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Abstract. Cross-functiona teams with different technical backgrounds working on cross-
platform environments require the production of flexible modeling of user interfaces in
early steps of a design process. We observe that model-driven engineering (MDE) is
currently gaining acceptance in many domains. However, existing solutions have no
support for collaborative prototyping of user interfaces by sketching recognition for
multiple stakeholders (e.g., designers, developers, final end users) working with
heterogeneous computing platforms (e.g., smartphones, tablets, laptops, desktop), on
different, perhaps separate or shared, interaction surfaces (e.g., tables, whiteboards) in a co-
located way or remotely. This requires flexibility to explore and reuse vague and uncertain
ideas as model sketching. This paper presents UsiSketch, an MDE method for modeling
sketches that offers the following novel features resulting from a reguirement elicitation
process: sketching recognition on different surfaces based on a new recognition agorithm
that accommodates very large surfaces and model-based design of user interfaces with
collaboration.
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and Techniques.

1. Introduction

Over the last years, Modd-Driven Engineering (MDE) solutions and
modeling platforms have been developed to simplify and automate many
steps of MDE processes (Eisenstein et al., 2001). Kent (2003) argue that
MDE promotes the reuse of productive modeling artifacts produced and
consumed in the development process. We observe that MDE is currently
gaining acceptance in many domains. However, several modeling platforms
have focused on the last stages of the design process. The HCI domain
shows a clear need for MDE methodology and tools to support User
Interfaces Design (UID) (Pérez-Medina et al., 2007). Considering the Ul as
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amodel, MDE is able to answer the specific needs of the HCI community in
terms of domain-specific meta-models and models. Nevertheless, the HCI
community has to incorporate the proposed current standards used in MDE.

In the HCI domain, Buxton (2007) describes that the design process
begins with ideation. Cross-functional teams with different technical
backgrounds working on cross-platform environments require the
production of several propositions of user interfaces at the latest stages of
the design process. Those propositions are usually explored through
sketches and prototypes considered as models (Demeure et a., 2011) which
could then be submitted to static analysis for further exploration (Beirekdar
et at 2002). Sketching is also particularly challenging when prototyping
multi-platform user interfaces for multiple contexts of use (Florins et a.,
2006). Coutaz (2010) found that MDE lacks support for early stages of
design where the creativity and collaborative production of modeling
sketches are crucia to dlicit vague and uncertain ideas in projects requiring
the design of advanced Uls.

In literature review, we found many software development frameworks
like Gonzalez-Pérez (2010), interactive applications and academic research
supporting sketching activities. However, the solutions have no support for
distributed collaboration in very large surfaces, multi-level of prototyping
and the execution of the user interface produced.

We present Usi Sketch, a software-hardware environment to facilitate the
tabletop collaborative prototyping of model-based Uls in early steps of the
design process when multiple stakeholders have only a vague goa in mind
of what should be produced. We present a method that recognizes Ul
sketches on very large interaction surfaces. UsiSketch is an Eclipse
application that supports multiple computing platforms and provide support
for collaboration of stakeholders and final users. Our solution addresses the
gap between HCI flexible practices and productive models required for the
MDE community. The rest of this paper is structured as follows: Section 2
introduces our motivations and design challenges. Section 3 presents a
review of sketch recognition algorithms for shape recognition. The Model
Sketching method for very large interaction surfacesis later discussed using
a case study in section 4. Finally, section 5 presents our conclusion and

! Eclipse is an open source community for individuals and organizations who wish to collaborate on
comercially-friendly open source software based on Java (https://eclipse.org/).
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some future avenue to this work.

2. Motivations and design challenges

2.1 General motivations

Sketching is largely recognized as an inexpensive way of producing low-
fidelity prototypes, which helps framing design problems, therefore
producing better design. However, before starting to discuss sketching in Ul
design, the main subject of the research presented in this paper, some
definitions of classical sketching and Ul design need to be presented.

Firstly, we refer to sketch as described in (Johnson et al., 2009): quickly
made depictions facilitating visua thinking, which may include everything
from abstract doodles to roughly drawn interface. The aforementioned work
restricts neither the drawing medium nor the subject matter. Secondly, our
work is related to both interaction and interface designs. Interaction design
is the discipline “related to design interactive products to support people in
their everyday and working lives’ expressed by Sharp & Preece (2007).
Interfaces of interactive systems are one example of such product.

2.2 Sketching in design

When designing, people draw things in different ways, which allows them
to also perceive the problem in new ways. Schon & Wiggins (1992) found
that designers engage in a sort of “conversation” with their sketches in a
tight cycle of drawing, understanding, and interpreting. As the findings of
Godl (1995) point out, the presence of ambiguity in early stages of design
broads the spectrum of solutions that are considered and tends to deliver a
design of higher quality. Van der Lugt (2002) conducted an experiment to
analyze the functions of sketching in design in which participants produced
individual sketches and then presented them to the group for discussion.
From the experiment conducted by Vander Lugt, three primary sketching
functions were identified:

F1. Sketching stimulates a re-interpretive cycle in the individua
designer's idea generation process: design as a cyclic process of sketching,
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interpreting and taking the sketches further.

F2: Sketching encourages the designers to reinterpret each other’s ideas:
when the sketches are also discussed (as opposed to sketch for self-
interpretation), the designer invites others to interpret her drawings. The
function of inviting re-interpretation described by van der Lugt (2002) is
especialy relevant for the idea generation process, as re-interpretation leads
to novel directions for generating ideas.

F3: Sketching stimulates the use of earlier ideas by enhancing their
accessibility. Since it is externalized, sketching also facilitates archiving and
retrieval of design information.

2.3 Sketching in user interface design

In order to support sketching into Ul design, we need to analyze the process
in which Ul design is included. Currently, the development life cycle of
interactive applications consists of a sophisticated process that does not
always proceed linearly in a predefined way. The tools available for Ul
development do not usually focus on Ul design in which designers usualy
explore different aternatives, but in Ul modeling as a final product, where
designers must abide by formal standards and notations. Many tools are
available for both modeling and design. However, practitioners are currently
forced to choose forma and flexible tools. Whichever they choose, they
lose the advantages of the other, with attendant loss of productivity and
sometimes of traceability and quality.

