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Abstract. In this paper, we present an automatically annotated corpus2 based on movie 
screenplays (script) and subtitles. We extract the relevant textual information from movie 
screenplays and subtitles using a regular expression approach. Then, we synchronize 
screenplays with subtitles using a matching algorithm, thus bounding each sentence from a 
script between two temporal limits. We also developed an application using the corpus to 
test our approach and to show practical situations where this corpus is useful. The 
application employs topic detection and it involves searching for a specified topic in the 
movie text and marking the topic as non-existent, episodic or primary topic for the 
analyzed text. The major problem we faced while working on this system was the 
unexpected structure of the screenplay sheets as this kind of files are not entirely written 
using a standardized format which can be easily parsed and structured automatically. Some 
types of errors can be overcome with regular expressions, but there are other errors that 
need a machine learning approach to be surpassed.   

Keywords: Video-text annotation, Corpus creation, Video understanding, Topic detection, 
Information retrieval.  

1. Introduction 
Processing data from movies, either textual, audio or video became lately an 
interesting field mostly because of the hardware improvement and 
development of machine learning techniques for processing large volumes 
of data, especially deep learning (Zou, Zhu, Ng, and Kai, 2012). One of the 
reasons why this field wasn't so interesting until recently could also be the 
lack of standard corpora, as movie data (screenplays, subtitles) do not have 
a completely standardized structure.  

Modern movies can roughly be defined as having two main textual 

                                                 
2 The corpus presented in this paper is avaiable online at the following address: 

https://github.com/HuleaAlexandru/MovieTextCorpus. 
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components (a screenplay/script and a subtitle), an audio component and a 
video component. While subtitles are synchronized and marked with 
timestamps from the movie, they contain only the dialogue between 
characters and do not provide any details about the action of the movie. 
Thus we decided to extract more textual information from the screenplay 
and to give temporal boundaries to every sentence in a screenplay. 

While a subtitle is organized in dialogue turns, each turn being marked 
with a timestamp, a screenplay is organized in scenes and transitions which 
mark the jump from a scene to another. A scene begins by specifying the 
place where the scene takes place, sometimes giving some extra temporal 
information, like the year, the month or the day when a scene takes place 
and the time of the day (e.g. day, night, sunset). A scene also contains a 
descriptive part where the characters participating in that scene are 
mentioned, the action is recounted and the location where the scene takes 
place is described. It also mentions the dialogue between characters and 
sometimes the script specifies the writer’s directions about how the scene 
should be played. 

In this paper, we present a method for extracting relevant data from 
screenplays by splitting the text in sentences and assigning a type to each 
sentence. After studying previous work in this domain (Turetsky and 
Dimitrova, 2004, Agarwal et al., 2014), we concluded that each sentence 
from a screenplay can be assigned to one of the following five main types: 
scene boundary, scene description, character name, dialogue, and metadata 
– each type having one or several subtypes. After we assign a type to each 
sentence from the screenplay we used the sentences marked as dialogue to 
synchronize the subtitle with the screenplay. The algorithm used for 
synchronization uses a Greedy strategy and it is one of the main 
contributions of this paper. Once the corpus construction is finished, we use 
the dataset for a topic detection application which uses a semantic network 
to create a taxonomy for a chosen topic and then we search the words from 
the taxonomy to identify the topic in the text.  

In our preliminary research we discovered several useful applications 
developed based on an annotated and synchronized movie corpus and our 
goal is to provide such a reliable corpus. The most relevant of these 
applications are: an action recognition project (Laptev, Marszałek, Schmid, 
and Rozenfeld, 2008), a system which improves the quality of the audio 
description and screenplays for the blind people (Rohrbach, Rohrbach, 
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Tandon, and Schiele, 2015) and a movie summarizer application (Tsoneva, 
Barbieri, and Weda, 2007).  

The paper is structured as follows. Section 2 presents the most important 
works in movie screenplay structuring and building corpora of video-text 
aligned data from movies. In Section 3 we detail the corpus development 
process, focusing on structuring screenplay text files and then aligning 
screenplays and subtitles. Next, Section 4 introduces the topic detection in 
movies application developed using the created corpus, while Section 5 
offers details about the accuracy of the proposed methods and algorithms 
used for creating the corpus. The paper ends with conclusions and proposes 
several improvements. 

