
Revista Romana de Interactiune Om-Calculator 9 (3) 2016, 217-232 © MatrixRom

Recovering implicit thread structure in chat
conversations

Andrei Dulceanu
Politehnica University of Bucharest, Romania
E-mail: andrei.dulceanu@gmail.com

Abstract. The analysis of chat conversations is a cumbersome task because of the number
of different discussion threads that may occur at a certain moment. While most participants
in a chat session tend to discuss one topic at a time, interferences appear due to
environment asynchrony. This paper presents an approach for recovering implicit thread
structure of a chat conversation by using a pipeline centered on semantic similarity between
short phrases. Temporal, social and lexical aspects of the conversation are blended in a
single model which predicts for each utterance not only the thread it belongs to, but also the
utterance most related to in its thread.

Keywords: chat conversation, speech act, thread, disentanglement, semantic similarity,
WordNet.

1. Introduction
With the ever increasing popularity of chat systems, blogs (through
comments) and microblogging services like Twitter (which recently hit half
a billion tweets per day), text streams composed of short messages are
becoming more and more common nowadays. Following this kind of
conversation is very hard most of the times due to lack of context and
absence of strong indicators about whom each participant is answering to.
Moreover, when the other participant is identified, it is hard to tell which of
its previous utterances generated the response. Although this paper focuses
on chat conversations, the insight gained here can help studying other types
of interactions, like the afore-mentioned (blog comments, tweets, etc.).

Disentanglement, or thread structure recovery in chat conversations, can
be defined as the task of re-arranging all the utterances in several logical
threads, according to their contents and to the topic they are debating.
Elsner & Charniak (2008) define it as “the clustering task of dividing a
transcript into a set of distinct conversations”. The term “thread” was firstly

218 Andrei Dulceanu

1) 08:12:32 Mihai: I rarely find a solution for a
problem on something else than forums.
2) 08:12:59 Mihai: Wikis are too general.
3) 08:13:06 Cosmin: because it’s easy to post a message
– so, easy to generate
4) 08:13:09 Mihai: blogs are rarely to the point
5) 08:13:10 Angela: forums are ok, but wiki is better
6) 08:13:23 Cristi: ☺ first off, the benefit of a
technical blog, as opposed to other solutions is that it
gives people the opportunity to put down their ideas in
a way that doesn’t get lost
7) 08:13:25 Angela: don’t forget the spam
8) 08:13:30 Mihai: and of course, as I said, good SEO
makes it child’s play to find info
9) 08:13:31 Angela: on forums

coined in email conversations analysis. The associated task of finding these
threads was defined by Yeh & Harnly (2006) as “relating messages by
parent-child relationships, grouping messages together based on which
messages are replies to other ones”.

Carefully reading the two definitions above, we can come up with a
subtle difference between them. The first one speaks only about grouping
the utterances in several clusters, which ignores the causality between them.
An order can be imposed by using the temporal information, if this exists.
The second definition puts the relationship between messages at its core,
underlining the cause-effect structure of the email corpus studied. The
method presented in this paper is more related to the second approach;
therefore, the goal is to separate the conversation into different threads, the
utterances in each thread being grouped by parent-child relationships.

This is not, for sure, a trivial task. To better understand and visualize it,
Figure 1 presents a short excerpt of a chat conversation between Computer
Science students.

Figure 1. An example of a multi-threaded discussion

In order to better judge the utterances above, it must be noted that Mihai
and Cosmin are forum supporters, Angela is a wiki supporter and Cristi
supports blogs. The first utterance is the most important statement of the
conversation, expressing Mihai’s opinion about forums’ superiority versus
wikis or blogs. This attracts Cosmin’s agreement, who adds more to the
explanation, but also Cristi’s and Angela’s disagreement. Angela’s last two
utterances can be seen as a whole. This is a very common habit of chat

Recovering implicit thread structure in chat conversations 219

users, which put the speed of communication on the first place, generating
short messages which do not have any meaning, if read separately. Another
interesting aspect here is that overall, the excerpt is very cohesive, fact
preserved throughout the whole conversation. Figure 2 illustrates a possible
interpretation of the interwoven threads present in the quoted fragment.

