
Revista Romana de Interactiune Om-Calculator 9 (4) 2016, 305-333 © MatrixRom

The UsiSketch Software Architecture

Jorge Luis Pérez Medina1
1 Université catholique de Louvain, Louvain School of Management Research Institute

Place des Doyens, 1 – B-1348 Louvain-la-Neuve (Belgium)

E-mail:jorge.perezmedina@uclouvain.be

Abstract. In previous work, we proposed a method to facilitate the tabletop collaborative

prototyping of model-based user interfaces in early steps of the design process when

multiple stakeholders have only a vague goal in mind of what should be produced. We also

developed UsiSketch, a Java-based software supporting our modeling sketching method. In

this paper, we present the main functionalities and the software architecture of UsiSketch.

Keywords: Sketching, Collaborative Prototyping, Graphical User Interface, Design Tools

and Techniques.

1. Introduction

In previous work, we presented UsiSketch (Pérez-Medina, 2016), a

method for modeling interfaces collaboratively for the prototyping of user

interfaces. The proposed method is composed of three main phases, namely:

pre-production, production, and execution phases. The pre-production phase

aims at defining the underlying grammar of the gestures to be made during

the design session and at training the algorithms for enhancing their

recognition capabilities; the production phase regards the recognition of

performed gestures on a large surface and the creation of an XML file as

output; the execution phase aims at executing a simulation of the designed

UI.

The motivation and main functionality of the method were discussed.

The main contribution presented was a novel strategy to handle sketching

on very large interaction surfaces.

This work will expand on this idea, but while the focus of the previous

work was dedicated to the new recognition algorithm that accommodates

very large surfaces and model-based design of user interfaces with

collaboration, this work focuses on the description of the software

architecture and the tool called UsiSketch that incorporates the

306 Jorge Luis Pérez Medina

aforementioned techniques. The description of the main functionalities of

the tool and its main benefits and shortcomings are also detailled. The

software architecture supports only two physical configurations of a

Collaborative User Centered Design method (Pérez-Medina et al., 2016)

based on sketching to support prototyping along a Software Development

process. Based on the spatio-temporal relationships among designers and

users the physical configurations consider only co-located synchronous

collaborations of the different users (or roles, which contains both designers

and users) and devices. Designers and final users can collaborate at the

same time and in the same place using a single device. The screen size, of

the device configurations, supported by the architecture can be small,

medium, large desktop, extra large desktop and wall screen.

The rest of this paper is structured as follows: Section 2 presents an

analysis of related work. Section 3 describes a set of technical requirements

identified for UsiSketch and provides an analysis of the architecture used to

develop the software in Section 4. UsiSketch tool is described in Section 5.

Section 6 gives some benefits and shortcomings. Finally, section 7 presents

conclusions and future work.

2. Related work

The related work to UsiSketch could be divided into two parts: research

related to user interface prototyping by sketching and research related to

collaborative design. This section attempts to address both.

Ambler (2009) found that a prototyping tool aims to facilitate

prototyping of user interface as an iterative analytical technique in which

users are actively involved in the design phase. (Vanderdonckt & Coyette,

2007) express that a user interface prototype has many uses: exploring the

problems posed by the system to design, identifying the constraints of the

system to design, developing possible solutions for the system to design,

communicating the different possible UIs for the system and laying the

foundations from which the system can be built. During prototyping, the

designer must produce a close representation of the final software to

validate its ergonomics, the typical scenarios and/or the frequent use, among

others. The importance of this step is not the drawing of the final interface,

but a faithful representation sufficient to take out the appropriate

conclusions.

The UsiSketch Software Architecture 307

The concept of fidelity of a prototype is the object of several research

projects, for example, (Landay & Myers, 1995; Newman & al., 2003; Petrie

& Schneider, 2006). SILK (Landay & Myers, 1995) proposes a natural

mechanism of conception where the designer freely design draws the

interface being designed as a free hand graphic design tool. Prototyping a

UI to a low fidelity level enables discovering many problems at a higher

level. The fidelity level express the similarity between the gesture

representation of the prototyped interface and the interface itself

(Vanderdonckt & Coyette, 2007).