2. Related work 
The first steps in processing textual data from movies were by Turetsky and 
Dimitrova (2004). They present the screenplays organized in scenes and 
each scene beginning with a “slug line” which contains a marker INT / EXT 
which specifies if the scene is taking place inside or outside. The slug line 
also specifies some spatial and temporal boundaries. They observed that 
each scene begins like this and continues with the description of the scene 
and action, along with the presentation of the characters which participate in 
the scene. Finally, the scene contains the dialogue between characters, 
where it is specified which character is uttering each turn and these are 
highlighted the keywords “V.O”, “O.S” which means that the speaker is off-
screen. There are identified action directions for actors and transitions by 
using keywords like “FADE IN”, “DISSOLVE TO”, “CUT TO”. 

They parsed the screenplay based on these observations using a regular 
expression approach. Then they employed a dynamic programming strategy 
to synchronize the subtitle with the screenplay and by doing that, they 
exposed a lot of possible applications that can be developed having a 
screenplay annotated with temporal boundaries.  

In the paper are exposed some problems like the semi-regular format for 
screenplays meaning that the screenplays don’t respect the same format and 
thus can’t be easily parsed. Another highlighted problem is represented by 
the scenes added, deleted or modified when filming the movie, which makes 
subtitles sometimes contain different turns from the original movie script. 
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This problem can be easily seen in the synchronization part where there are 
sentences in screenplay without an adequate correspondent in the subtitle. 
These problems along with proposed solutions will be analyzed in the next 
sections. 

A more recent paper published in this field was Agarwal et al. (2014). 
Their work builds on the ideas presented by Turesky and Dimitrova (2004). 
The project exposes a classification of screenplay lines in five classes: scene 
boundary, scene description, character name, dialogue, and metadata. They 
also presented two strategies used to assign a class to each line from 
screenplay: a regular expression approach and a machine learning approach.  

In the paper it is defined a screenplay as well-structured if the top three 
unique indentation sums up more than 90% of the lines. Knowing that a 
screenplay is well-structured, a class can be assigned using only the 
indentation. They observed that the indentation for the character name class 
is the greatest and the indentation for the dialogue class is greater than the 
indentation for scene boundary and scene description classes. Because the 
scene boundary and scene description classes have the same indentation, 
they can only be identified based on the keywords which appear in the scene 
boundary lines, keywords like INT / EXT. For the rest of the lines they 
assigned the metadata class. To check the sanity of the assignments they 
introduced the idea of structural constraints. They said that a scene 
description must be contained between a scene boundary line and a 
character name line, the dialogues should be between character name lines 
and all character names must be within two scene boundaries. We find this 
idea very useful not only to check the sanity of the assignments, but also to 
set some structural constraints before assign a class to a line. 

In a screenplay which is not well-structured, the regular expression 
approach firstly identifies, based on keywords, the scene boundary lines 
(INT / EXT), the character name lines (V.O, O.S), and metadata lines (CUT 
TO, DISSOLVE TO, FADE IN). After using the keywords, the character 
name class is set to lines with no more than three words, all in uppercase. 
Having set the scene boundary and character name lines, they can also set 
the dialogue and the scene description lines based on the structural 
constraints previously mentioned. The lines which are between a scene 
boundary line and a character line will be tagged as a scene description line 
and those between two character name lines or between a character name 
line and a scene boundary line will be tagged as a dialogue line. This way 
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the classification doesn’t need a well-structured screenplay but the precision 
is a bit lower comparing with a well-structured screenplay.  

Then the authors observed some limitations which couldn’t be overcome 
with this regular expression approach, so they decided that a machine 
learning approach will be more suitable. The main limitations of the regular 
expression approach presented in the paper, limitations observed in our own 
research, are: the missing of the specific keywords for scene boundary lines 
(INT/EXT) and the scene boundary and character name lines not being 
always capitalized. 

Laptev (2008) and Rohrbach et al. (2015) demonstrate the need of an 
annotated corpus based on textual data from movies. Both papers present 
two practical applications based on this such a corpus: an action recognition 
from movies system and an application which raises the quality of the audio 
description and screenplays for blind people. These projects use the 
information from the synchronized screenplays together with the video 
component of the movie to extract important information. Besides 
extracting particular information, we see in these papers the corpus being 
used as a provider of data for several computer vision applcations. An 
example presented by Laptev (2008) is to use the textual data to identify 
actions from movies and then to validate them with computer vision 
techniques. These two papers show the need of a reliable corpus which 
provides information about both the text and video of a movie which can 
later be the input for other practical applications in natural language 
processing and computer vision (or a combination of both). 