Figure 2. Two possible threads and the edges connecting the utterances; participants are shown in

different colors

Practical applications which may benefit from identifying conversational
threads include those focused on summarization, conversation monitoring or
those which aim to mine for a deeper knowledge from this kind of text
stream. For example, looking at Figure 2, one might conclude that utterance
1 is the one which generated most replies in the excerpt, while the speaker
colored in yellow (Mihai) was the most influential. Moreover, participants
can be ranked by the number of utterances which generated replies, in order
to see which users facilitated collaboration. All the statistics presented can
be features of an automated conversation evaluator.

Thread detection is accomplished in a two-step process: an iteration
through utterances in the conversation which are checked against those in
each thread (second iteration). At first, of course, there are no threads and
the first utterance will be assigned by default to thread-1. Another iteration
through the list of utterances is performed, and for each, an affinity measure
between the utterance and existing threads is computed. If the affinity is
greater than an established threshold, the utterance is assigned to its
matching thread, otherwise a new thread will be started.

The interesting part of this method is that affinity is defined as a
maximum joint measure between the similarity to existing utterances in the

220 Andrei Dulceanu

thread (as a whole) and maximum similarity between current utterance and
each individual utterance in the thread. In other words, once an utterance is
selected to be included in a specific thread, the utterance with the greatest
similarity (both semantic and social) to it is also known.

The paper continues with the presentation of relevant work concerning
conversational threads in both emails and chat conversations, lexical chains
identification and different ways for computing similarity measures. Section
3 provides a detailed overview of the problem, while Section 4 comes with
the detailed solution and processing done. The experimental work and its
evaluation are presented in Section 5. The paper ends with conclusions and
future work.

2. Related work
The work presented in this paper is related to two main research areas:
thread detection in email and chat conversations and lexical chains
computation.

A. Thread detection in email and chat conversations
The approaches concerning the identification of threads in email and chat

conversations can be divided in two main categories: the ones which use
clustering and the ones which use probabilistic generative topic models for
the task.

Elsner & Charniak (2008) introduce a graph partitioning algorithm
model. For this, a maximum-entropy classifier first labels utterances in two
categories: alike and different. As labeling all the utterances in the
conversation only one time would not give any insight about its structure,
the classifier is run multiple times, considering a time window of
approximately 129 seconds. Features used for classification include a
mixture of chat-specific, discourse and content, considering distance in time
between utterances, name mentions, cue words and repetitions, to name -
only a few. The second part of the algorithm is using a greedy technique for
partitioning the conversation. In order to include an utterance in a specific
cluster, the results of the classifier on previous utterances are consulted. The
winning cluster is that for which the current utterance displays the greatest
resemblance according to the classifier. It is unanimously regarded that the

Recovering implicit thread structure in chat conversations 221

results obtained with this algorithm constitute the baseline for future
research.

Wang & Oard (2009) cover threading in chat conversations. The authors
try to build “a context-sensitive document for each message” by exploiting
“temporal and social aspects of the conversations”. Each message is
expanded to contain some of the previous messages based on utterance by
the same author, their containing a mention to another author’s name or by
time proximity. A single pass clustering is applied on the expanded
messages using cosine to measure similarity. Results show that the method
proposed outperforms the best previously known technique of Elsner &
Charniak (2008).

Shen et al (2006) adapted the topic detection and tracking (TDT) work
for the task at hand, but with slight variations, taking into account temporal
information, different length of messages vs. stories, and interactivity of
short message streams vs. classical, static texts. The hypothesis used is that
each thread corresponds to one topic and only one, while a topic may be
discussed in several threads. Moreover, author information from each
message is not used because it does not add much value to the task, but may
generate false leads. Although the algorithm used is similar to the one used
by Wang & Oard (2009), some variations make it unique: the use of
“discourse structure information”, of messages and of personal pronouns of
the subject. Discourse structure information is, in my view, another way of
looking at dialogue acts, Stolcke et al (2000), but only a few subsets of them
are used: statements, questions, requests and conditionals. It is stated that
these two variations, temporal and by using linguistic features outperform
baseline single-pass clustering algorithm by 54.6% and 9.7% respectively.

