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Abstract. Cross-functional teams with different technical backgrounds working on cross-
platform environments require the production of flexible modeling of user interfaces in 
early steps of a design process. We observe that model-driven engineering (MDE) is 
currently gaining acceptance in many domains. However, existing solutions have no 
support for collaborative prototyping of user interfaces by sketching recognition for 
multiple stakeholders (e.g., designers, developers, final end users) working with 
heterogeneous computing platforms (e.g., smartphones, tablets, laptops, desktop), on 
different, perhaps separate or shared, interaction surfaces (e.g., tables, whiteboards) in a co-
located way or remotely. This requires flexibility to explore and reuse vague and uncertain 
ideas as model sketching. This paper presents UsiSketch, an MDE method for modeling 
sketches that offers the following novel features resulting from a requirement elicitation 
process: sketching recognition on different surfaces based on a new recognition algorithm 
that accommodates very large surfaces and model-based design of user interfaces with 
collaboration.  

Keywords: Sketching, Collaborative Prototyping, Graphical User Interface, Design Tools 
and Techniques.  

1. Introduction  
Over the last years, Model-Driven Engineering (MDE) solutions and 
modeling platforms have been developed to simplify and automate many 
steps of MDE processes (Eisenstein et al., 2001). Kent (2003) argue that 
MDE promotes the reuse of productive modeling artifacts produced and 
consumed in the development process. We observe that MDE is currently 
gaining acceptance in many domains. However, several modeling platforms 
have focused on the last stages of the design process. The HCI domain 
shows a clear need for MDE methodology and tools to support User 
Interfaces Design (UID) (Pérez-Medina et al., 2007). Considering the UI as 
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a model, MDE is able to answer the specific needs of the HCI community in 
terms of domain-specific meta-models and models. Nevertheless, the HCI 
community has to incorporate the proposed current standards used in MDE. 

In the HCI domain, Buxton (2007) describes that the design process 
begins with ideation. Cross-functional teams with different technical 
backgrounds working on cross-platform environments require the 
production of several propositions of user interfaces at the latest stages of 
the design process. Those propositions are usually explored through 
sketches and prototypes considered as models (Demeure et al., 2011) which 
could then be submitted to static analysis for further exploration (Beirekdar 
et at 2002). Sketching is also particularly challenging when prototyping 
multi-platform user interfaces for multiple contexts of use (Florins et al., 
2006). Coutaz (2010) found that MDE lacks support for early stages of 
design where the creativity and collaborative production of modeling 
sketches are crucial to elicit vague and uncertain ideas in projects requiring 
the design of advanced UIs. 

In literature review, we found many software development frameworks 
like Gonzalez-Pérez (2010), interactive applications and academic research 
supporting sketching activities. However, the solutions have no support for 
distributed collaboration in very large surfaces, multi-level of prototyping 
and the execution of the user interface produced. 

We present UsiSketch, a software-hardware environment to facilitate the 
tabletop collaborative prototyping of model-based UIs in early steps of the 
design process when multiple stakeholders have only a vague goal in mind 
of what should be produced. We present a method that recognizes UI 
sketches on very large interaction surfaces. UsiSketch is an Eclipse1 
application that supports multiple computing platforms and provide support 
for collaboration of stakeholders and final users. Our solution addresses the 
gap between HCI flexible practices and productive models required for the 
MDE community. The rest of this paper is structured as follows: Section 2 
introduces our motivations and design challenges. Section 3 presents a 
review of sketch recognition algorithms for shape recognition. The Model 
Sketching method for very large interaction surfaces is later discussed using 
a case study in section 4. Finally, section 5 presents our conclusion and 
                                                 
1 Eclipse is an open source community for individuals and organizations who wish to collaborate on 

comercially-friendly open source software based on Java (https://eclipse.org/).  
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some future avenue to this work. 

2. Motivations and design challenges 

2.1 General motivations 
Sketching is largely recognized as an inexpensive way of producing low-
fidelity prototypes, which helps framing design problems, therefore 
producing better design. However, before starting to discuss sketching in UI 
design, the main subject of the research presented in this paper, some 
definitions of classical sketching and UI design need to be presented. 