(Johnson et al., 2009) claim that great care must be taken to support the
designer's reflection when making design software that employs sketch
recognition. If the system interprets drawings too aggressively or at the
wrong time, it may prevent the human designer from seeing aternative
meanings; recognize too little and the software is no better than paper.

The studies of (Cherubini et al., 2007) showed that designers desire an
intelligent whiteboard because it does not require hard mental operations
while sketching during meetings or design sessions. Calico proposed by
(Mangano et a., 2010) is a good example of “vanishing tool” as it keeps
itself out of the way between the developers and the models, and this can be
useful especially during early design stages. However, it is not obvious to
explain why software designers resist adopting them, despite of the ubiquity
and low cost of pen-based and touch devices (Cherubini et al., 2007).
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2.4 Design goalsfor collabor ative sketching

We would define Collaborative Sketching (CS) as amix of Collaborative
Design and Design by Sketching. Although CS is already defined and
supported by (Geyer et a., 2010; Bastéa-Forte & Yen, 2007; David &
Hammond, 2010; Hailpern et a., 2007; and Haller et a., 2010). Our goal is
also to define a specific domain of CS for User Interface design.

We have observed design sessions related to user interface development
conducted in two companies. The people involved on those sessions were
designers, project managers, programmers and frequently stakeholders. In
overal, in these companies, design sessions are usually carried out around a
central topic, about which people discuss in order to produce some artifact,
usually a report with a list of requirements, wireframes and some session
log of the decisions made around the interaction. It is important to note that
this report is not produced on site but after the meeting, for what people
usually take pictures to remember and register what was discussed.
Nevertheless, the design sessions most often proceeded with three distinct
phases:

1. Mental model construction and concepts. the mediator leads the task,

asking the participants the essential el ements of the tasks.

2. Scenario construction: the participants are usually divided into
groups to focus on one scenario each. They usually do it using a big
sheet of paper and use post-its. After each has agreed on its own
scenario, the sheets are arranged as a storyboard on a wall for
discussion.

3. Interface prototyping: the participants sketch the Ul based on what
was discussed and |earned on the scenarios discussion.

3. Sketch recognition algorithmsfor shape recognition

3.1 Recognition algorithms

Generally, the purpose of the recognition agorithm is to enable a computer
to identify the shape or element shown by a hand drawing. Starting from the
idea that a drawing is always subject to interpretation, Beuvens &
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Vanderdonckt (2012) found that these algorithms are accurate to the order
of 80% when adapted to the user. Often, the algorithms are specific to a
certain scope, for instance: recognition of symbols, geometric shape
recognition, recognition of signatures, etc.

We focus on studying four generic algorithms for gesture recognition.
The algorithms selected are Rubine by Rubine (1991), One Dollar proposed
by (Wobbrock et al., 2007), Dollar P created by (Vatavu et a., 2012),
Levenshtein by (Coyette et al., 2007) and Stochastic Levenshtein proposed
by Ocina & Sebban (2006). The reasons for which we use these algorithms
are that we know them well and they are part of the research performed in
our research team. We invite the reader of this paper to review an
exhaustive comparison of these algorithms performed in Usi Gesture: an
Environment for Integrating Pen-based Interaction in User Interface
Development proposed by Beuvens & Vanderdonckt (2012). All details and
screenshots related to this procedure are accessible at https://goo.gl/OhPnih.
They are not entirely described here since it is beyond the scope of this
paper. However, we present an overview of Levenshtein's algorithm
because there is the starting point of our new recognition agorithm.

3.2 Levenshtein'salgorithm

This agorithm is based on the edit distance between two strings as a
measure of their dissimilarity. The principle behind the distance is to
transform one string “A” into another string “B” using the basic character
wise operations delete, insert and replace. The minimal number obtained
after the transformation is called the edit distance or Levenshtein's distance
(Coyette et d., 2007). The minimal number of needed edit operations for the
transformation from A to B is caled the smaller. Its value represents the
distance between these strings.

Figure 1 shows an example of the grid quantization of freehand shape.
The features to be extracted from the raw data are based on the principle
described by D. Llorens & Zamora (2008). The representation of the
rectangle is superposed with a grid and the freehand drawing is quantized
with respect to the grid nodes. Each grid node has 8 adjacent grid nodes and
for each pair of adjacent nodes one out of 8 directions can be given (i.e: 1
for North, 2 for NorthEast, 3 for East, and so on). From the sequence of
successive grid nodes, a sequence of directions can be derived. This
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seguence can be coded using an alphabet represented by numbers from 1 to
8. Each value represents one direction. Consequently, when comparing a
sequence representing the gesture to recognize with the templates present in
the training set, we look for the template with the smallest edit distance.

N N
a/l\q

(2] (b) Chain = 3345577811

Figure 1. Example of a Square grid quantization of freehand shapes. Thewind rosein (a) describe a
gesture in the gesture in the form of a string. In (b), the gesture of the Rectangle. The corresponding
string for this gesture in relation to the wind roseis “ 3345577811 .

3.3 Stochastic L evenshtein's algorithm

Stochastic Levenshtein's proposed by Ocina & Sebban (2006) is based on
the number of suppressions, insertions and substitutions to transform one
chain of characters into another. These operations are modeled with a fixed
cost for each operation. An intuitive improvement consists in automatically
learning these costs in such a way that the precision of the comparisons is
increased. Levenshtein's agorithm is based on a probabilistic model to
achieve its purpose. The procedure to recognize a gesture is thus similar to
the classic version of the original Levenshtein's agorithm. The gestures are
first transformed into sequences of characters and then compared with the
gestures of the training set to find their corresponding class. The only
differenceis the use of a stochastic approach during the string comparison.