Mayfield et al (2012) propose a model which “annotates a conversation
by utterance, groups utterances topics by local structure into sequences, and
assigns sequences to threads”. The first annotation of utterances is
performed using a supervised probabilistic classifier which computes a
probabilistic distribution over four negotiation labels (information giving,
information requesting, feedback, others). Afterwards, a two pass clustering
algorithm is used for grouping individual sentences into groups and again
for uniting the groups into clusters. This is achieved by using a binary
probabilistic classifier which uses a time feature (between sentences and
groups of sentences) and a coherence metric computed based on cosine

222 Andrei Dulceanu

similarity between the centroids of clusters. The performance of this
approach matched, but did not outperform the results achieved by Elsner &
Charniak (2008).

Viewing messages as nodes from a graph-based representation of the
conversation is described by Wang et al (2008). Edges between nodes are
weighted using cosine similarity measure over TF.IDF weighted term
vectors. An adjacency matrix is then used for constructing the threads, in
which vertices are connected only if their respective value from similarity
matrix computed in step 1 exceeds an empirical chosen threshold. The
baseline version of the algorithm is modified by introducing three
penalizing functions: the first one considers only messages in a fixed time
window, the second one considers a dynamic time window and the latter
penalizes similarity by time distance between messages. The methods are
evaluated only by comparing the baseline and the penalized versions of the
algorithm.

Although it treats the problem of topic segmentation in emails, the work
of Joty et al (2010) contains an interesting overview of two state-of-the-art
models employed for this task that could be used also for chat
disentanglement: LDA described by Blei et al (2003) and LCSeg, by Galley
et al (2003). New LDA and LCSeg breeds are proposed, in which the
original model is enriched to make use of knowledge from a “fragment
quotation graph” (FQG). The FQG is computed by traversing the entire
collection of emails and identifying distinct fragment which are considered
vertices. The edges in this graph are given by inclusion relations between
distinct fragments in the whole email corpus. Evaluation proves that
complementing initial models with FQG has given better results than the
bare models.

Our work is also related to the work of Trausan-Matu et al (2007), in
which it is introduced a tool for visualizing and analyzing multi-party chat
conversations. Chat topics are identified by using word repetitions and
WordNet ontology, Miller (1995), which helps unifying candidate concepts
based on their synonymy. Moreover, cue words or static patterns like “let’s
talk about email” or “what about wikis” are used to improve topic
identification. Threads are reconstructed with a co-reference resolution
algorithm which analyzes previous utterances pertaining to a list of
statically predefined patterns. In addition, parts of the threads can be
reconstructed by using a chat environment facility, which allows explicit

Recovering implicit thread structure in chat conversations 223

referencing of utterances. Knowing that utterances are linked two by two, it
can be concluded through transitivity that all three are connected and belong
to the same thread.

B. Lexical chains computation
Another thread of related work is lexical chains computation because this

task shares the lexical goal of grouping together semantically related words.
Going one step further and considering the utterances in which these words
appear would provide a basic solution for conversation disentanglement. In
our work, we were inspired by Jayarajan et al (2008), which propose an
alternative representation for documents, using lexical chains. The
interesting part is the preprocessing done for word sense disambiguation in
which words are disambiguated by looking at their sentence/paragraph
contexts. After POS-tagging all the tokens in a sentence, only nouns are
used because they are “better at reflecting the topics contained in a
document”. Their idea of using only identity and synonymy relations is also
used in my algorithm.