Firstly, we refer to sketch as described in (Johnson et al., 2009): quickly 
made depictions facilitating visual thinking, which may include everything 
from abstract doodles to roughly drawn interface. The aforementioned work 
restricts neither the drawing medium nor the subject matter. Secondly, our 
work is related to both interaction and interface designs. Interaction design 
is the discipline “related to design interactive products to support people in 
their everyday and working lives” expressed by Sharp & Preece (2007). 
Interfaces of interactive systems are one example of such product. 

2.2 Sketching in design 
When designing, people draw things in different ways, which allows them 
to also perceive the problem in new ways. Schon & Wiggins (1992) found 
that designers engage in a sort of “conversation” with their sketches in a 
tight cycle of drawing, understanding, and interpreting. As the findings of 
Goel (1995) point out, the presence of ambiguity in early stages of design 
broads the spectrum of solutions that are considered and tends to deliver a 
design of higher quality. Van der Lugt (2002) conducted an experiment to 
analyze the functions of sketching in design in which participants produced 
individual sketches and then presented them to the group for discussion. 
From the experiment conducted by Vander Lugt, three primary sketching 
functions were identified: 

F1: Sketching stimulates a re-interpretive cycle in the individual 
designer's idea generation process: design as a cyclic process of sketching, 
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interpreting and taking the sketches further. 
F2: Sketching encourages the designers to reinterpret each other’s ideas: 

when the sketches are also discussed (as opposed to sketch for self-
interpretation), the designer invites others to interpret her drawings. The 
function of inviting re-interpretation described by van der Lugt (2002) is 
especially relevant for the idea generation process, as re-interpretation leads 
to novel directions for generating ideas. 

F3: Sketching stimulates the use of earlier ideas by enhancing their 
accessibility. Since it is externalized, sketching also facilitates archiving and 
retrieval of design information. 

2.3 Sketching in user interface design 
In order to support sketching into UI design, we need to analyze the process 
in which UI design is included. Currently, the development life cycle of 
interactive applications consists of a sophisticated process that does not 
always proceed linearly in a predefined way. The tools available for UI 
development do not usually focus on UI design in which designers usually 
explore different alternatives, but in UI modeling as a final product, where 
designers must abide by formal standards and notations. Many tools are 
available for both modeling and design. However, practitioners are currently 
forced to choose formal and flexible tools. Whichever they choose, they 
lose the advantages of the other, with attendant loss of productivity and 
sometimes of traceability and quality. 

(Johnson et al., 2009) claim that great care must be taken to support the 
designer's reflection when making design software that employs sketch 
recognition. If the system interprets drawings too aggressively or at the 
wrong time, it may prevent the human designer from seeing alternative 
meanings; recognize too little and the software is no better than paper. 

The studies of (Cherubini et al., 2007) showed that designers desire an 
intelligent whiteboard because it does not require hard mental operations 
while sketching during meetings or design sessions. Calico proposed by 
(Mangano et al., 2010) is a good example of “vanishing tool” as it keeps 
itself out of the way between the developers and the models, and this can be 
useful especially during early design stages. However, it is not obvious to 
explain why software designers resist adopting them, despite of the ubiquity 
and low cost of pen-based and touch devices (Cherubini et al., 2007). 
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2.4 Design goals for collaborative sketching 
We would define Collaborative Sketching (CS) as a mix of Collaborative 

Design and Design by Sketching. Although CS is already defined and 
supported by (Geyer et al., 2010; Bastéa-Forte & Yen, 2007; David & 
Hammond, 2010; Hailpern et al., 2007; and Haller et al., 2010). Our goal is 
also to define a specific domain of CS for User Interface design. 

