
Revista Romana de Interactiune Om-Calculator 9(3) 2016, 183- 216 © MatrixRom

Methods for Modelling Sketches in the
Collaborative Prototyping of User Interfaces

Jorge Luis Pérez Medina
Université catholique de Louvain, Louvain School of Management Research Institute
Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)
E-mail:jorge.perezmedina@uclouvain.be

Abstract. Cross-functional teams with different technical backgrounds working on cross-
platform environments require the production of flexible modeling of user interfaces in
early steps of a design process. We observe that model-driven engineering (MDE) is
currently gaining acceptance in many domains. However, existing solutions have no
support for collaborative prototyping of user interfaces by sketching recognition for
multiple stakeholders (e.g., designers, developers, final end users) working with
heterogeneous computing platforms (e.g., smartphones, tablets, laptops, desktop), on
different, perhaps separate or shared, interaction surfaces (e.g., tables, whiteboards) in a co-
located way or remotely. This requires flexibility to explore and reuse vague and uncertain
ideas as model sketching. This paper presents UsiSketch, an MDE method for modeling
sketches that offers the following novel features resulting from a requirement elicitation
process: sketching recognition on different surfaces based on a new recognition algorithm
that accommodates very large surfaces and model-based design of user interfaces with
collaboration.

Keywords: Sketching, Collaborative Prototyping, Graphical User Interface, Design Tools
and Techniques.

1. Introduction
Over the last years, Model-Driven Engineering (MDE) solutions and
modeling platforms have been developed to simplify and automate many
steps of MDE processes (Eisenstein et al., 2001). Kent (2003) argue that
MDE promotes the reuse of productive modeling artifacts produced and
consumed in the development process. We observe that MDE is currently
gaining acceptance in many domains. However, several modeling platforms
have focused on the last stages of the design process. The HCI domain
shows a clear need for MDE methodology and tools to support User
Interfaces Design (UID) (Pérez-Medina et al., 2007). Considering the UI as

184 Jorge Luis Pérez Medina

a model, MDE is able to answer the specific needs of the HCI community in
terms of domain-specific meta-models and models. Nevertheless, the HCI
community has to incorporate the proposed current standards used in MDE.

In the HCI domain, Buxton (2007) describes that the design process
begins with ideation. Cross-functional teams with different technical
backgrounds working on cross-platform environments require the
production of several propositions of user interfaces at the latest stages of
the design process. Those propositions are usually explored through
sketches and prototypes considered as models (Demeure et al., 2011) which
could then be submitted to static analysis for further exploration (Beirekdar
et at 2002). Sketching is also particularly challenging when prototyping
multi-platform user interfaces for multiple contexts of use (Florins et al.,
2006). Coutaz (2010) found that MDE lacks support for early stages of
design where the creativity and collaborative production of modeling
sketches are crucial to elicit vague and uncertain ideas in projects requiring
the design of advanced UIs.

In literature review, we found many software development frameworks
like Gonzalez-Pérez (2010), interactive applications and academic research
supporting sketching activities. However, the solutions have no support for
distributed collaboration in very large surfaces, multi-level of prototyping
and the execution of the user interface produced.

We present UsiSketch, a software-hardware environment to facilitate the
tabletop collaborative prototyping of model-based UIs in early steps of the
design process when multiple stakeholders have only a vague goal in mind
of what should be produced. We present a method that recognizes UI
sketches on very large interaction surfaces. UsiSketch is an Eclipse1
application that supports multiple computing platforms and provide support
for collaboration of stakeholders and final users. Our solution addresses the
gap between HCI flexible practices and productive models required for the
MDE community. The rest of this paper is structured as follows: Section 2
introduces our motivations and design challenges. Section 3 presents a
review of sketch recognition algorithms for shape recognition. The Model
Sketching method for very large interaction surfaces is later discussed using
a case study in section 4. Finally, section 5 presents our conclusion and

1 Eclipse is an open source community for individuals and organizations who wish to collaborate on

comercially-friendly open source software based on Java (https://eclipse.org/).

Methods for Modelling Sketches in the Collaborative Prototyping of User
Interfaces

 185

some future avenue to this work.

2. Motivations and design challenges

2.1 General motivations
Sketching is largely recognized as an inexpensive way of producing low-
fidelity prototypes, which helps framing design problems, therefore
producing better design. However, before starting to discuss sketching in UI
design, the main subject of the research presented in this paper, some
definitions of classical sketching and UI design need to be presented.

Firstly, we refer to sketch as described in (Johnson et al., 2009): quickly
made depictions facilitating visual thinking, which may include everything
from abstract doodles to roughly drawn interface. The aforementioned work
restricts neither the drawing medium nor the subject matter. Secondly, our
work is related to both interaction and interface designs. Interaction design
is the discipline “related to design interactive products to support people in
their everyday and working lives” expressed by Sharp & Preece (2007).
Interfaces of interactive systems are one example of such product.

2.2 Sketching in design
When designing, people draw things in different ways, which allows them
to also perceive the problem in new ways. Schon & Wiggins (1992) found
that designers engage in a sort of “conversation” with their sketches in a
tight cycle of drawing, understanding, and interpreting. As the findings of
Goel (1995) point out, the presence of ambiguity in early stages of design
broads the spectrum of solutions that are considered and tends to deliver a
design of higher quality. Van der Lugt (2002) conducted an experiment to
analyze the functions of sketching in design in which participants produced
individual sketches and then presented them to the group for discussion.
From the experiment conducted by Vander Lugt, three primary sketching
functions were identified:

F1: Sketching stimulates a re-interpretive cycle in the individual
designer's idea generation process: design as a cyclic process of sketching,

186 Jorge Luis Pérez Medina

interpreting and taking the sketches further.
F2: Sketching encourages the designers to reinterpret each other’s ideas:

when the sketches are also discussed (as opposed to sketch for self-
interpretation), the designer invites others to interpret her drawings. The
function of inviting re-interpretation described by van der Lugt (2002) is
especially relevant for the idea generation process, as re-interpretation leads
to novel directions for generating ideas.

F3: Sketching stimulates the use of earlier ideas by enhancing their
accessibility. Since it is externalized, sketching also facilitates archiving and
retrieval of design information.

2.3 Sketching in user interface design
In order to support sketching into UI design, we need to analyze the process
in which UI design is included. Currently, the development life cycle of
interactive applications consists of a sophisticated process that does not
always proceed linearly in a predefined way. The tools available for UI
development do not usually focus on UI design in which designers usually
explore different alternatives, but in UI modeling as a final product, where
designers must abide by formal standards and notations. Many tools are
available for both modeling and design. However, practitioners are currently
forced to choose formal and flexible tools. Whichever they choose, they
lose the advantages of the other, with attendant loss of productivity and
sometimes of traceability and quality.

(Johnson et al., 2009) claim that great care must be taken to support the
designer's reflection when making design software that employs sketch
recognition. If the system interprets drawings too aggressively or at the
wrong time, it may prevent the human designer from seeing alternative
meanings; recognize too little and the software is no better than paper.

The studies of (Cherubini et al., 2007) showed that designers desire an
intelligent whiteboard because it does not require hard mental operations
while sketching during meetings or design sessions. Calico proposed by
(Mangano et al., 2010) is a good example of “vanishing tool” as it keeps
itself out of the way between the developers and the models, and this can be
useful especially during early design stages. However, it is not obvious to
explain why software designers resist adopting them, despite of the ubiquity
and low cost of pen-based and touch devices (Cherubini et al., 2007).

Methods for Modelling Sketches in the Collaborative Prototyping of User
Interfaces

 187

2.4 Design goals for collaborative sketching
We would define Collaborative Sketching (CS) as a mix of Collaborative

Design and Design by Sketching. Although CS is already defined and
supported by (Geyer et al., 2010; Bastéa-Forte & Yen, 2007; David &
Hammond, 2010; Hailpern et al., 2007; and Haller et al., 2010). Our goal is
also to define a specific domain of CS for User Interface design.