The main goal behind the selection of stochastic Levenshtein's algorithm
is the evaluation of the performances of a statical-based algorithm. The
advantage is its quite low time cost while most statical-based algorithms are
very expensive. Furthermore it represents a natural improvement of the
traditional Levenshtein's algorithm. The review of the recognition
algorithms allowed us to understand the following principles.
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3.4 Recognition of single and multiples strokes

We define a stroke gesture as the movement trajectories of user's finger or
stylus contact points with a touch sensitive surface. A stroke gesture is
usually encoded as a time-ordered sequence of two-dimensiona (X.y)
points. Optionally, stroke gestures can have time stamps as the third
dimension. A single stroke corresponds to the sequence of points excluding
the time stamps value (See gesture in Figure 1). As opposed to single stroke,
Figure 2 shows equivalent representations of an imaginary representation in
multi-strokes. Note that the imaginary gesture can be drawn using severa
strokes. Regarding the studied algorithms, only Levenshtein's algorithm,
their variant and Dollar P support the use of multi-stroke gestures.

—_—

Chain = 554333888 + 333455 Chain =55 + 333888333 + 55
Figure 2. Examples of animaginary representation in multi-stroke.

3.5 Direction invariant

Single and multi-strokes can vary in order and direction (See Figure 3).
Working with multi-strokes requires manipulating a time stamp value to
allow user's representations. In the case of the recognition of widgets from
shapes we consider the use of athreshold value configured by the user.

The chain vaue for this kind of gestures is then calculated by the
addition of the chain representations of each stroke and the time stamp
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value consumed by the user when finishing and starting a new stroke (See
figure 3). The use of gestures based in multi-stroke needs to generate all
possible permutations of a given representation, which generally causes an
explosion in both memory and execution time. Figure 2 shows examples of
the chain conversion for multi-stroke gestures.
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Figure 3. Illustration of the imaginary gesture by single and multi-stroke.
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3.6 Scaleinvariant

All studied recognition algorithms are scale invariant. Meserve (1983)
expresses that scale invariant is founded on a homothetic (or homothety)
transformation. The basic principle consists in scaling a gesture to a
reference square determined by a point “S” called its center and a nonzero
number “r’ called its ratio. We found that al the agorithms reviewed
support this principle. Figure 4 shows an example of a gesture in different
scales. Note that depending on the size of the gesture, the chain
representation might be different. This difference could make it difficult to
recognize gestures on very large surfaces. In the next sections we will
propose a strategy that artificially enlarges one chain while preserving the
general appearance of the gesture.

3.7 Rotation invariant

The principle of rotation requires that the set of points of an angle could be
rotated to best align with the other. The basic principle is to find over the
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space of possible angles for the best alignment between two points paths.
The process of rotation iteratively searches the best candidate gesture from
+1° to 360° (See Figure 5). We found that One Dollar requires much more
training examples to recognize the rotation gestures that are too dependent
on the rotation. Dollar P does not support rotation gestures.

p
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Chain =5555433333888883333455

Figure 4. Illustration of similar gestures in different scales.

Table 1 summarises the comparisons of generic algorithms for gesture
recognition in function of the presented principles. Existing software
incorporating an object recognition typically only supports one single
representation per object, frequently through a mono-directional single-
strike gesture.

We are interested in recognizing several representations for a single
object, without significantly affecting the performance. In addition, each
representation could be sketched in a multi-stroke way that is independent
of the direction of gesture. In this way, left-handed or right-handed persons
are equally supported.

Initial Gesture Rotation 90° C Rotation 180° C

— ®

Chain = 55543888345 Chain = 77765222567 Chain = 11187444781
Figure 5. Rotation in 90° and 180° of an imaginary gesture.
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Table 1. Classification of algorithms for gesture recognition

Principle Levenshtein Stoc. Levenshtein  Rubine  $1 P
Single stroke N N N N N
Multiple stroke N N x X N
Direction invariant N N N N
Scaleinvariant X X N N N
Rotationinvariant N N N X

4. The method for modeling sketches on very large
interaction surfaces

This section shows the method for model sketching for very large surfaces.
The state-of-art for gesture recognition, such as Rubine proposed by Rubine
(1991), One Dollar created by (Wobbrock et al., 2007) and Dollar P by
(Vatavu et al., 2012) propose low-cost solutions, easy to understand,
implement, and offer high performances. However, these approaches have
limitations. For instance:

1. One Doallar only handles single stroke gestures and the algorithm
provides tolerance to gesture variation. It means that the algorithm
cannot distinguish gestures whose identities depend on specific
orientations, aspect, ratios or locations. For example, separating
circlesfrom ovals, up-arrows from down arrows is not possible.

2. Dallar Pisinvariant to direction due to its point-cloud representation.
It means that clockwise and counterclockwise circles cannot be
identified.

We are interested in recognizing gestures without considering their
direction and their size. A viable alternative to improve the recognition
accuracy is to apply a pre-processing on each gesture before calling the
Levenshtein's algorithm.

Before starting the description of the method for very large surfaces, a
case study is presented. The aim is to take advantage of the proposed
method. The case study consistsin a set of sequential tasks accomplished by
an executive coordinator in order to manage the members of a group for a
course in the context of a Learning Management System. The interaction
scenario is defined in a task tree model depicted by Figure 6. The task
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model shows the activities that must be carried out in the application. The
first task that user needs to perform is select a group. Next, the application
shows automaticaly the potential members. Then, the user must select a
member and confirm the selection.

C___.\__) Add members

to a Group

B> -2 0> > —

Selecta Show Potential Select a Confirm the
Group members Member Selection
Course 1 Group

-name : String > {-name String < <enumeration> >
~-responsable : Professor 0..° EnumS

-startDate : Date Memb Open
-endDate : Date Sl s Closed
-status : EnumS -name : String 1.

Figure 6. Task model and Class diagram of the case study.