We have observed design sessions related to user interface development 
conducted in two companies. The people involved on those sessions were 
designers, project managers, programmers and frequently stakeholders. In 
overall, in these companies, design sessions are usually carried out around a 
central topic, about which people discuss in order to produce some artifact, 
usually a report with a list of requirements, wireframes and some session 
log of the decisions made around the interaction. It is important to note that 
this report is not produced on site but after the meeting, for what people 
usually take pictures to remember and register what was discussed. 
Nevertheless, the design sessions most often proceeded with three distinct 
phases: 

1. Mental model construction and concepts: the mediator leads the task, 
asking the participants the essential elements of the tasks. 

2. Scenario construction: the participants are usually divided into 
groups to focus on one scenario each. They usually do it using a big 
sheet of paper and use post-its. After each has agreed on its own 
scenario, the sheets are arranged as a storyboard on a wall for 
discussion. 

3. Interface prototyping: the participants sketch the UI based on what 
was discussed and learned on the scenarios discussion. 

3. Sketch recognition algorithms for shape recognition 

3.1 Recognition algorithms 
Generally, the purpose of the recognition algorithm is to enable a computer 
to identify the shape or element shown by a hand drawing. Starting from the 
idea that a drawing is always subject to interpretation, Beuvens & 
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Vanderdonckt (2012) found that these algorithms are accurate to the order 
of 80% when adapted to the user. Often, the algorithms are specific to a 
certain scope, for instance: recognition of symbols, geometric shape 
recognition, recognition of signatures, etc. 

We focus on studying four generic algorithms for gesture recognition. 
The algorithms selected are Rubine by Rubine (1991), One Dollar proposed 
by (Wobbrock et al., 2007), Dollar P created by (Vatavu et al., 2012), 
Levenshtein by (Coyette et al., 2007) and Stochastic Levenshtein proposed 
by Ocina & Sebban (2006). The  reasons for which we use these algorithms 
are that we know them well and they are part of the research performed in 
our research team. We invite the reader of this paper to review an 
exhaustive comparison of these algorithms performed in Usi Gesture: an 
Environment for Integrating Pen-based Interaction in User Interface 
Development proposed by Beuvens & Vanderdonckt (2012). All details and 
screenshots related to this procedure are accessible at https://goo.gl/0hPnih. 
They are not entirely described here since it is beyond the scope of this 
paper. However, we present an overview of Levenshtein's algorithm 
because there is the starting point of our new recognition algorithm. 

3.2 Levenshtein's algorithm 
This algorithm is based on the edit distance between two strings as a 
measure of their dissimilarity. The principle behind the distance is to 
transform one string “A” into another string “B” using the basic character 
wise operations delete, insert and replace. The minimal number obtained 
after the transformation is called the edit distance or Levenshtein's distance 
(Coyette et al., 2007). The minimal number of needed edit operations for the 
transformation from A to B is called the smaller. Its value represents the 
distance between these strings. 

Figure 1 shows an example of the grid quantization of freehand shape. 
The features to be extracted from the raw data are based on the principle 
described by D. Llorens & Zamora (2008). The representation of the 
rectangle is superposed with a grid and the freehand drawing is quantized 
with respect to the grid nodes. Each grid node has 8 adjacent grid nodes and 
for each pair of adjacent nodes one out of 8 directions can be given (i.e: 1 
for North, 2 for NorthEast, 3 for East, and so on). From the sequence of 
successive grid nodes, a sequence of directions can be derived. This 
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Table 1. Classification of algorithms for gesture recognition 
Principle Levenshtein Stoc. Levenshtein Rubine $1 $P 
Single stroke √ √ √ √ √ 
Multiple stroke √ √ χ χ √ 
Direction invariant √ √ √ √ √ 
Scale invariant χ χ √ √ √ 
Rotation invariant √ √ √ √ χ 

4. The method for modeling sketches on very large 
interaction surfaces 
This section shows the method for model sketching for very large surfaces. 
The state-of-art for gesture recognition, such as Rubine proposed by Rubine 
(1991), One Dollar created by (Wobbrock et al., 2007) and Dollar P by 
(Vatavu et al., 2012) propose low-cost solutions, easy to understand, 
implement, and offer high performances. However, these approaches have 
limitations. For instance: 

1. One Dollar only handles single stroke gestures and the algorithm 
provides tolerance to gesture variation. It means that the algorithm 
cannot distinguish gestures whose identities depend on specific 
orientations, aspect, ratios or locations. For example, separating 
circles from ovals, up-arrows from down arrows is not possible. 