 3. Corpus creation 
The entire process of creating the corpus is organized in three main parts: 
data collection, annotation and synchronization. For every movie, the 
process starts with a subtitle file and a screenplay file and ends with both 
files annotated and synchronized with timestamps. 

 3.1 Data collection 
The first part of creating the corpus is the information gathering. We keep a 
file which contains the links for the screenplay and subtitle files and the 
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name of the movie.   
We collected the subtitle files from the website Open Subtitles 

(http://www.opensubtitles.org) which provides an API using the XML-RPC 
protocol to communicate with other programs. Using this protocol we used 
HTTP requests to search for a specific subtitle file based on the movie name 
and the link from the initial file.  

The screenplay files were found on the International Movie Script 
Database (http://www.imsdb.com). To download a file, only a single HTTP 
GET request was needed.  

We chose 80 movies to create the initial database, but one can add a 
movie to the database only by writing all the required data in an input file: 
the name of the movie and two links to the corresponding screenplay file 
and subtitle file from the aforementioned sites. 

After downloading the subtitle and screenplay files, we removed 
formatting tags, in this case HTML, CSS and JavaScript tags, and obtained 
two text files with only the textual content of the subtitle and movie script. 

 3.2 Annotation process 
The process of annotation starts from the ideas presented in Section 2, but 
we also developed original methods, as well as new particularities, based on 
the observed performance of the other approaches. These will be further 
detailed in this section.  

For the subtitle file, the annotation process is performed by merely 
splitting the text in sentences and assigning each sentence two temporal 
boundaries (the time for the current turn in the subtitle and the time of the 
subsequent turn), a very easy task considering the format of a subtitle file. 

For the screenplay file, the annotation is troublesome, mostly because of 
the semi-regular format of these files. We chose to split the text into lines 
and assign to each line one of the following five classes: scene boundary, 
scene description, character name, dialogue, and metadata. We further split 
the metadata class in three subtypes: transition between scenes, author 
direction, and undefined.  The scene boundary lines are the first lines in a 
scene and contain a specific marker (INT / EXT) to specify if the scene is 
taking place indoors or outside, the place where the scene takes place and 
the time of the day (day, night). The scene description lines recount the 
action, describe the scene and introduce the characters which participate at 
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the scene. The character name lines provide the list of characters who are 
about to speak, the dialogue lines represent the speech of each character and 
the metadata lines are all the remaining lines. The metadata lines can be 
transitions between scenes, author directions which express the way a 
character should play the scene and the undefined type represents the lines 
with no relevant information like a scene number or the name of the movie. 
After assigning a class to each line in the script, we create blocks from 
consecutive lines that have the same class and then split the blocks into 
sentences, assigning to each sentence the class of the block. Figure 1 shows 
an example of an annotated scene from the script of the movie “Memento” 
which was created using the method proposed in this section.  

Because the screenplay files don’t have a regular format we decided to 
annotate them using two diffent strategies: one using only structural 
constraints and keywords and another using the indentation as a constraint 
as well if the file is well indented. 

 A screenplay file is considered well indented if the first five most 
common indentation sums up more than 95% of lines. We observed that the 
lines from each class have the same indentation level for a well indented 
screenplay, while sometimes scene boundary class and scene description 
class having the same indentation.   
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scene boundary can be only metadata or scene description lines. We 
identified the dialogue lines as the block which follows a character name 
line, but the block can contain author direction lines which can be identified 
as previously explained. The scene description class was assigned to the 
lines between scene boundary lines and character name lines, between two 
blocks of dialogue and between a dialogue block and a scene boundary line. 
Finally, the character name lines and the scene boundary lines are always 
capitalized and the character name lines usually have less than four words. 

The indentation constraints only restrict us to assign a class to a line that 
has a different indentation level than the class indentation level. 

The novelty of this approach, besides using indentation as a constraint 
and some structural constraints, consists in the idea of blocks. We call a 
block multiple lines of the same type, generally enclosed by empty lines. 
The blocks usually have the dialogue or scene description type, but there are 
metadata or scene boundary blocks as well. We identified some special 
cases where, between a character name line or an author direction line and a 
dialogue block are no empty lines. A similar case we discover between 
some scene boundary lines and scene description lines. These cases are not 
a problem though, because we identify from the start, the scene boundary 
lines, the character name lines and the author direction lines and we use the 
blocks to separate the dialogue lines from the scene description lines. 