We have observed design sessions related to user interface development
conducted in two companies. The people involved on those sessions were
designers, project managers, programmers and frequently stakeholders. In
overall, in these companies, design sessions are usually carried out around a
central topic, about which people discuss in order to produce some artifact,
usually a report with a list of requirements, wireframes and some session
log of the decisions made around the interaction. It is important to note that
this report is not produced on site but after the meeting, for what people
usually take pictures to remember and register what was discussed.
Nevertheless, the design sessions most often proceeded with three distinct
phases:

1. Mental model construction and concepts: the mediator leads the task,
asking the participants the essential elements of the tasks.

2. Scenario construction: the participants are usually divided into
groups to focus on one scenario each. They usually do it using a big
sheet of paper and use post-its. After each has agreed on its own
scenario, the sheets are arranged as a storyboard on a wall for
discussion.

3. Interface prototyping: the participants sketch the UI based on what
was discussed and learned on the scenarios discussion.

3. Sketch recognition algorithms for shape recognition

3.1 Recognition algorithms
Generally, the purpose of the recognition algorithm is to enable a computer
to identify the shape or element shown by a hand drawing. Starting from the
idea that a drawing is always subject to interpretation, Beuvens &

188 Jorge Luis Pérez Medina

Vanderdonckt (2012) found that these algorithms are accurate to the order
of 80% when adapted to the user. Often, the algorithms are specific to a
certain scope, for instance: recognition of symbols, geometric shape
recognition, recognition of signatures, etc.

We focus on studying four generic algorithms for gesture recognition.
The algorithms selected are Rubine by Rubine (1991), One Dollar proposed
by (Wobbrock et al., 2007), Dollar P created by (Vatavu et al., 2012),
Levenshtein by (Coyette et al., 2007) and Stochastic Levenshtein proposed
by Ocina & Sebban (2006). The reasons for which we use these algorithms
are that we know them well and they are part of the research performed in
our research team. We invite the reader of this paper to review an
exhaustive comparison of these algorithms performed in Usi Gesture: an
Environment for Integrating Pen-based Interaction in User Interface
Development proposed by Beuvens & Vanderdonckt (2012). All details and
screenshots related to this procedure are accessible at https://goo.gl/0hPnih.
They are not entirely described here since it is beyond the scope of this
paper. However, we present an overview of Levenshtein's algorithm
because there is the starting point of our new recognition algorithm.

3.2 Levenshtein's algorithm
This algorithm is based on the edit distance between two strings as a
measure of their dissimilarity. The principle behind the distance is to
transform one string “A” into another string “B” using the basic character
wise operations delete, insert and replace. The minimal number obtained
after the transformation is called the edit distance or Levenshtein's distance
(Coyette et al., 2007). The minimal number of needed edit operations for the
transformation from A to B is called the smaller. Its value represents the
distance between these strings.

Figure 1 shows an example of the grid quantization of freehand shape.
The features to be extracted from the raw data are based on the principle
described by D. Llorens & Zamora (2008). The representation of the
rectangle is superposed with a grid and the freehand drawing is quantized
with respect to the grid nodes. Each grid node has 8 adjacent grid nodes and
for each pair of adjacent nodes one out of 8 directions can be given (i.e: 1
for North, 2 for NorthEast, 3 for East, and so on). From the sequence of
successive grid nodes, a sequence of directions can be derived. This

Methods

sequence
8. Each v
sequence r
the trainin

Figure 1. Ex
gesture in th

3.3 Stoch
Stochastic
the numbe
chain of c
cost for ea
learning th
increased.
achieve it
the classic
first transf
gestures o
difference

 The m
is the eva
advantage
very expe
traditional
algorithms

s for Modellin

can be code
value repres
representing

ng set, we lo

xample of a Squ
he gesture in the

string for th

hastic Leve
c Levenshte
er of suppr

characters in
ach operatio
hese costs i
 Levenshte
s purpose. T
c version of
formed into
of the train
e is the use o

main goal beh
aluation of
e is its quite
ensive. Furt
l Levensht
s allowed u

ng Sketches in
Int

ed using an
sents one d
g the gestur

ook for the t

uare grid quanti
e form of a strin
his gesture in re

enshtein's
ein’s propos
ressions, in
nto another.
on. An intu
in such a w
ein's algorit
The proced
f the origina
o sequences
ning set to
of a stochas
hind the sel
the perform

e low time c
thermore it
tein's algo
s to underst

n the Collabor
erfaces

n alphabet re
direction. C
re to recogn
template wi

ization of freeha
ng. In (b), the g
elation to the w

algorithm
sed by Ocin
sertions and
. These ope

uitive impro
way that the
thm is bas

dure to recog
al Levensht
s of charact

find their
stic approac
lection of st
mances of

cost while m
t represents

orithm. Th
tand the foll

rative Prototyp

epresented b
onsequently

nize with th
ith the small

and shapes. The
esture of the Re

wind rose is “334

m
na & Sebba
d substituti

erations are
vement con

e precision
ed on a pr
gnize a ges
tein's algori
ters and the

correspond
h during the
tochastic Le
a statical-b

most statical
s a natural
e review
lowing prin

ping of User

by numbers
y, when co
e templates
lest edit dis

e wind rose in (
ectangle. The c
45577811”.

an (2006) is
ions to tran
modeled w

nsists in aut
of the comp
robabilistic

sture is thus
thm. The g
en compare
ding class.
e string com
evenshtein's
based algor
l-based algo

improvem
of the r

nciples.

 189

s from 1 to
omparing a
s present in
stance.

(a) describe a
orresponding

s based on
nsform one
with a fixed
tomatically
parisons is

model to
s similar to
estures are

ed with the
The only

mparison.
s algorithm
rithm. The
orithms are

ment of the
recognition

190

3.4 Recog
We define
stylus con
usually en
points. O
dimension
the time st
Figure 2 s
multi-strok
strokes. R
their varia

3.5 Direc
Single an
Working
allow user
shapes we

The ch
addition o

gnition of
e a stroke g
ntact points
ncoded as

Optionally,
n. A single
tamps value
shows equiv
kes. Note t

Regarding t
ant and Doll

Figure 2. E

ction invar
d multi-stro
with multi-
r's represen
e consider th
hain value
of the chain

Jo

single and
gesture as th
s with a to

a time-ord
stroke gest
stroke corre
e (See gestu
valent repre
that the ima
the studied
lar P suppor

Examples of an

riant
okes can v
-strokes req

ntations. In
he use of a t
for this ki

n represent

orge Luis Pére

d multiple
he moveme
ouch sensiti
dered sequ
tures can h
esponds to t
ure in Figure
esentations o
aginary ges

algorithms
rt the use of

imaginary repr

ary in orde
quires mani
the case of
threshold va
ind of gest
tations of e

ez Medina

s strokes
ent trajector
ive surface.
uence of tw
have time
the sequenc
e 1). As opp
of an imagin
ture can be
s, only Lev
f multi-strok

resentation in m

er and dire
ipulating a

f the recogn
alue configu
tures is the
each stroke

ries of user'
. A stroke
wo-dimensi
stamps as

ce of points
posed to sin
nary repres

e drawn usi
venshtein's
ke gestures.

multi-stroke.

ction (See
time stamp

nition of wid
ured by the
en calculat

e and the ti

s finger or
gesture is

ional (x,y)
the third

s excluding
ngle stroke,
entation in
ing several
algorithm,

.