Figure 6 shows an UML class diagram of the case study. A course can
have groups. The basic information related to a training is: name, start (and
end) date. Status (open/closed) and manager. The groups consist of an
aggregation of members. One member can appear only in one group.

From the literature review, and especially in (Coyette et al., 2004; West
et a., 2015a; West et a., 2015b) we formulated a list of 42 main
requirements (30 functional requirements and 12 non-functiona
requirements) identified for our Modeling Sketches method. The
beneficiaries of these requirements are : Designers, Testers and Developers.
These requirements were classified into: 33 requirements for designers, 16
requirements for testers and 14 requirements for developers.

These requirements were then pre-validated from discussions together
with two Belgian companies interested in our tool. We also grouped the
requirements of several subsections. The defined categories, with the total
of requirements, are: Recognition (7), Drawing-Rendering (9), Prototyping
(4), Data (4), Simulation (4), Ergonomics/Usability (6), and Architecture
(7).

Each requirement has a priority based on the importance level of the
studied functionality. A high priority (with 18 requirements) is a vital
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function for the tool, a medium priority (with 19 requirements) is a useful
functionality but not indispensable, finally a low priority (with 5
requirements) is afunctionality regarded as an accessory.

Most of the requirements for the proper functioning of UsiSketch are
undoubtedly those in categories Recognition and Drawing-Rendering.
Without them, the tool could not achieve its main objective. The
requirements of categories Ergonomics/usability and Architecture are
essentially non-functional. For reasons of space, the presentation of all the
requirements is beyond the scope of this document, but one example is
shownin table 2.

Table 2. An example of one requeriment for recognition

Number: 5 Priority: Medium

Type: Non-Functional Responsible: ZZ

Description: Composition rules (or grammar) must be specified outside the software code

Motivation: Set new rules without touching the source code; allows great flexibility of the tool in the
definition of the compositions; prevents the designer from having to adapt to the rules of composition
which do not suit it

Scenario: New widget to be defined; changing a composition rule (or grammar) clearer for the
designer

Beneficiary: Designer

Prerequisites: Requirement 2 (the tool must be able to combine simple forms in a more complex form
or widget, according to pre-established rules. Each time a new form is added to a window, the
software must check whether it is possible to combine it with other forms)

From these objectives, we describe our method for model sketching for
very large interaction surfaces in the next section. The proposed method is
composed of three main phases, that are: pre-production, production, and
execution phases. The pre-production phase aims at defining the underlying
grammar of the gestures to be made during the design session and at
training the algorithms for enhancing their recognition capabilities; the
production phase regard the recognition of performed gestures on a large
surface and the creation of an XML file as output; the execution phase aims
at executing a simulation of the designed UI.

4.1 The pre-production phase
Figure 7 shows a UML activity diagram of the pre-production phase. The
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block of pre-production alows defining the grammar and some
classification of sketches. The “Pre-production phase’ is required to
configure the application for working with a specific set of widgets. Pre-
production also requires atraining step.

Gesture
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Figure 7. Pre-production and production phases for Modeling Sketches.

4.1.1 Define grammar
The contextua grammars are used to define forms as a composition of
simpler shapes. These forms may be pre-drawn or drawn and recognized by
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a pattern recognition technique. Each complex form is accompanied by a
grammar, itself composed of forms and constraints (the most typical being
“<form1> in <form2>"). If al the constraints of grammar are respected, the
complex form is recognized.

Figure 8(a) shows an excerpt of the listBox representation. In our case
study, a component of type Listbox is used as a catalog of existing groups,
as well as a catalog of al potential members to be included/deleted from a
selected group. Thiswidget is generally represented by a rectangle with two
triangles (the first at the top right, the second at the bottom right), and a
horizontal line inside the rectangle representing their elements. The
selection list is then trandated as a contextua grammar described by
(Caetano et d., 2002) and is presented in Table 3.

-Trianglel |

© none o : | e i 5= A
‘ ¥
Linel | . / Uisates
. S iincted O low
. Triangle
Ar v bk
Rectanglel -t
ListBox_84
LiviBex_84
ey
LitBox_84
ListBon_84 =1
. ] LivtBon_84 .
O medium Tosoy @ high

Figure 8. Representation of the ListBox Component.

Table 3. Contextual grammar for the ListBox representation

#  Shape Description of Constraint

1 Rectanglel

2 Linel Linel is horizontal

3 Linel Linel in the Rectanglel

4 Trianglel Trianglel in the Rectanglel at the top right

5 Trianglel Triangle2 in the Rectanglel at the bottom right

Contextual grammar will be used in the transformation phase to combine
multiple recognizer shapes in a more complex representation. We define
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three types of constraints: unitary, binary and global. Unitary constraint
tests a specific attribute on one form at a time. For example, the constraint
IsHorizontal Constraint(f) tests whether a line denoted as f (and only one
line) is considered horizontal. Binary constraint tests if a specific relation
between two forms is verified. For example, the constraint
isinsideContraint(f1, f2) tests if the form f1 is inside the form f2. Global
constraint tests a more complex relationship, involving an indefinite number
of forms. For example, the constraint ClosedLoopConstraint(l1, .. ,In) tests
whether a group of lines forms a closed loop. Figure 9 shows the grammar
representation for the ListBox in an XML format.

<?xml version="1.@" encoding="UTF-8"7>
<!DOCTYPE grammar SYSTEM "grammar.dtd">
<grammar:>

<graphic type="ListBox">
<representation id="0">
<shape id="Rectangle_@" type="Rectangle" />
<shape id="Triangle_3" type="Triangle" />
<shape id="Triangle_4" type="Triangle" />
<binaryConstraint id="0" shapel="Triangle_3" shape2="Rectangle_@"
condition="isInsideInUpperRightCorner" />
<binaryConstraint id="1" shapel="Triangle_4" shape2="Rectangle_@"
condition="isInsideInLowerRightCorner" />
</representation>
<representation id="1">
<shape id="Rectangle_2" type="Rectangle" />
<shape id="ListBox_1" type="ListBox" />
<binaryConstraint id="2" shapel="Rectangle_2"
shape2="ListBox_1" condition="isInsideOnTheRight" />
</representation>
<representation id="2">
<shape id="Line_@" type="Line" /»
<shape id="ListBox_1" type="ListBox" />
<binaryConstraint id="8" shapel="Line_8" shapeZ="ListBox_1"
condition="isInside" />
<unaryConstraint id="1" shape="Line_8" condition="isHorizontal" />
</representation>
</graphic>
</grammar>

Figure 9. The XML grammar representation for the ListBox.