To summarize, the scene boundary lines can be identified only by 
searching for the capitalized lines which contains INT/EXT keywords. We 
discovered the character name lines using the specific keywords and the less 
than four words rule and the metadata lines based on keywords and markers. 
After assigning these three classes to the specific lines, we can find the 
dialogue lines based on character name lines and the scene description lines 
based on all the other classes. The main steps gathered in a pseudocode are: 

• Set metadata class, transition type based on keywords;  

• Set metadata class, author direction and undefined type based on 
parenthesis; 

• Set scene boundary class based on keywords; 

• Set character name class based on keywords; 

• Set character name class based on less than four words rule; 
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• Set dialogue class for each block which follows a character name line; 

• Set scene description class based on structural constraints.  
 
The strategy that involves indentation constraints is a little bit different 

from the previous one. It discovers the indentation level of each class and 
then uses it as an additional constraint. The main steps are: 

• Set metadata class, transition type based on keywords; 

• Set metadata class, author direction and undefined type based on 
parenthesis; 

• Determine the indentation level of scene boundary class based on the 
capitalized lines which contain the scene boundary keywords; 

• Set scene boundary class based on keywords and indentation; 

• Determine the indentation level of character name class based on the 
capitalized lines which contain the character name keywords or respect 
the less than four words rule; 

• Set character name class based on indentation and keywords or less than 
four words rule; 

• Determine the indentation level of dialogue class based on the first lines 
without class which follow character name lines;  

• Set dialogue class for the lines without class which follow character 
name lines and have the proper indentation level; 

• Determine the indentation level of scene description class based on the 
first lines without class which follow scene boundary lines; 

• Set scene description class for the lines without class which are between 
scene boundary lines and character name lines or between two dialogue 
blocks or between a dialogue block and a scene boundary line  and have 
the proper indentation level; 

• Set the class for the lines without class based only on indentation; 

• Set the class based on the class block which contains the line. 
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most restrictive one as it returns a match only if more consecutive words 
from the searched text are found in an indexed text. The match search 
method returns all texts which have at least one common word with the 
query and the results are ranked based on the number of matched words and 
whether the words have the same order in the query and the indexed 
document. The common search uses a tf-idf English analyser (Manning and 
Schütze, 2009) which offers more relevance to the sentences which contain 
rare words from the query.  

We then developed a Greedy algorithm to assign as many dialogue turns 
from a script to a subtitle turn. The ideal case would be if all dialogue turns 
from the screenplay would appear in the subtitle and all subtitle turns could 
be found in the dialogue turns. As concluded in the related work section, 
this case is very rare because the subtitle and the screenplay don’t always 
contain the same scenes. In the subtitle we see scenes that don’t exist in the 
screenplay, modified scenes or some scenes that are in the screenplay and 
were eliminated in the movie and the subtitle. We also observed that there 
are some turns in the subtitle and the screenplay, with the same meaning, 
but written with different words. This is also the reason why we cannot find 
for all dialogue turns an adequate match in the subtitle. 

 The proposed Greedy algorithm can be summarized as follows: while 
there is a relevant match between a dialogue and a subtitle turn, find the 
most relevant pair which doesn’t break the consistency constraint and keep 
that match. An optimized way to ensure that the consistency constraint 
won’t be broken is to assign each turn two boundaries where it can be 
searched. For example, if we have three dialogue turns A1, A2, A3 which 
appear in this order in a screenplay and B1, B2 – 2 subtitle turns in this 
order in the subtitle and the set of existing matches A1–B1 and A3–B2, we 
can search for a match for A2 only between B1 and B2 as illustrated in 
Figure 3. 
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script, we are able to assign temporal boundaries to each turn. Of course, the 
higher the matching percentage between dialogue and subtitle turns is, more 
precise temporal boundaries we will obtain for each part of the script. For 
each sentence B from the screenplay, without assigned temporal boundaries, 
we search for the first preceding sentence with temporal data – A with 
boundaries A-start and A-end, and for the first subsequent sentence with 
boundaries on the right – C between C-start and C-end. Thus, for sentence 
B we will set the temporal boundaries between A-start and C-end. 

An example that shows how the system works is presented in the 
following figures. Figure 4 contains the screenplay for the movie 
“Amadeus”, while Figure 5 shows how the text is annotated following the 
steps presented in this section. Figure 6 presents the synchronization 
annotation of a sample from the movie script of “Memento” together with 
its corresponding subtitles. In this figure we also highlight the matches 
relevant enough to be detected by our program. The used search method 
was a combination of match phrase, match and common search.  