In order to improve the finding of topical relations, the method exposed
by Moldovan & Novischi (2002) was used. Here the authors propose
exploiting glosses of WordNet concepts in building improved lexical chains
for question answering. They give two sentences as an example: “Jim was
hungry” and “He opened the refrigerator”. Although for a human reader the
connection between them is already obvious, it is hard to infer it only by
using synonymy and identity relations, as stated in the previous paragraph.
The missing link is the word “food”, which appears in both glosses: “feeling
a need or desire to eat food” [hungry] and “a kitchen appliance in which
food can be stored at low temperature” [refrigerator].

3. Corpus and annotation
The corpus used in this research comprised of three conversations summing
up 846 utterances. Participants used ConcertChat, designed by Holmer et al
(2006), a chat client which facilitates collaboration by allowing users to
reference partial or whole utterances and by providing a whiteboard widget
on which users can draw. CS seniors in a Human-Computer Interaction

224 Andrei Dulceanu

course were selected to deliberate on which technology among blogs, wikis,
chat and forums is better to disseminate information. The only rule of the
debate was to cover all the technologies and to come up with an idea of
including them all in a product. The last requirement was given in order to
study consensus reaching.

Initially stored in xml files, the transcripts were converted to Excel for a
better visualization and for easier annotation. Each utterance has the
following attributes: id, author, text and timestamp. Although there was also
a reference id attribute, pointing to the utterance which is referenced by
current utterance (if exists), this was only used in the final stage for
verifying the results. In addition to these attributes, a new one was
introduced: speech act. This was added only as a pilot for the current stage
of the research and contained only three speech acts: statement, question
and answer.

The annotation was performed manually, by a single annotator, for each
of the three conversations used. A comparison of methods for automatically
identifying a wider range of speech acts is presented by Dulceanu &
Trausan-Matu (2011). In the same paper, the authors experimented a
heuristic algorithm for finding implicit links among utterances based on
automatically assigned speech acts. The best results were obtained for
question-answer links which were identified based on the naïve intuition
that an answer comes in response to the nearest question. This is the reason
for which only question, answer and statement speech acts were used.

4. Method

4.1 Preprocessing
At first the whole conversation was read from the Excel file and the content
of each utterance was represented using the Bag of Words model introduced
by Salton et al (1975). Before tokenization, contractions like “wasn’t”,
“haven’t”, “won’t”, etc. were replaced with their full counterparts like “was
not”, “have not”, “will not”. This step was needed for a better extraction of
the base form of the verb and for grabbing the negative particle “not” which
may help future processing. Tokens of the names of all participants in the
chats were kept in a dedicated author list, which was consulted before

Recovering implicit thread structure in chat conversations 225

performing a spell check of each word in the utterance. Some of the words
were considered conversation specific and were not spell checked. These
included author names (even partial references), proper names and other
words which weren’t found by the WordNet implementation used (odd
enough these included “blog” and “wiki”).

The next step was stemming each verb in the utterance. Because Porter
stemmer, introduced by Porter (1980), doesn’t always produce a valid word,
the results were corrected by using Jazzy spell checker
(http://jazzy.sourceforge.net/). This returned the single most appropriate
suggestion for the word to be corrected. Another unit of work performed in
this stage was computing word frequencies for each token.

4.2 Thread recovery method
Once all the pre-processing in the previous step is done the thread recovery
task can be started. For this, a first pass through the collection of utterances
is done and for each utterance the most appropriate thread for it is returned.
This can be an existing thread or a new one based on computed thread
affinity over existing threads. In understanding the rest of the algorithm
some definitions must be given.

Word to word similarity is a real number in the interval [0, 1] which
expresses the semantic similarity between two words. This is computed by
taking into account identity, synonyms, occurrences of one word in the
gloss of the other as shown by Moldovan & Novischi (2002) and finally on
Lin similarity, described in Lin (1998). All these inputs are taken into
account because relying only on Lin similarity didn’t provide expected
results. The result is normalized by dividing it to the inverse of the tf (term
frequency). The table below synthesizes the computation of this metric:

Table 1. Word to word similarity

Case Value
The two words are identical 1
The two words are synonyms
according to WordNet 0.75

One of the words appears in the
gloss of the other 0.5

226 Andrei Dulceanu

Inter-sentence similarity (�) is a real number in the interval [0, 1]
which defines the similarity between two sentences.