Figure 10. A hierarchical representation for the ListBox component.
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Our grammar specification supports multiple representations of a specific
widget. Figure 10 shows a hierarchical representation of the ListBox
component. On the hierarchical representation many representations can be
combined to define new representations. At the top (Part a of figure) of the
hierarchical representation the ListBox component is represented by a
rectangle, two triangles and a line. Next, two additional representations
(Parts b and c of the figure) have been created to specialize the origind
representation of ListBox. Finally, these representations can be combined
into a more complex representation of ListBox.

4.1.2 Define sketches

UsiSketch requires a training phase in which every gesture can be
classified according to a basic geometric shape. To facilitate this work, the
define sketches activity aims to provide an initia list of basic geometric
shapes. Figure 11 shows a set of initial shapes. The list will grow as the user
works with the tool.

4.2 The production phase

The “Production phase’ (see Figure 7) started in the capture of the
gestures performed by the user to recognize and translate them in widgets.
The activities in the “Production phase” are classified into four groups. pre-
processing, recognition, transformation and execution. Each of these
activitiesis explained in more details in the next sections.

4.2.1 The pre-processing block

A viable aternative to improve the recognition accuracy is to apply a
pre-processing on each gesture. Figure 7 shows the activities of the pre-
processing block. These activities are: Resampling, Chain conversion,
Scaling, and Rotate.
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<?xml version="1.8" encoding="UTF-8" standalone="no"?>
<!DOCTYPE properties SYSTEM "http://java.sun.com/dtd/properties.dtd">
<properties>

<entry key="221313153535557577777">Triangle</entry>

<entry key="555331317177">Rectangle</entry>

<entry key="11222225454543132312321253553533331333">NavyLine</entry>

<entry key="23435367777112">Circle</entry>

<entry key="35555577771171131313345">Circle</entry>

<entry key="4313133534333223233434333313333333333">Arrow</entry>
</properties>

Figure 11. Sketches representations made with the tool.

The Resampling activity is performed according to the studies proposed
by (Wobbrock et al., 2007; Beuvens & Vanderdonckt (2012). But
comparing two gestures point by point in their initial form is not relevant.
For two gestures which are similar, the speed of the user mixed to the
hardware sensitivity as well as software can ensure that the set of points (M)
of appearance are frequently different. Figure 12 illustrates an example of
this situation.

We redlize that the first two sets of points define the same gesture despite
a different frequency of point occurrence. A resampling of gesture solves
this problem. In contrast to (Vatavu et a., 2012) we do not define in
advance the number of points to get, but the distance between each of them.
This distance is defined by N equidistantly spaced points (see Figure 13) as
proposed (Wobbrock et al., 2007). Indeed, this keeps a resemblance
between the re-sampled shape and the initia, whatever the length of the
gesture. Figure 13 illustrates the process.

To resample a gesture, we need to obtain the length increment (1)
between the set of M points. For this operation, we calculate the total of M
points of the gesture dividing this length by (N-1). Iterating again over the
set of points, we get the new gesture resampled.

The Chain conversion activity. Figure 14 illustrates the Chain conversion
activity. Levenshtein's algorithm runs based on the relative direction
between two points. Therefore, the multi-features are natively manageable:
it only requires considering a gesture as a temporal sequence of points.

The last point of the trait and the first of the following are placed end-to-
end and the chain conversion can operate. However, this chain does not
properly represent the real gesture. As shown in Figure 16, if we consider
only a gesture as a set of resampling points the chain produced varies very
little. In the example of this figure, the first gesture is a rectangle performed
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in two lines. The second is a single broken line. The returned chains are
very similar: only the “8” in red is added to the multi-gesture features. The
Levenshtein's distance between two chains is 1. simply add/remove “8” to
switch from one chain to another. However, these forms are not alike.

A 4
/'] / ] .\"- - }5.\- o,
16 v 25 Lr - .: "s‘h. .:'

V/\; ._/ \-__/ ' . ."h...f- -. —

Figure 12. Example of disparities between similar gestures (Wobbrock et al., 2007).

To remedy this problem, we adopt a different approach: instead of just
putting two traits end-to-end, an imaginary line is drawn between the last
point of atrait and the first point of the next trait. Thisimaginary lineis the
shortest distance at which the pointer must be to reach the position of the
next trait. In this way, the chain conversion keeps a trace of displacement
performed without the stylus touching the drawing surface. Figure 15
illustrates this kind of conversion. Aswe can see, the “8” is replaced by five
“8" consecutively. The Levenshtein's distance then returns 5. Chains
obtained in multi-lines are more realistic and easier to distinguish with this
method. Figure 16 shows an example for the case study. Note that achain is
calculated for each gesture.

Raw gesture N=32 N = 64 N =128
Figure 13. Example of resampling (Wobbrock et al., 2007).
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Chain = 55543333 33334555

Chain = 55543333833334555
Figure 14. lllustration of ambiguity in multi-trait.

The Scaling activity. Depending on the length of the gesture, the
sampling activity returns a variable number of points. Therefore, two
identical shapes on a different scale will have a different number of
resampled points and therefore chains with different length. In order to
support the use of very large interaction surfaces we conceived a strategy
based on Levenshtein's properties.

4

5

5 =555433338888833334555

5

4 3 3 3 3
Figure 15. Illustration of the imaginary gesture in multi-stroke.