After synchronization, we run a test and keep only the movies that have 
more than 33% of the dialogue turn from the screenplay matched with a 
corresponding subtitle turn. We considered that a lower percentage affects 
the precision of the temporal boundaries for too many sentences. This 
means that the subtitle and the screenplay are too different as previously 
detailed. The scenes from the screenplay added, deleted or modified when 
filming the movie and thus also in the subtitle file have a major impact on 
this result. The differences between two sentences from the subtitle and the 
screenplay, with the same meaning but written with in a different manner 
also degrade the quality of the synchronization.   
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WordNet (Miller, 1995, Fellbaum, 1998) is a linguistic semantic 
network, a tool which keeps pairs of words – called synsets – semantically 
related, based on specific relationship between the two words. The main 
relationships are hyponymy and hypernymy, these relationships have 
associated a higher relevance too when defining a topic. A word X is a 
hyponym of a word Y if X is more specific than Y. The hypernymy 
relationship is the opposite relationship. A word X is a hypernym of a word 
Y if X is more generic than Y. An example for these two relationships is the 
pair “weapon” – “gun”, “gun” is a hyponym for “weapon” and “weapon” is 
a hypernym for “gun”. We used some other relationships with a lower 
relevance score like part – whole relationships (e.g. “wing” – “plane”). 
Figure 7 presents the relationships between the first synset of the word “car” 
and other synsets extracted from WordNet. 

A topic is defined starting from a seed word and then we use WordNet 
relationships to find other words semantically related with the initial one. 
Because we start with some initial keywords and their meaning, we create a 
taxonomy by adding some other words obtained by using the relationships 
already exposed. For each word added in the taxonomy that we create, we 
also keep its part of speech. When we search for a word in a scene, we 
compare both the word and its part of speech.  

In Clifton, Cooley and Rennie (1999) the search is somehow similar, 
meaning that they only look for the words that have the primary meaning 
the same with a keyword. This way the meaning of the words in the 
taxonomy is related with the topic. The paper says that 80% of the words 
are used with their primary meaning in texts. Using the part of speech 
constraint, we look for a word with a specific part of speech, fact that raises 
the precision above 80%.  
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We didn’t obtain very large differences between the methods mainly 
because the number of inconsistencies is around 30-40 in the whole process 
of synchronization. While we analyzed the charts, we observed that the 
methods which don’t keep any match are better than the methods that keep 
the match with a higher relevance score. An explanation for this result could 
be that choosing a match from an inconsistency will narrow the search 
interval for the next steps and that match could be an incorrect one, so when 
we get an inconsistency it is better not to choose any of the matches. 

For the movies that pass all the tests, using the best search algorithm (the 
combination of match phrase, match search and common search) and the 
best method to avoid inconsistencies, we got the distribution of the 
synchronization accuracy presented in Table 1. 

Table 1. Synchronization percentage distribution 
Synchronization range (%) Number of movie screenplays

30 – 40 9
40 – 50 13
50 – 60 12
60 – 70 10
70 – 80 4
80 – 90 7

 
For the topic detection application we ran a test for the topic “crime” and 

we started with the words “murder” as noun and verb, “gun” and “violent”. 
After using the WordNet ontology we obtained some other relevant words 
like “weapon”, “shoot down”, “kill”, “barrel”, “hostile”, “trigger”, 
“homicide” with a high score of relevance, but some irrelevant words too 
like “instrument” with a lower score. There are about 5% - 10% cases where 
the detection of the topic went wrong. The main problem that was identified 
is that the taxonomy extracted from WordNet doesn’t contain the words 
related with this topic (“crime”). Another problem is that the topic didn’t 
exist in the scene, but there were a lot of irrelevant words that existed in the 
taxonomy and even if these words have a lower relevance score, if we find a 
lot of them, the total relevance score will be higher than the established 
threshold. An example of a scene where the crime topic is identified can be 
seen in the Figure 10. We identified the “crime” topic as a primary topic in 
the movie “Memento” because we find it in 29 out of 186 scenes. 
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name lines not being capitalized. This problem could be solved using a 
machine learning approach. 

In the future we shall try a machine learning approach for solving these 
structural problems to improve the precision of classification of sentences in 
the script into the various classes presented in this paper. We think of using 
this corpus in some other applications with a more practical purpose such as 
automatic captioning of movies for people with disabilities. 
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