Figure 3).
p value to
dgets from
user.

ted by the
ime stamp

Methods

value con
figure 3).
possible p
explosion
the chain c

3.6 Scale
All studie
expresses
transforma
reference
number “
support th
scales. N
representa
recognize
propose a
general ap

3.7 Rotat
The princi
rotated to

s for Modellin

sumed by t
The use o

permutation
in both me

conversion

Figure 3. Illus

e invariant
ed recognit
that scale

ation. The
square dete

“r” called i
his principle

Note that d
ation might

gestures o
a strategy th
ppearance o

tion invari
iple of rotat
best align

ng Sketches in
Int

the user wh
f gestures b
s of a given

emory and e
for multi-st

stration of the im

t
tion algorit
invariant is
basic prin

ermined by
ts ratio. W
e. Figure 4
depending
be differen

on very lar
hat artificial
f the gestur

iant
tion require
with the ot

n the Collabor
erfaces

hen finishing
based in m
n representa
execution ti
troke gestur

maginary gestu

thms are s
s founded o
nciple cons

a point “S”
We found th

shows an e
on the si

nt. This diff
rge surfaces
lly enlarges
re.

es that the s
ther. The ba

rative Prototyp

g and starti
multi-stroke

ation, which
ime. Figure
res.

ure by single an

cale invari
on a homot
sists in sca
” called its
hat all the
example of
ize of the
ference cou
s. In the n
s one chain

set of points
asic princip

ping of User

ing a new s
needs to g
h generally
2 shows ex

d multi-stroke.

iant. Meser
thetic (or h
aling a ges
center and
algorithms
a gesture i

e gesture,
ld make it

next section
n while pres

s of an angl
ple is to fin

 191

stroke (See
enerate all

y causes an
xamples of

rve (1983)
homothety)
sture to a
a nonzero

s reviewed
n different
the chain
difficult to

ns we will
serving the

le could be
nd over the

192

space of p
The proce
+1° to 360
training ex
on the rota

Table
recognitio
incorporat
representa
strike gest

We are
object, wi
representa
of the dire
are equally

possible ang
ess of rotati
0° (See Fig
xamples to
ation. Dolla

Figure

1 summaris
on in funct
ting an ob
ation per o
ture.
e interested
ithout signi
ation could
ection of ge
y supported

Figure

Jo

gles for the
on iterative

gure 5). We
recognize t

ar P does no

e 4. Illustration o

ses the com
tion of the

bject recogn
object, frequ

d in recogn
ificantly af
be sketched

esture. In th
d.

5. Rotation in 9

orge Luis Pére

e best align
ely searches

found that
the rotation

ot support ro

of similar gestu

mparisons o
e presented
nition typic
uently thro

nizing seve
ffecting the
d in a mult

his way, left

90° and 180° of

ez Medina

nment betwe
s the best ca

One Dollar
n gestures th
otation gestu

ures in different

of generic a
d principle
cally only

ough a mon

eral represe
performan

ti-stroke wa
t-handed or

f an imaginary

een two po
andidate ge
r requires m
hat are too
ures.

t scales.

algorithms f
es. Existing

supports o
no-direction

entations fo
nce. In addi
ay that is in
r right-hand

gesture.

oints paths.
esture from
much more
dependent

for gesture
g software
one single
nal single-

or a single
ition, each
ndependent
ed persons

Methods for Modelling Sketches in the Collaborative Prototyping of User
Interfaces

 193

Table 1. Classification of algorithms for gesture recognition
Principle Levenshtein Stoc. Levenshtein Rubine $1 $P
Single stroke √ √ √ √ √
Multiple stroke √ √ χ χ √
Direction invariant √ √ √ √ √
Scale invariant χ χ √ √ √
Rotation invariant √ √ √ √ χ

4. The method for modeling sketches on very large
interaction surfaces
This section shows the method for model sketching for very large surfaces.
The state-of-art for gesture recognition, such as Rubine proposed by Rubine
(1991), One Dollar created by (Wobbrock et al., 2007) and Dollar P by
(Vatavu et al., 2012) propose low-cost solutions, easy to understand,
implement, and offer high performances. However, these approaches have
limitations. For instance:

1. One Dollar only handles single stroke gestures and the algorithm
provides tolerance to gesture variation. It means that the algorithm
cannot distinguish gestures whose identities depend on specific
orientations, aspect, ratios or locations. For example, separating
circles from ovals, up-arrows from down arrows is not possible.

2. Dollar P is invariant to direction due to its point-cloud representation.
It means that clockwise and counterclockwise circles cannot be
identified.

We are interested in recognizing gestures without considering their
direction and their size. A viable alternative to improve the recognition
accuracy is to apply a pre-processing on each gesture before calling the
Levenshtein's algorithm.

Before starting the description of the method for very large surfaces, a
case study is presented. The aim is to take advantage of the proposed
method. The case study consists in a set of sequential tasks accomplished by
an executive coordinator in order to manage the members of a group for a
course in the context of a Learning Management System. The interaction
scenario is defined in a task tree model depicted by Figure 6. The task

194

model sho
first task t
shows aut
member a

Figure
have grou
end) date
aggregatio

From th
et al., 20
requireme
requireme
beneficiar
These req
requireme

These
with two
requireme
of require
(4), Data
(7).

Each r
studied fu

ows the act
that user ne
tomatically

and confirm

Figure

6 shows an
ups. The bas
. Status (o
on of memb
he literature

015a; West
ents (30
ents) ident
ries of these
quirements w
ents for teste
requiremen
Belgian co

ents of seve
ements, are:

(4), Simul

requirement
unctionality

Jo

ivities that
eeds to perf

the potent
the selectio

e 6. Task model

n UML cla
sic informat
open/closed)
bers. One m
e review, an
t et al., 2
functional

tified for
e requiremen
were classif
ers and 14 r
nts were the
ompanies in
eral subsect
 Recognitio
ation (4), E

t has a prio
y. A high p

orge Luis Pére

must be ca
form is sele
tial member
on.

l and Class diag

ss diagram
tion related
) and mana
ember can a
nd especial
015b) we

requirem
our Mod

nts are : De
fied into: 3
requirement
en pre-valid
nterested in
ions. The d
on (7), Draw
Ergonomics

ority based
priority (w

ez Medina

arried out in
ect a group.
rs. Then, th

gram of the case

of the case
to a trainin

ager. The g
appear only
lly in (Coye
formulated

ments and
deling Ske
esigners, Te
3 requireme
ts for develo
dated from

n our tool. W
defined cate
wing-Rende
s/Usability

on the im
with 18 requ

n the applic
Next, the a

he user mu

e study.

e study. A c
ng is: name
groups con

y in one grou
ette et al., 2
d a list of

12 non-
etches met
esters and D
ents for des
opers.

m discussion
We also gr
egories, wit
ering (9), P
(6), and A

mportance le
uirements)

cation. The
application

ust select a

course can
, start (and

nsist of an
up.

2004; West
f 42 main
-functional
thod. The

Developers.
signers, 16

ns together
rouped the
th the total
Prototyping

Architecture

evel of the
is a vital

Methods for Modelling Sketches in the Collaborative Prototyping of User
Interfaces

 195

function for the tool, a medium priority (with 19 requirements) is a useful
functionality but not indispensable, finally a low priority (with 5
requirements) is a functionality regarded as an accessory.

Most of the requirements for the proper functioning of UsiSketch are
undoubtedly those in categories Recognition and Drawing-Rendering.
Without them, the tool could not achieve its main objective. The
requirements of categories Ergonomics/usability and Architecture are
essentially non-functional. For reasons of space, the presentation of all the
requirements is beyond the scope of this document, but one example is
shown in table 2.