Inter-utterance similarity (�) is a real number in the interval [0, 1]
which defines the similarity between two utterances based on inter-sentence
similarity, on the match between their authors (author match), on the
distance in seconds between them (time affinity) and on their associated
speech acts (speech act affinity).

Thread affinity (�) of an utterance to a thread is a real number in the
interval [0, 1) which expresses the cohesion between an utterance and a
thread in terms of maximum inter-utterance similarity and thread to
utterance similarity.

Author match (�) is a real number in the interval [0, 1] which provides
a measure for the connection between two utterances from their issuers’
perspective. Utterances of the same author or which contain parts of the
other author’s name are advantaged. Therefore, if both utterances are uttered
by the same author the value is 1, if one of them contains parts of the author
name of the other is 0.75 and it is 0.25 otherwise.

Time affinity (�) is a real number in the interval [0, 1] for measuring
time proximity between utterances. If the messages are following one
another in less than 30 seconds the value is considered 1, otherwise it
proportionally decreases with time passing.

 Speech act affinity (�) is a real number in the interval [0, 1] and
expresses the probability of an utterance labeled with a certain speech act to
come right after an utterance labeled with another speech act. Since this was
the last definition, we will continue with formulas for all these measures.

Table 2. Speech act affinity values

Speech Act Speech Act B Affinity
Question Answer 0.65
Question Statement 0.25
Question Question 0.10
Statement Statement 0.60
Statement Question 0.20
Statement Answer 0.10
Answer Answer 0.35
Answer Statement 0.45
Answer Question 0.20

Probabilities are computed as if utterance with Speech Act A comes right after utterance with Speech

Recovering implicit thread structure in chat conversations 227

Act B

Equations for the rest of the metrics are given in a bottom up value, from
simple to complex:

thresholdtime
timetime

T
uttutt

_

1*
12 −

=τ

Equation (1) defines time affinity as the inverse square root of the time
difference between the two utterances (in milliseconds) divided by a time
threshold constant.

Obviously the hardest part was to define inter-sentence similarity. For
that the measure proposed by Mihalcea et al (2006) was studied, which
attempts at first to compute one word vs. the others similarities for each
word in the first sentence against words in the second sentence, provided
they are tagged as having the same part of speech. The scores obtained are
weighted with idf scores for each word. The overall score is the arithmetic
mean of the sum of similarities obtained for each sentence. This approach
was not used in our research as idf was hard to define in the context of only
one conversation (document). Thus, an adaptation of the metric described
by Malik et al (2007) was used in which the normalization of the one word
vs. the others similarities was performed by dividing this sum to the sum of
sentences’ lengths.

Finally, the inter-utterance similarity, incorporating also author match,
time affinity and speech act affinity looks like this:

),(

),(max),(max

2
1),(

21_

12

21
21

sslen

swSimswSim
ss

wordscommon

swsw
∑∑
∈∈

+
=ζ (2)

1
),,(*

),(*),(*),(*),(

21

21212121

=+++
+

++=

dcba
ssd

sscssbssass
σ

ταζξ
 (3)

Thread affinity of an utterance 1s to a thread T was defined as:

228 Andrei Dulceanu

10

),,(*)1(),(max*),(1211
2

<Δ<

Δ−+Δ=
∈

tsssTs
Ts

ζξθ
 (4)

where t represents a super-sentence made by concatenating the contents

of each sentence in thread T. Equation (4) says that affinity is computed by
adding the maximum similarity between the new utterance and another
utterance already in the thread and the similarity to the thread (represented
as a super-sentence which contains all words from the utterances in the
thread).

Another thing that should be noted in (4) is the consequence derived
from the first part of the equation: each utterance is put in a thread by firstly
finding its most related counterpart already existing in the thread. This is
how parent-child relationships between utterances are discovered. A
threshold was employed for thread affinity score. If the score was greater
than the threshold, the utterance was added to the thread or else a new
thread was started.