2. Dollar P is invariant to direction due to its point-cloud representation. 
It means that clockwise and counterclockwise circles cannot be 
identified. 

We are interested in recognizing gestures without considering their 
direction and their size. A viable alternative to improve the recognition 
accuracy is to apply a pre-processing on each gesture before calling the 
Levenshtein's algorithm. 

Before starting the description of the method for very large surfaces, a 
case study is presented. The aim is to take advantage of the proposed 
method. The case study consists in a set of sequential tasks accomplished by 
an executive coordinator in order to manage the members of a group for a 
course in the context of a Learning Management System. The interaction 
scenario is defined in a task tree model depicted by Figure 6. The task 
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function for the tool, a medium priority (with 19 requirements) is a useful 
functionality but not indispensable, finally a low priority (with 5 
requirements) is a functionality regarded as an accessory. 

Most of the requirements for the proper functioning of UsiSketch are 
undoubtedly those in categories Recognition and Drawing-Rendering. 
Without them, the tool could not achieve its main objective. The 
requirements of categories Ergonomics/usability and Architecture are 
essentially non-functional. For reasons of space, the presentation of all the 
requirements is beyond the scope of this document, but one example is 
shown in table 2. 

Table 2. An example of one requeriment for recognition 
Number: 5 Priority: Medium 

Type: Non-Functional Responsible: ZZ 
Description: Composition rules (or grammar) must be specified outside the software code 
Motivation: Set new rules without touching the source code; allows great flexibility of the tool in the 
definition of the compositions; prevents the designer from having to adapt to the rules of composition 
which do not suit it 
Scenario: New widget to be defined; changing a composition rule (or grammar) clearer for the 
designer 
Beneficiary: Designer 
Prerequisites: Requirement 2 (the tool must be able to combine simple forms in a more complex form 
or widget, according to pre-established rules. Each time a new form is added to a window, the 
software must check whether it is possible to combine it with other forms) 

 
From these objectives, we describe our method for model sketching for 

very large interaction surfaces in the next section. The proposed method is 
composed of three main phases, that are: pre-production, production, and 
execution phases. The pre-production phase aims at defining the underlying 
grammar of the gestures to be made during the design session and at 
training the algorithms for enhancing their recognition capabilities; the 
production phase regard the recognition of performed gestures on a large 
surface and the creation of an XML file as output; the execution phase aims 
at executing a simulation of the designed UI. 

4.1 The pre-production phase 
Figure 7 shows a UML activity diagram of the pre-production phase. The 
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Our grammar specification supports multiple representations of a specific 
widget. Figure 10 shows a hierarchical representation of the ListBox 
component. On the hierarchical representation many representations can be 
combined to define new representations. At the top (Part a of figure) of the 
hierarchical representation the ListBox component is represented by a 
rectangle, two triangles and a line. Next, two additional representations 
(Parts b and c of the figure) have been created to specialize the original 
representation of ListBox. Finally, these representations can be combined 
into a more complex representation of ListBox. 

4.1.2 Define sketches 
UsiSketch requires a training phase in which every gesture can be 

classified according to a basic geometric shape. To facilitate this work, the 
define sketches activity aims to provide an initial list of basic geometric 
shapes. Figure 11 shows a set of initial shapes. The list will grow as the user 
works with the tool. 

4.2 The production phase 
The “Production phase” (see Figure 7) started in the capture of the 

gestures performed by the user to recognize and translate them in widgets. 
The activities in the “Production phase” are classified into four groups: pre-
processing, recognition, transformation and execution. Each of these 
activities is explained in more details in the next sections. 