N Trianglel

Chain conversions:
!’ Rectanglel = 3333333333
! 333334555555555677777
k 77777777781111111111
3

Linel = 33333

Trianglel = 224477

B Triangle2 = 336688
+ Triangle2

Figure 16. The chain distance for the gestures representing a ListBox component.
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The Levenshtein's distance requires the lower bound on the distance
between two sequences to be equal to the difference in length between these
two strings:

Indeed, the shortest modification between two strings is the elimination
of as many characters as the difference in their length. If after these
suppressions, the strings are identical, the Levenshtein's distance is the
difference.

Based on this property, when two gestures of very different length are
compared, the Levenshtein's distance will aways be high, regardiess of the
similarity of the shapes at the level near. Figure 17 illustrates this problem:
both shapes are very similar, but the minimal Levenshtein's distanceis (72 -

O

Length =12

Length = 72

Figure 17. lllustration of the problem of scale.

To remedy this problem, we use an approach that artificially enlarges one
chain while preserving the general appearance of the gesture. Before
comparing two chains, the shorter of the two is extended to the length of the
other. In thisway:

This means that all gestures of the training set have the same probability
of being selected. To extend a chain of length | in a chain of length I’, we
use the agorithm described in Figure 18. In essence, it duplicates a
character at all step characters in the string, until the new string has the
desired length. For example, the string 111222333444, with a length of 12,
extended to a length of 20 becomes 111111222222333333444444. Since
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this character duplication is always performed at the same frequency, the
general shape of a gesture is retained. When a user to enlarge the string to
15 or 18 characters, the new characters are 111222233334444 and
111122222333344444 respectively. In these cases the shapes are not the
same, in consequence the algorithm takes care of those cases and the
gestures are not retained.

The chain stretching allows normalizing the similarity value between two
forms. Indeed, another property of the Levenshtein's distance is the longest
distance possible between two chains:

This property allows estimating the similarity between two strings of the
same length | asthe relation:

This value is used to determine the closest training gesture of the gesture
to classify.
public static String stretch(String chain, int len) {
int 1 = chain.lengthQ);
if (1 == len) return chain;
int step =1 7/ (len - 1);
String chainZ = "";
for (int 1 = 0; i <= 1; 1 += step) {
if (1 + step > 1) {
chain2 = chain2 + chain.substring(i); }
else {
char ¢ = chain.charAt(i + step - 1);
chain2 = chain2 + chain.substring(i, i + step) + c¢; }
} return chain2;

Figure 18. Algorithm for the gesture stretching activity.

The Rotation activity. A rotation of 90°, 180° and 270° is performed on
the gesture to classify and then the Levenshtein's algorithm is called for
each rotation for all training gestures. This operation is done directly on the
chain of character corresponding to a gesture. It reduces the number of
training gestures necessary to achieve an adequate accuracy, and avoids
having to remake every gesture in al directions to make it effectively
recognized. Figure 19 shows the function used for the case study and Figure
20 shows the result of running the algorithm for the rotation of gestures of
the ListBox component.
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public static String rotateDna90deg(String in) {
StringBuffer out = new StringBuffer(in.length());
for (int i = @; 1 != in.length(); ++i) {
char ¢ = in.charAt(i);
switch (c) {
case "1"': case '2': case '3': case '"4':
case '5': case '6': case '7': case '8':
int val = Integer.parseInt("" + c) - 1;
val = (val + 2) % 8 + 1;
out.append(val);
break;
default: out.append(c); }
}

return out.toString();
Figure 19. Algorithm for the rotation activity.

4.2.2 Therecognition block

205

Once made the pre-processing block of each every gesture, the next
activity is to recognize every gesture in a geometric shape. This section
describes two categories of shape recognition used by the Modeling

Sketches M ethod.

Rotation 90° Rotation 180° Rotation 270° (3

R S i
Chain conversions: Chain conversions: Chain conversions:

Rectanglel: 555555555555 Rectanglel: 777777777777 Rectanglel: 111111111111
555677777777781111111111 777811111111123333333333 111233333333345555555555
111123333333333 Linel: 55555 333345555555555 Linel: 77777 555567777777777 Linel: 11111
Trianglel: 446611 Triangle2: 558822 Trianglel: 668833 Triangle2: 772244 Trianglel: 882255 Triangle2: 114466

Figure 20. Rotation of gestures of the ListBox component.

The Shape Recognition activity. UsiSketch has the ability to recognize
and translate manuscript gestures towards geometric shapes. Next, these
geometric shapes are translated into widgets through a combination of
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shapes.

Beuvens & Vanderdonckt (2012) define a manuscript gesture as a suite
of one or severa traits temporalized. It allows defining gestures as
movements. In the category of manuscript gestures, it is possible to make
distinctions between different types of symbols, for instance, letters and
numbers. alphabet letters to uppercase or lowercase, with or without
accents. We consider two categories of shape recognition:

1. An online recognition, direct and intuitive, which takes place during
the construction of the image. The online recognition requires one
coherent result at any time. In addition, the algorithm must be fast
enough to ensure user satisfaction during the design, and therefore be
sensitive from a computational point of view.

2. The offline recognition which is done only when the user requests it
explicitly, usually takes place at the end of the construction of the
image. The online recognition is less restricted from a computational
point of view. However, this recognition is inherently non-
deterministic, the result may be wrong, but users will be able to
correct their result. It is nevertheless useful when designers need to
import alow fidelity prototype image.

Figure 21 part (a) shows all gestures accomplished to design the user

interface for the case study. Note that in part (b) the recognition of all
gestures in geometric shapes.

4.2.3 Thetransformation block

UsiSketh must be able to combine multiple simple shapes in a more
complex form or widget, according to pre-established rules. This section
describes how the transformation activity isimplemented.