5. Experiments
As described in Section 3, the corpus used for the experiments was made of
three conversations. The goal was to reconstruct the thread structure for
them and also to check the correctness of the algorithm used by comparing
the links automatically found to the links manually referenced by the
participants.

Although intuition would say that in order to construct the thread
structure it is more important to follow the logical links between utterances,
in all the forms they appear (semantic, time, speech acts, etc.), experiments
have shown that slightly decreasing the value of Δ produces better results.
Initially the value was set to 0.65, favoring almost double maximum inter-
utterance similarity, but then it was observed that this way the number of
threads discovered was very high. Thus the value was decreased and in
order to come to more cohesive threads, the thread affinity threshold was
also decreased.

The table below summarizes all the values of the parameters which
produced the best results during experiments:

Recovering implicit thread structure in chat conversations 229

Table 3. Parameters used in experiments
Parameter Source Value
T Time affinity 1.73
time_threshold Time affinity 30.000

a
Inter-utterance similarity – Word to word
similarity 0.35

b Inter-utterance similarity – Author weight 0.20

c Inter-utterance similarity – Time affinity
weight 0.20

d Inter-utterance similarity – Speech Act
weight 0.25

Δ Thread affinity 0.45
affinity_threshold Thread affinity 0.50

A first look over the results has shown that there are too many threads

that contain a single utterance. Analyzing that utterance, we observed that
almost half of the cases it is a joke between participants or other kind of
mockery for which a human would easily find its place in the conversation.
From a lexical or semantic point of view it was hard to be put in any pattern
or formula so that its presence as a single utterance thread makes sense.
Fig. 3 presents a chart showing the number of threads found per
conversation.

Figure 3. Number of threads per conversation

The length of the threads found is shown separately in fig. 4.

230 Andrei Dulceanu

The total number of utterances in each conversation is shown in blue.
One-utterance threads are shown in yellow and threads containing two or
more utterances are shown in magenta.

Figure 4. Length of thread categories

The explanation for each bar is:
• Bar 1: number of threads containing 1-5 utterances
• Bar 2: number of threads containing 6-10 utterances
• Bar 3: number of threads containing 11-20 utterances
• Bar 4: number of threads containing 21-40 utterances
• Bar 5: number of threads containing 41 utterances or more

6. Conclusion and future work
This paper introduced a method for recovering thread structure of chat
conversation using a new method which focuses on semantic similarity, as
well as on other inputs taken from the context of the conversation like
speech acts, temporal distance or name mentions. The new measure for
establishing to which thread an utterance should be assigned was called
affinity. At the same time with computing affinity for including a new
utterance in a thread (existing or new), the most related utterance from that
thread is fetched. This is a novel approach, as all previous work focused
only on reconstructing threads as a bulk, considering the utterances already

Recovering implicit thread structure in chat conversations 231

ordered by their issuing time, and not generated as replies to previous
messages.

Empirical evaluation has shown that the proposed model might be worth
considering, but a solution needs to be found for short threads (1-5
utterances). In order to better understand the performance of the algorithm,
a proper evaluation is needed. This would imply having two or more human
judges manually re-create the thread structure for the studied conversations
and then compute some sort of overlap between this gold standard and the
threads obtained by using our method.

Regarding short threads, a new stage may be introduced in the algorithm
for unifying these threads with other threads based on a different measure.
Speaking of measures, the most important of all, inter-sentence similarity
can be improved if word to word similarity could be computed over words
in different part of speech categories.

A better visualization of the conversation can be achieved by drawing the
tree-like shape resulting from following each link between utterances in the
same thread.