4.2.1 The pre-processing block 
A viable alternative to improve the recognition accuracy is to apply a 

pre-processing on each gesture. Figure 7 shows the activities of the pre-
processing block. These activities are: Resampling, Chain conversion, 
Scaling, and Rotate. 
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shapes. 
Beuvens & Vanderdonckt (2012) define a manuscript gesture as a suite 

of one or several traits temporalized. It allows defining gestures as 
movements. In the category of manuscript gestures, it is possible to make 
distinctions between different types of symbols, for instance, letters and 
numbers: alphabet letters to uppercase or lowercase, with or without 
accents. We consider two categories of shape recognition: 

1. An online recognition, direct and intuitive, which takes place during 
the construction of the image. The online recognition requires one 
coherent result at any time. In addition, the algorithm must be fast 
enough to ensure user satisfaction during the design, and therefore be 
sensitive from a computational point of view. 

2. The offline recognition which is done only when the user requests it 
explicitly, usually takes place at the end of the construction of the 
image. The online recognition is less restricted from a computational 
point of view. However, this recognition is inherently non-
deterministic, the result may be wrong, but users will be able to 
correct their result. It is nevertheless useful when designers need to 
import a low fidelity prototype image. 

Figure 21 part (a) shows all gestures accomplished to design the user 
interface for the case study. Note that in part (b) the recognition of all 
gestures in geometric shapes. 

4.2.3 The transformation block 
UsiSketh must be able to combine multiple simple shapes in a more 

complex form or widget, according to pre-established rules. This section 
describes how the transformation activity is implemented. 

The combination of shapes. Once the shapes are recognized, we must 
also define a way to bring them to widgets. The complexity of defining a 
widget lies in the fact that a shape can represent different types of widgets. 
For example, a rectangle there is a button, a text field, container, etc.? In 
addition, certain shapes (in particular a triangle, a rectangle, cross) can be 
seen as a combination of lines allowing this type of combination an 
interesting feature to implement. 

To resolve this ambiguity, we have used the concept of contextual 
grammars proposed by (Caetano et al., 2002) and described in previous 
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The element “n” is the number of identical shapes of a certain type in a 
window, and “k” is the number of forms of this type specified in the 
grammar. If several types are present in a grammar, the number of 
combinations is the product of the combinations for each type. For example, 
the grammar of the ListBox of the Figure 21 part (b) is composed of 1 
rectangle, 2 triangles and 1 line. On a windows composed of 32 rectangles, 
6 triangles and 15 lines the number of cases to be tested is: 7.200 
combinations. 32!1! ሺ32 െ 1ሻ! ݔ 36!2! ሺ6 െ 2ሻ! ݔ 15!1! ሺ15 െ 1ሻ! ൌ 7.200								ሺ6ሻ 

To make this technique more efficient, we use a constraint programming 
engine proposed by Haralick & Elliot (1979). Each grammar is defined as 
follows: each form used is a variable whose initial domain is the set of the 
forms contained in the windows being analyzed. These areas are reduced 
progressively until they contain only a member; the variable is then 
considered to be linked. Once all the variables (i.e. all the forms involved in 
the grammar) are linked, the grammar is tested. If the grammar is valid, the 
solution is stored in a list of acceptable solutions. The engine then continues 
searching in linking variables, otherwise, until all possible solutions have 
been tested.  

The advantage of using a constraint programming engine is its ability to 
prune the search tree by constraint propagation: each constraint is treated 
independently, and if certain forms do not respect a constraint they may be 
removed. 

Types of Constraints. In the previous sections, we described three types 
of constraints: unitary, binary and global. Table 4 summarizes the 
constraints available for the combination of shapes. In addition to these 
descriptions, some constraints are perfectly Boolean, others are not. These 
constraints return a number between 0 and 1, where 1 means “perfect 
match” and 0 “no match”. We call them fuzzy constraints. For example, the 
constraint “<line> is vertical" is blurred because the system cannot oblige 
the designer to sketch a perfectly vertical line. Therefore, the constraint 
allows a straight line to be “near vertical”. A threshold value is defined for 
each constraint to enable the validation of these constraints. So, the 
constraint is considered valid if the returned value is greater than the 
threshold value. 
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Table 4. Constraints for the combination of shapes 
Unitary constraints 

isHorizontal 
Exclusively for lines (in wavelets or not) and arrows. 
It tests wheter a line (and only one line) is considered 
horizontal 

isVertical 
Exclusively for lines (in wavelets or not) and arrows. 
It tests wheter a line (and only one line) is considered 
vertical 