Table 2. An example of one requeriment for recognition
Number: 5 Priority: Medium

Type: Non-Functional Responsible: ZZ
Description: Composition rules (or grammar) must be specified outside the software code
Motivation: Set new rules without touching the source code; allows great flexibility of the tool in the
definition of the compositions; prevents the designer from having to adapt to the rules of composition
which do not suit it
Scenario: New widget to be defined; changing a composition rule (or grammar) clearer for the
designer
Beneficiary: Designer
Prerequisites: Requirement 2 (the tool must be able to combine simple forms in a more complex form
or widget, according to pre-established rules. Each time a new form is added to a window, the
software must check whether it is possible to combine it with other forms)

From these objectives, we describe our method for model sketching for

very large interaction surfaces in the next section. The proposed method is
composed of three main phases, that are: pre-production, production, and
execution phases. The pre-production phase aims at defining the underlying
grammar of the gestures to be made during the design session and at
training the algorithms for enhancing their recognition capabilities; the
production phase regard the recognition of performed gestures on a large
surface and the creation of an XML file as output; the execution phase aims
at executing a simulation of the designed UI.

4.1 The pre-production phase
Figure 7 shows a UML activity diagram of the pre-production phase. The

196

block of
classificat
configure
production

4.1.1 Defi
The conte
simpler sh

f pre-produ
tion of ske

the applica
n also requi

Figure 7. Pre

ine gramma
extual gram
hapes. Thes

Jo

uction allo
etches. Th
ation for w
ires a trainin

e-production and

ar
mmars are u
e forms ma

orge Luis Pére

ows defini
e “Pre-pro

working with
ng step.

d production ph

used to def
ay be pre-dr

ez Medina

ing the g
oduction ph
h a specific

hases for Mode

fine forms
rawn or draw

grammar a
hase” is re
c set of wid

ling Sketches.

as a comp
wn and reco

and some
equired to
dgets. Pre-

position of
ognized by

Methods

a pattern
grammar,
“<form1>
complex f

Figure
study, a c
as well as
selected g
triangles (
horizontal
selection
(Caetano e

1

2

3

4

5

Contex

multiple r

s for Modellin

recognition
itself comp

> in <form2>
form is reco
8(a) shows
omponent o

s a catalog o
group. This w
(the first at
l line insi
list is then

et al., 2002)

Figu

Table 3. C
Shape

Rectangle1

Line1

Line1

Triangle1

Triangle1

xtual gramm
recognizer

ng Sketches in
Int

n technique.
posed of fo
>”). If all th

ognized.
s an excerp
of type List
of all poten
widget is ge
t the top rig
de the rec
n translated
) and is pres

ure 8. Represen

Contextual gra
Descrip

-

Line1 i

Line1 i

Triangl

Triangl

mar will be u
shapes in a

n the Collabor
erfaces

. Each com
rms and co
he constrain

pt of the lis
tbox is used
ntial membe
enerally rep
ght, the sec
ctangle rep
d as a con
sented in Ta

ntation of the L

ammar for the
ption of Constra

is horizontal

in the Rectangle

le1 in the Recta

le2 in the Recta

used in the
a more com

rative Prototyp

mplex form
onstraints (th
nts of gramm

tBox repres
d as a catalo
ers to be inc
presented by
cond at the
presenting
ntextual gr
able 3.

istBox Compon

e ListBox repr
aint

e1

angle1 at the top

angle1 at the bo

transformat
mplex repre

ping of User

is accompa
he most typ
mar are resp

sentation. I
og of existi
cluded/dele
y a rectangl

bottom rig
their elem

rammar des

nent.

resentation

p right

ottom right

tion phase t
esentation. W

 197

anied by a
pical being
pected, the

n our case
ng groups,

eted from a
le with two
ght), and a

ments. The
scribed by

to combine
We define

198

three type
tests a spe
IsHorizon
line) is co
between
isInsideCo
constraint
of forms.
whether a
representa

es of const
ecific attribu

ntalConstrai
onsidered h

two form
ontraint(f1,
tests a mor
For examp

a group of li
ation for the

Figure 9

Figure 10. A

Jo

traints: unit
ute on one
int(f) tests w

horizontal. B
ms is v
f2) tests if

re complex
le, the cons
ines forms

e ListBox in

9. The XML gr

A hierarchical r

orge Luis Pére

tary, binary
form at a t
whether a l
Binary cons
verified. F
f the form
relationship
straint Clos
a closed loo
an XML fo

rammar represen

representation f

ez Medina

y and globa
time. For ex
line denote
straint tests

For examp
f1 is inside
p, involving
edLoopCon
op. Figure
ormat.

ntation for the L

for the ListBox

al. Unitary
xample, the
ed as f (and
 if a specif
ple, the
e the form
g an indefin
nstraint(l1,
9 shows the

ListBox.

component.

constraint
 constraint

d only one
fic relation

constraint
f2. Global
ite number
.. ,ln) tests
e grammar

Methods for Modelling Sketches in the Collaborative Prototyping of User
Interfaces

 199

Our grammar specification supports multiple representations of a specific
widget. Figure 10 shows a hierarchical representation of the ListBox
component. On the hierarchical representation many representations can be
combined to define new representations. At the top (Part a of figure) of the
hierarchical representation the ListBox component is represented by a
rectangle, two triangles and a line. Next, two additional representations
(Parts b and c of the figure) have been created to specialize the original
representation of ListBox. Finally, these representations can be combined
into a more complex representation of ListBox.

4.1.2 Define sketches
UsiSketch requires a training phase in which every gesture can be

classified according to a basic geometric shape. To facilitate this work, the
define sketches activity aims to provide an initial list of basic geometric
shapes. Figure 11 shows a set of initial shapes. The list will grow as the user
works with the tool.

4.2 The production phase
The “Production phase” (see Figure 7) started in the capture of the

gestures performed by the user to recognize and translate them in widgets.
The activities in the “Production phase” are classified into four groups: pre-
processing, recognition, transformation and execution. Each of these
activities is explained in more details in the next sections.

4.2.1 The pre-processing block
A viable alternative to improve the recognition accuracy is to apply a

pre-processing on each gesture. Figure 7 shows the activities of the pre-
processing block. These activities are: Resampling, Chain conversion,
Scaling, and Rotate.

200

The Re
by (Wob
comparing
For two g
hardware
of appeara
this situati

We rea
a differen
this probl
advance th
This dista
proposed
between t
gesture. F

To res
between th
points of t
set of poin

The Ch
activity. L
between tw
it only req

The las
end and t
properly r
only a ges
little. In th

Figur

esampling a
bbrock et
g two gestu
gestures wh
sensitivity a
ance are fre
ion.

alize that the
nt frequency
lem. In con
he number o
nce is defin
(Wobbrock

the re-samp
igure 13 illu

sample a g
he set of M
the gesture
nts, we get t
hain convers
Levenshtein
wo points.

quires consi
st point of th
the chain c
represent th
sture as a se
he example

Jo

re 11. Sketches

activity is p
al., 2007;

ures point b
hich are sim
as well as s
equently di

e first two s
y of point o
ntrast to (V
of points to
ned by N eq
k et al., 2
pled shape
ustrates the

gesture, we
M points. Fo

dividing th
the new ges
sion activity
n's algorith
Therefore,
dering a ges
he trait and
onversion c

he real gestu
et of resam
of this figu

orge Luis Pére

 representation

performed a
Beuvens

by point in t
milar, the
oftware can
fferent. Fig

sets of point
occurrence.
Vatavu et a
o get, but the
quidistantly
2007). Inde
and the ini
process.
need to o

or this opera
his length b
sture resamp
y. Figure 14
hm runs b
the multi-fe
sture as a te

d the first of
can operate
ure. As sho

mpling point
ure, the first

ez Medina

s made with the

according to
& Vander

their initial
speed of th

n ensure tha
gure 12 illu

ts define the
A resampl

al., 2012)
e distance b
spaced poi

eed, this k
itial, whate

obtain the
ation, we ca
by (N-1). Ite
pled.
4 illustrates
based on th
features are
emporal seq
f the followi
e. However
own in Figu
s the chain
t gesture is a

e tool.