The combination of shapes. Once the shapes are recognized, we must
also define a way to bring them to widgets. The complexity of defining a
widget lies in the fact that a shape can represent different types of widgets.
For example, a rectangle there is a button, a text field, container, etc.? In
addition, certain shapes (in particular a triangle, a rectangle, cross) can be
seen as a combination of lines allowing this type of combination an
interesting feature to implement.

To resolve this ambiguity, we have used the concept of contextual
grammars proposed by (Caetano et al., 2002) and described in previous
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sections. For each widget, the grammars are tested on all possible
combinations of shapes. An implementation of this technique leads us to
solve an NP-hard problem.
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Figure 21. All gestures accomplished to design the user interface for the case study.

The number of combinations to be tested for a grammar consisting only
informs of asametypeis.
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The element “n” is the number of identical shapes of a certain typein a
window, and “k” is the number of forms of this type specified in the
grammar. If severa types are present in a grammar, the number of
combinations is the product of the combinations for each type. For example,
the grammar of the ListBox of the Figure 21 part (b) is composed of 1
rectangle, 2 triangles and 1 line. On a windows composed of 32 rectangles,
6 triangles and 15 lines the number of cases to be tested is: 7.200
combinations.

32! 36! 15!
nGz-D G- " nas—ni_ 20 ©®

To make this technique more efficient, we use a constraint programming
engine proposed by Haralick & Elliot (1979). Each grammar is defined as
follows: each form used is a variable whose initial domain is the set of the
forms contained in the windows being analyzed. These areas are reduced
progressively until they contain only a member; the variable is then
considered to be linked. Once al the variables (i.e. al the forms involved in
the grammar) are linked, the grammar is tested. If the grammar is valid, the
solution is stored in alist of acceptable solutions. The engine then continues
searching in linking variables, otherwise, until al possible solutions have
been tested.

The advantage of using a constraint programming engine is its ability to
prune the search tree by constraint propagation: each constraint is treated
independently, and if certain forms do not respect a constraint they may be
removed.

Types of Constraints. In the previous sections, we described three types
of constraints: unitary, binary and global. Table 4 summarizes the
constraints available for the combination of shapes. In addition to these
descriptions, some constraints are perfectly Boolean, others are not. These
constraints return a number between O and 1, where 1 means “perfect
match” and 0 “no match”. We call them fuzzy constraints. For example, the
constraint “<line> is vertical" is blurred because the system cannot oblige
the designer to sketch a perfectly vertica line. Therefore, the constraint
alows a straight line to be “near vertical”. A threshold value is defined for
each constraint to enable the validation of these constraints. So, the
constraint is considered valid if the returned vaue is greater than the
threshold value.
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Table 4. Constraints for the combination of shapes

Unitary constraints

Exclusively for lines (in wavelets or not) and arrows.

isHorizontal It tests wheter aline (and only one line) is considered
horizontal
Exclusively for lines (in wavelets or not) and arrows.
isVertical It tests wheter aline (and only one line) is considered

vertical

Binary constraints

Intersects

Testsif two forms overlap

Isinside(f1, f2)

Test if f1iscontained in f2

IsinsidelnLower Left- Corner(f1, f2)

Test if f1 iscontained in f2, in the lower |eft corner

IsinsidelnLower Right- Corner(f1, f2)

idem, in the lower right corner

IsinsidelnUpper Left- Corner(f1, f2)

idem, in the upper left corner

sinsidelnUpper Right- Corner(f1, f2)

idem, in the upper right corner

IslnsideOnTheBottom(f1, f2)

Testif f1iscontained in the lower part of 12

IsinsideOnTheTop(f1, 2)

idem, in the upper part of f2

IslnsideOnTheL eft(f1, f2)

idem, in the | eft side of 12

IslnsideOnTheRight(f1, f2)

idem, the right side of 2

1SONTheRightOf(f1, f2)

Testif f1isontheright of f2

Global constraints

AlIDifferent(f1, ..., fn)

Test if al shapes from f1 to fn are different. It is used
to ensure that a shape is not selected more than once
in acomposition

ClosedLoopCongtraint(l1, ..., In)

Test if a group of lines from 11 to In make a closed
loop

Mutually exclusive grammars. Sometimes a grammar results to be valid
on a group of forms, but there exist another combination of better quality
(i.e. the value returned when testing is closer to 1). The value of these fuzzy
constraints is used as a tie-breaker if a grammar is correct for severa
mutually exclusive combinations. Figure 22 illustrates this feature. At the
left, eight lines handmade to represent two rectangles. Picture (b) represents
one retained combination, but very blurred. Picture (c) represents a possible
combination of better quality. The last pictureisto be chosen.

Linear constraints are used to validate if two mutualy exclusive
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combinations are possible based on a list of forms. In this case, the most
constrainted combination should be selected. When two grammars are
mutually exclusive, the one with more forms is chosen. If the number of
formsis the same, the number of constraints plays the role of “tie-breaker”.

Figure 22. All gestures accomplished to design the user interface for the case study.

Let us take the representation of the ListBox and the set of widgets of
figure 21 part (b). Initially the number of cases to be tested is 7,200
combinations, but, with the use of constraints, many shapes are removed
from the initial number of combinations. We present how theses
combinations are reduced:

1. The congtraint (3) of the table 3 removes 9 lines (horizontal which
are not in arectangle) of domain of the linel; there remain 6 lines in
these domains.

2. The constraint (4) removes 4 triangles (which are not in arectangle at
the upper right) of the domain trianglel and removes 30 rectangles
(which does not contain triangles at the top right) of the domain
rectanglel; 2 triangles remain in the domain of trianglel, and 2
rectangles in the domain of rectanglel.

3. The constraint (5) removes 3 triangles (which are not in arectangle at
the bottom right) of the domain triangle2 and removes 29 rectangles
(which does not contain triangles at the bottom right) of the domain
rectanglel; 3 triangles remain in the domain of triangle2, and 3
rectangles in the domain of rectanglel.