Binary constraints 

Intersects Tests if two forms overlap 

IsInside(f1, f2) Test if f1 is contained in f2 

IsInsideInLower Left- Corner(f1, f2)  Test if f1 is contained in f2, in the lower left corner 

IsInsideInLower Right- Corner(f1, f2)  idem, in the lower right corner 

IsInsideInUpper Left- Corner(f1, f2)  idem, in the upper left corner 

sInsideInUpper Right- Corner(f1, f2)  idem, in the upper right corner 

IsInsideOnTheBottom(f1, f2)  Test if f1 is contained in the lower part of f2 

IsInsideOnTheTop(f1, f2)  idem, in the upper part of f2 

IsInsideOnTheLeft(f1, f2)  idem, in the left side of f2 

IsInsideOnTheRight(f1, f2)  idem, the right side of f2 

IsOnTheRightOf(f1, f2)  Test if f1 is on the right of f2 

Global constraints 

AllDifferent(f1, ..., fn) 
Test if all shapes from f1 to fn are different. It is used 
to ensure that a shape is not selected more than once 
in a composition 

ClosedLoopConstraint(l1, ..., ln) Test if a group of lines from l1 to ln make a closed 
loop

 
Mutually exclusive grammars. Sometimes a grammar results to be valid 

on a group of forms, but there exist another combination of better quality 
(i.e. the value returned when testing is closer to 1). The value of these fuzzy 
constraints is used as a tie-breaker if a grammar is correct for several 
mutually exclusive combinations. Figure 22 illustrates this feature. At the 
left, eight lines handmade to represent two rectangles. Picture (b) represents 
one retained combination, but very blurred. Picture (c) represents a possible 
combination of better quality. The last picture is to be chosen. 

Linear constraints are used to validate if two mutually exclusive 
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maximize or minimize the source windows, Open the target windows in 
front of (or in back of) the source windows. Finally, the user can execute the 
prototype. 

5. Conclusion 
We have presented a sketching recognition method used to develop 

UsiSketch. Its technology runs on cross-platform and supports sketching 
recognition on different surfaces based.  

The presented method describes a new recognition algorithm that 
accommodates very large surfaces. It has the ability to recognize shapes and 
combinations of shapes. Actually, UsiSketch recognizes and interprets 8 
basic predefined shapes (i.e., triangle, rectangle, line, cross, wavy line, 
arrow, ellipse, and circle); 32 different types of widgets (ranging from check 
boxes, listboxs, textfields, buttons, video multimedia, etc.), and 6 basic 
commands (i.e., undo, redo, copy, paste, cut, new window).  

Users of different domains can combine multiple simple shapes in a more 
complex combination or widget, according to pre-established rules. The 
recognition is done at the time of drawing, and not at the end thereof. The 
high fidelity elements are widgets. These are very numerous, and new ones 
appear frequently. Therefore, and since the recognition algorithms are based 
on a supervised learning, wanting to recognize these individual widgets 
requires a training phase of the tool for each of them. Such a process would 
be tedious, and will never be completed: for every new widget, we should 
repeat the process. 

We have addressed the solution using the representation of a low fidelity 
widget as a composition of simple geometric shapes. For this reason, we 
decided to implement pattern recognition only on these geometric forms, 
greatly reducing the number of shapes to recognize. This reduces the time 
needed to train the algorithm. These forms are then combined in predefined 
grammars. 

Currently, we are working on developing new features. We will be able 
to easily evaluate the feasibility of our tool by conducting user experiments. 
The results will be used to evaluate the performance of the tool, and obtain 
new research perspectives. 
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