o the studies
rdonckt (2
 form is no
he user mix
at the set of
strates an e

e same gestu
ling of gest
we do not

between eac
ints (see Fig
keeps a re
ver the len

length incr
alculate the
erating agai

the Chain c
he relative
natively m

quence of po
ing are plac
r, this chain
ure 16, if w

produced v
a rectangle

s proposed
012). But

ot relevant.
xed to the
points (M)

example of

ure despite
ture solves

define in
ch of them.
gure 13) as
esemblance
ngth of the

rement (I)
total of M

in over the

conversion
e direction

manageable:
oints.
ced end-to-
n does not

we consider
varies very
performed

Methods

in two lin
very simil
Levenshte
switch fro

Figu

To rem
putting tw
point of a
shortest d
next trait.
performed
illustrates
“8” conse
obtained i
method. F
calculated

s for Modellin

nes. The se
lar: only the
ein's distanc
om one chain

ure 12. Example

medy this pr
wo traits end

trait and th
distance at w

In this wa
d without t
this kind of

ecutively.
in multi-line

Figure 16 sh
d for each ge

Figure

ng Sketches in
Int

cond is a s
e “8” in red
ce between
n to another

e of disparities

roblem, we
d-to-end, an

he first poin
which the p
ay, the chain
the stylus
f conversion
The Leven
es are more

hows an exa
esture.

13. Example o

n the Collabor
erfaces

single broke
d is added t
two chains

r. However

between simila

e adopt a di
n imaginary

nt of the nex
pointer mus
n conversio
touching t
n. As we ca
nshtein's di
e realistic an
ample for th

f resampling (W

rative Prototyp

en line. Th
o the multi

s is 1: simp
, these form

ar gestures (Wob

ifferent app
y line is dr
xt trait. This
st be to reac
on keeps a
he drawing

an see, the “
istance the
nd easier to

he case study

Wobbrock et al.

ping of User

he returned
-gesture fea

ply add/rem
ms are not al

bbrock et al., 2

proach: inste
rawn betwe
s imaginary
ch the posit
trace of dis
g surface.
“8” is replac
n returns

o distinguish
y. Note that

, 2007).

 201

chains are
atures. The
ove “8” to
like.

007).

ead of just
en the last

y line is the
tion of the
splacement
Figure 15

ced by five
5. Chains
h with this
t a chain is

202

The Sc
sampling
identical
resampled
support th
based on L

Fig

Fi

caling activ
activity re
shapes on

d points an
he use of ve
Levenshtein

Figure 15

gure 16. The ch

Jo

igure 14. Illustr

vity. Depe
eturns a va

a differen
nd therefore
ery large in
n's propertie

5. Illustration o

ain distance for

orge Luis Pére

ration of ambigu

nding on
ariable num
nt scale wi
e chains wi
nteraction s
es.

of the imaginary

r the gestures re

ez Medina

uity in multi-tra

the length
mber of po
ill have a
ith differen
surfaces we

y gesture in mu

epresenting a L

ait.

of the ge
oints. There

different n
nt length. In

conceived

lti-stroke.

istBox compon

esture, the
efore, two
number of
n order to
a strategy

nent.

Methods

The Le
between tw
two string

Indeed,
of as ma
suppressio
difference

Based
compared
similarity
both shape
12) = 60.

To rem
chain wh
comparing
other. In th

This m
of being s
use the a
character
desired len
extended

s for Modellin

evenshtein's
wo sequenc

gs:

, the shorte
any charact
ons, the str
e.
on this pro
, the Leven
of the shap

es are very

F

medy this pro
hile preserv
g two chain
his way:

means that al
selected. To
algorithm d
at all step
ngth. For ex
to a length

ng Sketches in
Int

s distance
ces to be equ

est modifica
ters as the
rings are id

operty, whe
nshtein's dis
pes at the le
similar, but

Figure 17. Illus

oblem, we u
ving the ge
ns, the shorte

ll gestures o
o extend a c
described i
characters

xample, the
h of 20 bec

n the Collabor
erfaces

requires th
ual to the d

ation betwe
difference

dentical, th

n two gestu
stance will a
evel near. F
t the minim

stration of the p

use an appro
eneral appe
er of the tw

of the traini
chain of len
n Figure 1
in the strin

e string 111
comes 1111

rative Prototyp

he lower bo
ifference in

en two strin
in their l

he Levensht

ures of very
always be h
igure 17 ill

mal Levensh

problem of scale

oach that ar
earance of

wo is extende

ing set have
ngth l in a c
18. In esse
ng, until th

1222333444
1112222223

ping of User

ound on th
n length betw

ngs is the e
length. If a
tein's distan

y different
high, regard
lustrates thi
tein's distan

e.

rtificially en
the gestur

ed to the len

e the same p
chain of len
ence, it du
he new strin
4, with a len
3333334444

 203

he distance
ween these

elimination
after these
nce is the

length are
dless of the
s problem:
nce is (72 -

nlarges one
re. Before
ngth of the

probability
ngth l’, we
uplicates a
ng has the
ngth of 12,
444. Since

204

this chara
general sh
15 or 18
11112222
same, in
gestures a

The ch
forms. Ind
distance p

This pr
same leng

This va
to classify

The Ro
the gestur
each rotat
chain of
training g
having to
recognized
20 shows
the ListBo

acter duplica
hape of a ge
8 character
233334444
consequenc

are not retain
ain stretchin
deed, anothe
possible betw

roperty allow
gth l as the r

alue is used
y.

Figur

otation activ
re to classif
ion for all t
character c

gestures nec
o remake ev
d. Figure 19
the result o

ox compone

Jo

ation is alw
esture is ret
rs, the new

44 respectiv
ce the algo
ned.
ng allows n
er property
ween two ch

ws estimati
relation:

d to determin

re 18. Algorithm

vity. A rotat
fy and then
training ges
correspondin
cessary to
very gestur
9 shows the
of running t
ent.

orge Luis Pére

ways perfor
tained. Whe
w characte

vely. In the
orithm take

normalizing
of the Lev

hains:

ing the simi

ne the close

m for the gestur

tion of 90°
n the Leven
stures. This
ng to a ges
achieve an
re in all d
e function u
the algorith

ez Medina

rmed at the
en a user to
ers are 11
ese cases th
es care of

the similari
venshtein's d

ilarity betw

est training

re stretching ac

, 180° and
nshtein's al
operation i
sture. It re

adequate
irections to
sed for the

hm for the r

e same freq
o enlarge th
122223333

he shapes a
those case

ity value be
distance is t

een two str

gesture of t

tivity.

270° is per
lgorithm is
s done dire
duces the n
accuracy, a
o make it
case study

rotation of g

quency, the
he string to
34444 and
are not the
es and the

etween two
the longest

ings of the

the gesture

rformed on
called for

ctly on the
number of
and avoids
effectively
and Figure
gestures of

Methods

4.2.2 The
Once m

activity is
describes
Sketches M

The Sh
and transl
geometric

s for Modellin

recognitio
made the p
s to recogn

two categ
Method.

Figure

hape Recog
late manusc

c shapes ar

ng Sketches in
Int

Figure 19. Algo

n block
pre-processi
nize every g
gories of s

e 20. Rotation o

gnition activ
cript gestur
re translated

n the Collabor
erfaces

orithm for the r

ing block o
gesture in a
shape recog

of gestures of th

vity. UsiSke
res towards
d into wid

rative Prototyp

rotation activity

of each eve
a geometric
gnition use

he ListBox comp

etch has the
s geometric
dgets throug

ping of User

y.

ery gesture
c shape. Th
ed by the

ponent.

e ability to
c shapes. N
gh a comb

 205

e, the next
his section

Modeling

 recognize
Next, these
bination of

206 Jorge Luis Pérez Medina

shapes.
Beuvens & Vanderdonckt (2012) define a manuscript gesture as a suite

of one or several traits temporalized. It allows defining gestures as
movements. In the category of manuscript gestures, it is possible to make
distinctions between different types of symbols, for instance, letters and
numbers: alphabet letters to uppercase or lowercase, with or without
accents. We consider two categories of shape recognition:

1. An online recognition, direct and intuitive, which takes place during
the construction of the image. The online recognition requires one
coherent result at any time. In addition, the algorithm must be fast
enough to ensure user satisfaction during the design, and therefore be
sensitive from a computational point of view.

