neighboring seeds affect each other 
too, empirical results point to the area centered in TotalPx/20 -> TotalPx/25 
seed points total and considering around 10-15 neighbors. This should 
provide acceptable results for most use-cases. Of course, this does not 
prevent one to experiment and find proper values depending on the given 
input heightmap. 

6. Conclusions 
In the world of procedural generation, terrain synthesis is one of the most 
common uses, allowing for inexpensive yet complex backgrounds in 
movies, video games, simulation software and other possible areas of 
interest. The rising demand for such algorithms has given birth to a vast 
array of advances in this field, ranging from pure optimization to hybrid 
algorithms and brand-new ones designed to bring a wealth of detail into the 
final model. 

While specialized software is constantly trying to simplify the interface 
and make procedural terrain generation available to the layman, it must 
always make compromises regarding input detail versus output detail. 
Trying to detail incomplete or crude heightmaps is something few people 
are trying to elaborate on since the focus is on the end product – a realistic 



TSCH Algorithm - Terrain Synthesis from Crude Heightmaps 141 

 

terrain model – and all inputs are usually simply mirroring the demands for 
the algorithm instead of the other way around. 

This paper presented a procedural generation algorithm that is supposed 
to work with minimal input detail. It outputs something aesthetically close 
to real terrain models, even if it lacks any kind of groundbreaking detailing. 
A case can be made for using this algorithm as a preliminary for other 
systems, detailing crude heightmaps to a level acceptable for more advanced 
synthesis software and / or algorithms. 

While not overly complex, this algorithm proved that there is hope for 
terrain synthesis from input of any detailing level and that one may still 
discover new techniques for allowing inexperienced users to generate 
beautiful scenery with minimal effort. 
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