References
Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent dirichlet allocation.Journal of

machine Learning research, 3(Jan), 993-1022.
Dulceanu, A., & Trausan-Matu, Ş. (2011). Automatic links identification in chat

conversations. Academy of Romanian Scientists, 65.
Elsner, M., & Charniak, E. (2008, June). You Talking to Me? A Corpus and Algorithm for

Conversation Disentanglement. In ACL (pp. 834-842).
Galley, M., McKeown, K., Fosler-Lussier, E., & Jing, H. (2003, July). Discourse

segmentation of multi-party conversation. In Proceedings of the 41st Annual Meeting on
Association for Computational Linguistics-Volume 1(pp. 562-569). Association for
Computational Linguistics.

Holmer, T., Kienle, A., & Wessner, M. (2006, October). Explicit referencing in learning
chats: Needs and acceptance. In European Conference on Technology Enhanced
Learning (pp. 170-184). Springer Berlin Heidelberg.

Jayarajan, D., Deodhare, D., & Ravindran, B. (2008). Lexical chains as document features.
Joty, S., Carenini, G., Murray, G., & Ng, R. T. (2010, October). Exploiting conversation

structure in unsupervised topic segmentation for emails. In Proceedings of the 2010
Conference on Empirical Methods in Natural Language Processing (pp. 388-398).

232 Andrei Dulceanu

Association for Computational Linguistics.
Lin, D. (1998, July). An information-theoretic definition of similarity. In ICML(Vol. 98,

pp. 296-304).
Mayfield, E., Adamson, D., & Rosé, C. P. (2012, July). Hierarchical conversation structure

prediction in multi-party chat. In Proceedings of the 13th Annual Meeting of the Special
Interest Group on Discourse and Dialogue (pp. 60-69). Association for Computational
Linguistics.

Malik, R., Subramaniam, L. V., & Kaushik, S. (2007, January). Automatically Selecting
Answer Templates to Respond to Customer Emails. In IJCAI (Vol. 7, pp. 1659-1664).

Mihalcea, R., Corley, C., & Strapparava, C. (2006, July). Corpus-based and knowledge-
based measures of text semantic similarity. In AAAI (Vol. 6, pp. 775-780).

Miller, G. A. (1995). WordNet: a lexical database for English.Communications of the
ACM, 38(11), 39-41.

Moldovan, D., & Novischi, A. (2002, August). Lexical chains for question answering.
In Proceedings of the 19th international conference on Computational linguistics-
Volume 1 (pp. 1-7). Association for Computational Linguistics.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130-137.
Salton, G., Wong, A., & Yang, C. S. (1975). A vector space model for automatic

indexing. Communications of the ACM, 18(11), 613-620.
Shen, D., Yang, Q., Sun, J. T., & Chen, Z. (2006, August). Thread detection in dynamic

text message streams. In Proceedings of the 29th annual international ACM SIGIR
conference on Research and development in information retrieval (pp. 35-42). ACM.

Stolcke, A., Coccaro, N., Bates, R., Taylor, P., Van Ess-Dykema, C., Ries, K., ... & Meteer,
M. (2000). Dialogue act modeling for automatic tagging and recognition of
conversational speech. Computational linguistics, 26(3), 339-373.

Trausan-Matu, S., Rebedea, T., Dragan, A., & Alexandru, C. (2007). Visualisation of
learners' contributions in chat conversations. Blended learning, 215-224.

Trausan-Matu, S. (2010, August). Automatic support for the analysis of online
collaborative learning chat conversations. In International Conference on Hybrid
Learning (pp. 383-394). Springer Berlin Heidelberg.

Wang, L., & Oard, D. W. (2009, May). Context-based message expansion for
disentanglement of interleaved text conversations. In Proceedings of human language
technologies: The 2009 annual conference of the North American chapter of the
association for computational linguistics (pp. 200-208). Association for Computational
Linguistics.

Wang, Y. C., Joshi, M., Cohen, W. W., & Rosé, C. P. (2008, March). Recovering Implicit
Thread Structure in Newsgroup Style Conversations. In ICWSM.

Yeh, J. Y., & Harnly, A. (2006, July). Email Thread Reassembly Using Similarity
Matching. In CEAS.