2. The offline recognition which is done only when the user requests it
explicitly, usually takes place at the end of the construction of the
image. The online recognition is less restricted from a computational
point of view. However, this recognition is inherently non-
deterministic, the result may be wrong, but users will be able to
correct their result. It is nevertheless useful when designers need to
import a low fidelity prototype image.

Figure 21 part (a) shows all gestures accomplished to design the user
interface for the case study. Note that in part (b) the recognition of all
gestures in geometric shapes.

4.2.3 The transformation block
UsiSketh must be able to combine multiple simple shapes in a more

complex form or widget, according to pre-established rules. This section
describes how the transformation activity is implemented.

The combination of shapes. Once the shapes are recognized, we must
also define a way to bring them to widgets. The complexity of defining a
widget lies in the fact that a shape can represent different types of widgets.
For example, a rectangle there is a button, a text field, container, etc.? In
addition, certain shapes (in particular a triangle, a rectangle, cross) can be
seen as a combination of lines allowing this type of combination an
interesting feature to implement.

To resolve this ambiguity, we have used the concept of contextual
grammars proposed by (Caetano et al., 2002) and described in previous

Methods

sections.
combinati
solve an N

Figu

The nu
in forms o

s for Modellin

For each
ions of shap
NP-hard pro

ure 21. All gestu

umber of co
of a same ty

ng Sketches in
Int

widget, th
pes. An im

oblem.

ures accomplish

ombinations
ype is:

n the Collabor
erfaces

he gramma
mplementatio

hed to design th

s to be teste

rative Prototyp

ars are tes
on of this t

he user interfac

ed for a gram

ping of User

sted on al
technique l

e for the case st

mmar cons

 207

ll possible
leads us to

tudy.

isting only

208 Jorge Luis Pérez Medina

The element “n” is the number of identical shapes of a certain type in a
window, and “k” is the number of forms of this type specified in the
grammar. If several types are present in a grammar, the number of
combinations is the product of the combinations for each type. For example,
the grammar of the ListBox of the Figure 21 part (b) is composed of 1
rectangle, 2 triangles and 1 line. On a windows composed of 32 rectangles,
6 triangles and 15 lines the number of cases to be tested is: 7.200
combinations. 32!1! ሺ32 െ 1ሻ! ݔ 36!2! ሺ6 െ 2ሻ! ݔ 15!1! ሺ15 െ 1ሻ! ൌ 7.200								ሺ6ሻ

To make this technique more efficient, we use a constraint programming
engine proposed by Haralick & Elliot (1979). Each grammar is defined as
follows: each form used is a variable whose initial domain is the set of the
forms contained in the windows being analyzed. These areas are reduced
progressively until they contain only a member; the variable is then
considered to be linked. Once all the variables (i.e. all the forms involved in
the grammar) are linked, the grammar is tested. If the grammar is valid, the
solution is stored in a list of acceptable solutions. The engine then continues
searching in linking variables, otherwise, until all possible solutions have
been tested.

The advantage of using a constraint programming engine is its ability to
prune the search tree by constraint propagation: each constraint is treated
independently, and if certain forms do not respect a constraint they may be
removed.

Types of Constraints. In the previous sections, we described three types
of constraints: unitary, binary and global. Table 4 summarizes the
constraints available for the combination of shapes. In addition to these
descriptions, some constraints are perfectly Boolean, others are not. These
constraints return a number between 0 and 1, where 1 means “perfect
match” and 0 “no match”. We call them fuzzy constraints. For example, the
constraint “<line> is vertical" is blurred because the system cannot oblige
the designer to sketch a perfectly vertical line. Therefore, the constraint
allows a straight line to be “near vertical”. A threshold value is defined for
each constraint to enable the validation of these constraints. So, the
constraint is considered valid if the returned value is greater than the
threshold value.

Methods for Modelling Sketches in the Collaborative Prototyping of User
Interfaces

 209

Table 4. Constraints for the combination of shapes
Unitary constraints

isHorizontal
Exclusively for lines (in wavelets or not) and arrows.
It tests wheter a line (and only one line) is considered
horizontal

isVertical
Exclusively for lines (in wavelets or not) and arrows.
It tests wheter a line (and only one line) is considered
vertical

Binary constraints

Intersects Tests if two forms overlap

IsInside(f1, f2) Test if f1 is contained in f2

IsInsideInLower Left- Corner(f1, f2) Test if f1 is contained in f2, in the lower left corner

IsInsideInLower Right- Corner(f1, f2) idem, in the lower right corner

IsInsideInUpper Left- Corner(f1, f2) idem, in the upper left corner

sInsideInUpper Right- Corner(f1, f2) idem, in the upper right corner

IsInsideOnTheBottom(f1, f2) Test if f1 is contained in the lower part of f2

IsInsideOnTheTop(f1, f2) idem, in the upper part of f2

IsInsideOnTheLeft(f1, f2) idem, in the left side of f2

IsInsideOnTheRight(f1, f2) idem, the right side of f2

IsOnTheRightOf(f1, f2) Test if f1 is on the right of f2

Global constraints

AllDifferent(f1, ..., fn)
Test if all shapes from f1 to fn are different. It is used
to ensure that a shape is not selected more than once
in a composition

ClosedLoopConstraint(l1, ..., ln) Test if a group of lines from l1 to ln make a closed
loop

Mutually exclusive grammars. Sometimes a grammar results to be valid

on a group of forms, but there exist another combination of better quality
(i.e. the value returned when testing is closer to 1). The value of these fuzzy
constraints is used as a tie-breaker if a grammar is correct for several
mutually exclusive combinations. Figure 22 illustrates this feature. At the
left, eight lines handmade to represent two rectangles. Picture (b) represents
one retained combination, but very blurred. Picture (c) represents a possible
combination of better quality. The last picture is to be chosen.

Linear constraints are used to validate if two mutually exclusive

210

combinati
constraint
mutually
forms is th

Figu

Let us
figure 21
combinati
from the
combinati

1. The
are
thes

2. The
the
(wh
rect
rect

3. The
the
(wh
rect
rect

After a
6 lines fo
triangles f
rectangle1
= 108 com
number of

ions are pos
ed combin
exclusive, t
he same, the

ure 22. All gestu

take the re
part (b).

ions, but, w
 initial nu
ions are redu
e constraint
not in a rec

se domains
e constraint
upper righ

hich does n
tangle1; 2
tangles in th
e constraint
bottom rig

hich does n
tangle1; 3
tangles in th

applying the
r the doma
for the dom
1. The numb
mbinations
f test combi

Jo

ssible based
nation shou
the one wit
e number of

ures accomplish

epresentatio
Initially th

with the use
umber of
uced:
t (3) of the
ctangle) of
.
t (4) remove
ht) of the do
not contain
triangles r

he domain o
t (5) remove
ght) of the d
not contain t

triangles r
he domain o
e restriction
ain of line1
main of tria
ber of comb
. It represe
inations.