After applying the restrictions, the number of shapes has been reduced to

6 lines for the domain of linel, 2 triangles for the domain of trianglel, 3
triangles for the domain of triangle2 and 3 rectangles for the domain of
rectanglel. The number of combinations are therefore reduced to: 6x2x3x3
= 108 combinations. It represents only 1.5% combinations of the initia
number of test combinations.
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<?xml version="1.80" encoding="UTF-8"7>
<uiModel xmlns="http://www.usixml.org" id="Project" name="Project"”
creationDate="2016-01-15T15:40:24.555+01:@0" schemaVersion="1.6.4">
<head>
<version modifDate="2016-01-15T15:40:24.555+01:00"/>
<authorName>AuthorName</authorName>
<comment>This file was generated with SketchStudio</comment>
<comment>Information on this tool can be found on www.usixml.org</comment>
</head>
<cuiModel id="modelname-cui" name="modelname-cui">
<window id="window_®" name="window_@" isVisible="true"
isEnabled="true" width="1159" height="797"
isAlwaysOnTop="false" isResizable="true">
<gridBagBox id="win@_gridbagbox_@" name="Window@"
gridHeight="39" gridWidth="57">
<constraint gridx="17" gridy="5" gridwidth="5"
gridheight="4" weightx="1.0" weighty="1.8" fill="horizontal">
<inputText id="win@_TextField_58"
name="TextField_58" isVisible="true"
isEnabled="true" fglolor="#000000"
bgColor="#ffffff" textColor="#000000"
maxLength="18@" numberOfColumns="2@"
number0fLines="1" isPassword="false"
isWordWrapped="true" forceWordWrapped="true"
isEditable="true" defaultFilter=""/>
</constraint>
<constraint gridx="34" gridy="2Z" gridwidth="16"
gridheight="10" weightx="1.0" weighty="1.8" fill="both">
<listBox id="win@_ListBox_54" name="ListBox_54"
isVisible="true" isEnabled="true" textColor="#000000"/>
</constraint>
<constraint gridx="7" gridy="22" gridwidth="11"
gridheight="9" weightx="1.2" weighty="1.0" fill="both">
<listBox id="win@_ListBox_57" name="ListBox_57"
isVisible="true" isEnabled="true" textColor="#000000"/>
</constraint>

Figure 23. An excerpt of the exported file for the case study.

4.2.4 The export block

This section details the export phase. Usi Sketch must be able to export a
project in User Interface eXtensible Markup Language (UsiXML) (Usi XML
Consortium, 2007). Thanks to UsiXML, non-devel opers can shape the Ul of
any new interactive application by specifying, describing it in UsiXML,
without requiring programming skills usually found in markup languages
(e.g., HTML) and programming languages (e.g., Java or C++).

The designed interface must be exported under a standardized format to
allow you to edit the result with a higher fidelity editor, chosen by the
designer. Figure 23 shows an excerpt of the exported file in UsXML
format. Designers can use GrafiXML proposed by Michotte &
Vanderdonckt (2008), a multi-target user interface builder based on
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UsiXML for future modifications.

4.3 The Execution Phase

This section details the execution phase. An interface defined in
UsiSketch must be simulated summarily. The activity of the design of the
user interface is not isolated. During the design of the interface, the designer
has the flexibility to create and modify the Ul. It can also collaborate with
final users by producing some sketches depicting a Ul in the form of
screens, roughly one for each “state” of the interface. Here the collaboration
could enable the assimilation and the integration of different points of views
to improve the design. The designers can also take advantage to simulate the
interface without having to export it on Uss XML every time and eventually
include final users for providing feedback.

UsiSketch should enable a more accurate simulation than just statically
window display. Typica actions on a widget or window (show, hide,
minimize, maximize, setText, etc.) and typical event for a widget (onClick,
onChange, ...) must be defined. Figure 24 shows a UML activity diagram
of the execution phase.

Select widget
@ e waoa |

V
[Selecl L:L largsl)e—[ Window ‘
o) o o |

more navigations 7

Run the protolype

Figure 24. Execution phase for Model Sketching.

The action “Select widget source” alows defining the actions for a
widget. The navigation is then linked to another windows. The user has the
possibility to configure the navigation link. The type of configurations
supported by the tool are: Open the target windows, Open the target
windows and close the source windows, Open the target windows and
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maximize or minimize the source windows, Open the target windows in
front of (or in back of) the source windows. Finally, the user can execute the
prototype.

5. Conclusion

We have presented a sketching recognition method used to develop
UsiSketch. Its technology runs on cross-platform and supports sketching
recognition on different surfaces based.

The presented method describes a new recognition agorithm that
accommodates very large surfaces. It has the ability to recognize shapes and
combinations of shapes. Actually, UsiSketch recognizes and interprets 8
basic predefined shapes (i.e., triangle, rectangle, line, cross, wavy line,
arrow, ellipse, and circle); 32 different types of widgets (ranging from check
boxes, listboxs, textfields, buttons, video multimedia, etc.), and 6 basic
commands (i.e., undo, redo, copy, paste, cut, new window).

Users of different domains can combine multiple simple shapesin amore
complex combination or widget, according to pre-established rules. The
recognition is done at the time of drawing, and not at the end thereof. The
high fidelity elements are widgets. These are very numerous, and new ones
appear frequently. Therefore, and since the recognition algorithms are based
on a supervised learning, wanting to recognize these individual widgets
reguires a training phase of the tool for each of them. Such a process would
be tedious, and will never be completed: for every new widget, we should
repeat the process.

We have addressed the solution using the representation of alow fidelity
widget as a composition of simple geometric shapes. For this reason, we
decided to implement pattern recognition only on these geometric forms,
greatly reducing the number of shapes to recognize. This reduces the time
needed to train the algorithm. These forms are then combined in predefined
grammars.

Currently, we are working on developing new features. We will be able
to easily evaluate the feasibility of our tool by conducting user experiments.
The results will be used to evaluate the performance of the tool, and obtain
new research perspectives.
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