orge Luis Pére

d on a list
ld be selec
th more for
f constraints

hed to design th

on of the Li
he number
e of constra

combinati

 table 3 rem
domain of

es 4 triangle
omain trian

n triangles a
remain in t
of rectangle
es 3 triangle
domain trian
triangles at
remain in t
of rectangle
s, the numb
, 2 triangle
angle2 and
binations ar
ents only 1

ez Medina

of forms. I
cted. When
rms is chos
s plays the r

he user interfac

istBox and
of cases to

aints, many
ons. We

moves 9 lin
the line1; th

es (which ar
ngle1 and re
at the top
the domain
e1.
es (which ar
ngle2 and r
the bottom

the domain
e1.
ber of shape
es for the d

3 rectangl
re therefore
.5% combi

In this case
n two gram
sen. If the
role of “tie-

e for the case st

the set of w
o be tested

y shapes are
present ho

nes (horizon
here remain

re not in a r
emoves 30
right) of th

n of triangl

re not in a r
removes 29

m right) of t
n of triangl

es has been
omain of tr
es for the

e reduced to
inations of

e, the most
mmars are
number of
-breaker”.

tudy.

widgets of
d is 7,200
e removed
ow theses

ntal which
n 6 lines in

ectangle at
rectangles

he domain
le1, and 2

ectangle at
rectangles

the domain
le2, and 3

reduced to
riangle1, 3
domain of

o: 6x2x3x3
the initial

Methods

4.2.4 The
This se

project in
Consortium
any new
without re
(e.g., HTM

The de
allow you
designer.
format. D
Vanderdon

s for Modellin

Figure 2

export blo
ection detail
User Interf
m, 2007). T
interactive
equiring pro
ML) and pro
esigned inte
u to edit th
Figure 23

Designers
nckt (2008

ng Sketches in
Int

23. An excerpt

ock
ls the expor
face eXtensi
Thanks to U

application
ogramming
ogramming
rface must

he result w
shows an
can use

8), a mult

n the Collabor
erfaces

of the exported

rt phase. Us
ible Markup

UsiXML, no
n by specif
g skills usua

languages (
be exported
ith a highe
excerpt of
GrafiXML

ti-target us

rative Prototyp

d file for the cas

siSketch mu
p Language
n-developer

fying, descr
ally found
(e.g., Java o
d under a s
er fidelity e
f the expor
L propose
ser interfac

ping of User

se study.

ust be able t
e (UsiXML)
rs can shap
ribing it in
in markup

or C++).
tandardized
editor, chos
rted file in
d by Mi

ce builder

 211

to export a
) (UsiXML
e the UI of
UsiXML,
languages

d format to
sen by the
n UsiXML
ichotte &
based on

212

UsiXML f

4.3 The E
This s

UsiSketch
user interf
has the fle
final user
screens, ro
could enab
to improve
interface w
include fin

UsiSke
window d
minimize,
onChange
of the exe

The ac
widget. Th
possibility
supported
windows

for future m

Execution
section deta
h must be s
face is not i
exibility to
rs by produ
oughly one
ble the assim
e the design
without hav
nal users for
etch should
display. Ty
, maximize,
e, …) must
cution phas

Fi

ction “Selec
he navigatio
y to config

by the to
and close

Jo

modification

Phase
ails the ex
imulated su
solated. Du
create and

ucing some
for each “s
milation and
n. The desig
ving to expo
r providing
enable a m

ypical actio
, setText, et
be defined

se.

igure 24. Execu

ct widget s
on is then l

gure the na
ool are: Op

the source

orge Luis Pére

ns.

xecution p
ummarily. T
uring the des

modify the
e sketches
tate” of the
d the integr

gners can al
ort it on Usi
feedback.

more accura
ons on a w
tc.) and typ
. Figure 24

ution phase for

source” all
inked to an

avigation li
pen the tar
e windows,

ez Medina

hase. An
The activity
sign of the i
e UI. It can
depicting a
interface. H

ration of dif
so take adv
iXML every

ate simulatio
widget or w
ical event f

4 shows a U

Model Sketchin

ows defini
nother windo
nk. The ty
rget windo

Open the

interface d
y of the des
interface, th
also collab

a UI in th
Here the col
fferent point
vantage to si
y time and

on than jus
window (sh
for a widget
UML activit

ng.

ng the acti
ows. The u

ype of conf
ows, Open

target win

defined in
sign of the
he designer
borate with
he form of
llaboration
ts of views
imulate the
eventually

st statically
how, hide,
t (onClick,
ty diagram

ions for a
ser has the
figurations
the target

ndows and

Methods for Modelling Sketches in the Collaborative Prototyping of User
Interfaces

 213

maximize or minimize the source windows, Open the target windows in
front of (or in back of) the source windows. Finally, the user can execute the
prototype.

5. Conclusion
We have presented a sketching recognition method used to develop

UsiSketch. Its technology runs on cross-platform and supports sketching
recognition on different surfaces based.

The presented method describes a new recognition algorithm that
accommodates very large surfaces. It has the ability to recognize shapes and
combinations of shapes. Actually, UsiSketch recognizes and interprets 8
basic predefined shapes (i.e., triangle, rectangle, line, cross, wavy line,
arrow, ellipse, and circle); 32 different types of widgets (ranging from check
boxes, listboxs, textfields, buttons, video multimedia, etc.), and 6 basic
commands (i.e., undo, redo, copy, paste, cut, new window).

Users of different domains can combine multiple simple shapes in a more
complex combination or widget, according to pre-established rules. The
recognition is done at the time of drawing, and not at the end thereof. The
high fidelity elements are widgets. These are very numerous, and new ones
appear frequently. Therefore, and since the recognition algorithms are based
on a supervised learning, wanting to recognize these individual widgets
requires a training phase of the tool for each of them. Such a process would
be tedious, and will never be completed: for every new widget, we should
repeat the process.

We have addressed the solution using the representation of a low fidelity
widget as a composition of simple geometric shapes. For this reason, we
decided to implement pattern recognition only on these geometric forms,
greatly reducing the number of shapes to recognize. This reduces the time
needed to train the algorithm. These forms are then combined in predefined
grammars.

Currently, we are working on developing new features. We will be able
to easily evaluate the feasibility of our tool by conducting user experiments.
The results will be used to evaluate the performance of the tool, and obtain
new research perspectives.

214 Jorge Luis Pérez Medina

Acknowledgement
The authors would like to thank Olivier Bourdoux for the big contribution
to the UsiSketch tool.

References
Bastéa-Forte, M., & Yen, C. (2007). Encouraging contribution to shared sketches in

brainstorming meetings. In CHI ’07 Extended Abstracts on Human Factors in
Computing Systems CHI EA’07 (pp. 2267–2272). New York, NY, USA: ACM.

Beirekdar, A., Vanderdonckt, J., & Noirhomme-Fraiture, M. (2002). A Framework and a
Language for Usability Automatic Evaluation of Web Sites by Static Analysis of HTML
Source Code. In Proc. of CADUI’2002, pp. 337-348, Kluwer Academics Pub.

Beuvens, F., & Vanderdonckt, J. (2012). UsiGesture: An environment for integrating pen-
based interaction in user interface development. In Proceedings of Sixth International
Conference on Research Challenges in Information Science RCIS’2012 (pp. 1–12).

Buxton, B. (2007). Sketching User Experiences: Getting the Design Right and the Right
Design. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc.

Caetano, A., Goulart, N., Fonseca, M., Jorge, J. (2002) JavaSketchIt: Issues in Sketching
the Look of User Interfaces. In Proceedings of the 2002 AAAI Spring Symposium -
Sketch Understanding (Palo Alto, March 2002). AAAI Press (2002) 9–14.

Cherubini, M., Venolia, G., DeLine, R., & Ko, A. J. (2007). Let’s go to the whiteboard:
How and why software developers use drawings. In Proc. SIGCHI Conference on
Human Factors in Computing Systems CHI’2007 (pp. 557–566), ACM.

Coutaz, J. (2010). User interface plasticity: Model driven engineering to the limit! In Proc.
of the 2Nd ACM SIGCHI Symposium on Engineering Interactive Computing Systems
EICS’2010 (pp. 1–8). New York,: ACM. doi:10.1145/1822018.1822019.

Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q., & Vanderdonckt, J. (2004). Sketchixml:
Towards a multi-agent design tool for sketching user interfaces based on usixml. In
Proceedings of TAMODIA’2004 (pp. 75–82), ACM.

Coyette, A., Schimke, S., Vanderdonckt, J., & Vielhauer, C. (2007). Trainable sketch
recognizer for graphical user interface design. In C. Baranauskas, P. Palanque, J.
Abascal, & S. Barbosa (Eds.), Proc. of INTERACT 2007 (pp. 124–135). Springer.

D. Llorens, et al. (2008). The UjiPenchars database: a pen-based database of isolated
handwritten characters. In Proceedings of the Sixth International Conference on
Language Resources and Evaluation LREC’2008. Marrakech, Morocco.
Http://www.lrec-conf.org/proceedings/lrec2008/.

David, J., Eoff, B., and Hammond, T. (2010). CoSke-An Exploration in Collaborative
Sketching. In Proceedings of the ACM conference on Computer supported cooperative
work CSCW’2010, (pp. 471–472). New York, NY, USA: ACM.

Methods for Modelling Sketches in the Collaborative Prototyping of User
Interfaces

 215

Demeure, A., Masson, D., & Calvary, G. (2011). Graphs of Models for Exploring Design
Spaces in the engineering of Human Computer Interaction. In Proc. of ACM IUI’2011
(p. 5p.). Palo Alto, CA, United States.

Eisenstein, J., Vanderdonckt, J., & Puerta, A. (2001). Model-Based User-Interface
Development Techniques for Mobile Computing. In Proc. of 5th ACM Int. Conf. on
Intelligent User Interfaces IUI’2001 (pp. 69–76) , ACM.

Florins, M., Montero, F., Vanderdonckt, J., & Michotte, B. (2006). Splitting Rules for
Graceful Degradation of User Interfaces. In Proc. of 8th Int. Working Conference on
Advanced Visual Interfaces AVI’2006 (Venezia, 23-26 May 2006) (pp. 59–66). New
York, NY, USA: ACM Press.

Geyer, F., Jetter, H.-C., Pfeil, U., & Reiterer, H. (2010). Collaborative sketching with
distributed displays and multimodal interfaces. In Proceedings of ACM International
Conference on Interactive Tabletops and Surfaces ITS’2010 (pp. 259– 260). New York,
NY, USA: ACM. doi:10.1145/1936652.1936705.

Goel, V. (1995). Sketches of Thought. Cambridge, MA: MIT Press.
Gonzalez-Pérez, C. (2010). Filling the voids - from requirements to deployment with

open/metis. In ICSOFT 2010 - Proceedings of the Fifth International Conference on
Software and Data Technologies, Volume 1, Athens, Greece, July 22-24, 2010 (p. 19).

Hailpern, J., Hinterbichler, E., Leppert, C., Cook, D., & Bailey, B. P. (2007). Team storm:
Demonstrating an interaction model for working with mul- tiple ideas during creative
group work. In Proceedings of the 6th ACM SIGCHI Conference on Creativity &Amp;
Cognition C&C’2007 (pp. 193–202). New York, NY, USA: ACM.

Haller, M., Leitner, J., Seifried, T., Wallace, J. R., Scott, S. D., Richter, C., Brandl, P.,
Gokcezade, A., & Hunter, S. (2010). The nice discussion room: Integrating paper and
digital media to support co-located group meetings. In Proceedings of the ACM
Conference on Human Factors in Computing Systems CHI’2010 (pp. 609–618), ACM.

Haralick, R. M., & Elliott, G. L. (1979). Increasing tree search efficiency for constraint
satisfaction problems. In Proceedings of the 6th International Joint Conference on
Artificial Intelligence - Volume 1 IJCAI’1979 (pp. 356–364). San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc.

Johnson, G., Gross, M. D., Hong, J., & Yi-Luen Do, E. (2009). Computational support for
sketching in design: a review. Foundations and Trends in Human-Computer Interaction,
2, 1–93.

Kent, S. (2002). Model driven engineering. In M. Butler, L. Petre, & K. Sere (Eds.),
Integrated Formal Methods (pp. 286–298). Springer Berlin Heidelberg volume 2335 of
Lecture Notes in Computer Science. doi:10.1007/3-540-47884-1_16.

van der Lugt, R. (2002). Functions of sketching in design idea generation meetings. In
Proceedings of the 4th Conference on Creativity & Cognition C&C’2002 (pp. 72–79).
New York, NY, USA: ACM.

Mangano, N., Baker, A., Dempsey, M., Navarro, E., & van der Hoek, A. (2010). Software

216 Jorge Luis Pérez Medina

design sketching with calico. In Proceedings of the IEEE/ACM International
Conference on Automated Software Engineering ASE’2010 (pp. 23–32). New York,
NY, USA: ACM.

Meserve, B. E. (1983). Fundamental concepts of geometry. Courier Corporation.
Michotte, B., & Vanderdonckt, J. (2008). GrafiXML, a multi-target user interface builder

based on usixml. In Proceedings of Fourth International Conference on Autonomic and
Autonomous Systems ICAS’2008 (pp. 15–22). Piscataway, USA: IEEE Press.
doi:10.1109/ICAS. 2008.29.

Oncina, J., & Sebban, M. (2006). Learning stochastic edit distance: Application in
handwritten character recognition. Pattern Recognition, 39 , 1575–1587.
doi:http://dx.doi.org/ 10.1016/j.patcog.2006.03.011.

Pérez-Medina, J.-L., Dupuy-Chessa, S., & Front, A. (2007). A survey of model driven
engineering tools for user interface design. In M. Winckler, H. Johnson, & P. Palanque
(Eds.), Task Models and Diagrams for User Interface Design (pp. 84–97). Springer
Berlin Heidelberg volume 4849 of Lecture Notes in Computer Science.
doi:10.1007/978-3-540-77222-4_8.

Rubine, D. (1991). Specifying gestures by example. In Proceedings of the 18th Annual
Conference on Computer Graphics and Interactive Techniques SIGGRAPH ’91 (pp.
329–337). New York, NY, USA: ACM..

Schon, D. A., & Wiggins, G. (1992). Kinds of seeing and their functions in designing.
Design Studies, 13 , 135 – 156. doi:http: //dx.doi.org/10.1016/0142-694X(92)90 268-F.

Sharp, Y., H. Rogers, & Preece, J. (2007). Interaction Design: Beyond HCI. New York,
USA: John Wiley and Sons.

UsiXML Consortium. UsiXML, a General Purpose XML Compliant user Interface
Description Language, UsiXML V1.8, 23 February 2007. Available on line:
http://www.usixml.org.

Vatavu, R.-D., Anthony, L., & Wobbrock, J. O. (2012). Gestures as point clouds: A $p
recognizer for user interface prototypes. In Proceedings of the 14th ACM International
Conference on Multimodal Interaction ICMI ’12 (pp. 273–280), ACM.

Wobbrock, J. O., Wilson, A. D., & Li, Y. (2007). Gestures without libraries, toolkits or
training: A $1 recognizer for user interface proto- types. In Proceedings of the 20th
Annual ACM Symposium on User Interface Software and Technology UIST’2007 (pp.
159–168). New York, NY, USA: ACM. doi:10.1145/1294211.1294238.

Wuest, D., Seyff, N., & Glinz, M. (2015a). Flexisketch team: Collaborative sketching and
notation creation on the fly. In IEEE/ACM 37th IEEE International Conference on
Software Engineering ICS’2015 (pp. 685–688). volume 2.

Wuest, D., Seyff, N., & Glinz, M. (2015b). Sketching and notation creation with
flexisketch team: Evaluating a new means for collaborative requirements elicitation. In
Proceedings of IEEE 23rd International Conference on Requirements Engineering
RE’2015 (pp. 186–195).