In (Vanderdonckt & Coyette, 2007), the authors afirm that mixed-fidelity

prototyping consists of mixing simultaneously or not various fidelity levels

within the same user interface prototype. Multi-fidelity prototpying

incorporates mixed-fidelity prototyping in that it enables the designer to

express any interaction object in multiple fidelity levels and ensure a

smooth and dynamic transition between these levels at design-time. The

multi-fidelity approach allows integrating user interface elements delivered

in one or many fidelity levels in order to build a user interface prototype

which evolves as the interactive application development life cycle is

progressing. Prototyping to high fidelity level may follow a prototyping to a

lower fidelity level as raised above, but not necessarily.

Figure 1. Vertical and horizontal Prototype. Adapted to (Vanderdonck & Coyette, 2007).

The Nielsen’s Reference (1993), presented in Figure 1, distinguishes two

types of prototypes depending on the level of interactivity covered: vertical

and horizontal. In (Vanderdonckt & Coyette, 2007), the authors suggest that

prototyping can be performed in three main ways: the so-called human-

computer interface, the abstraction layer of the application and the

functional core comprising the semantic functions of application (see Figure

1). The type of prototyping is called horizontal when designers want to

develop a maximum of functionalities of the application through the

interface. The interface is then prototyped to a low or medium fidelity level

308 Jorge Luis Pérez Medina

in order to verify that all the functionalities are well identified and covered.

Consequently, the prototyping is not deep since only the main aspects (e.g.

the presentation) take place over the detailed aspects (e.g. the really

implemented functionalities). When the first horizontal layer is completed,

for instance: through a validation performed by final users, the prototyping

activity can spread to the lower levels (see Figure 1). In this process, the

interface is first completed, the abstraction layer is then initiated, next, the

semantic functions of the functional core. This corresponds to a situation

where the interface is the primary element in prototype before any other

layer. Once it is stabilized, the associated behavior can be developed

without fear of seeing it changed too quickly.

Tahuti proposed by (Hammond & Davis, 2002) is a multi-stroke sketch

recognition environment for class diagrams in UML where users can sketch

the diagrams on a table or whiteboard in the same way they would on paper

and the sketches are interpreted by the computer.

Tablaction created by (Kim et al., 2010) supports collaborative

brainstorming process which supports simultaneous stylus and multi-touch

finger inputs. This work also discusses some ideas regarding the limitations

faced by participants in a brainstorming meeting. We agree that people

cannot equally participate in the brainstorming and we argue that the use of

large screen could be an alternative solution. Additionally, the authors

present a paper prototype test performed with a specially designed stylus for

it. The authors expect the interaction design with multi-touch and stylus

capabilities on tablets to accelerate idea expressions in a brainstorming

meeting.

Dazzle proposed by (Oehlberg et al., 2012) associates the action of

showing information on the shared display with granting the rest of the team

access to that information: showing is sharing. Dazzle also records a history

of shown files. Team members can annotate this log using cross-platform

synchronized clients.

(Safin & Leclercq, 2009) evaluate the opportunities and constraints

linked to the technological transfer of a sketch-based distant collaborative

environment, from academy to industry. The paper relates the concepts of

the sketch-based collaboration, describes the Distant Collaborative Design

Studio and proposes a methodology to assess the utility and usability of the

system in two different companies. The results and conclusions show the

issues linked to the implementation of such sketch-based collaborative

environment in professional contexts.

The UsiSketch Software Architecture 309

WebSurface produced by (Tuddenham et al., 2009) proposes an

alternative approach to drawing ideas in a collaborative way from tabletop

interfaces. It explores an alternative approach to the problem of

collaborative Web browsing by applying recent techniques from tabletop

interfaces: large horizontal collaborative surfaces. The findings suggest that

a tabletop approach for collaborative web browsing can help address

limitations of conventional tools, and presents beneficial affordances for

information layout.

Another system to support UI design on tangible surfaces is shown in the

Designer's Outpost proposed by (Klemmer et al., 2001). It found that pens,

paper, walls, and tables were often used to explain, develop, and

communicate ideas during the early phases of design. These wall-scale

paper-based design practices inspired The Designers' Outpost, a tangible

user interface that combines the affordances of paper and large physical

workspaces with the advantages of electronic media to support information

design. With the tools, users collaboratively author web site information

architectures on an electronic whiteboard using physical media (Post-it

notes and images), structuring and annotating that information with

electronic pens. This interaction is enabled by a touch-sensitive SMART

Board augmented by a robust computer vision system, employing a rear-

mounted video camera to capture movement and a front-mounted high-

resolution camera to capture ink.

(Cherubini et al., 2007) presents findings of an exploratory study of how

and why developers draw their code. The study focused on the social

practices around diagrams and visualizations. The authors found that

diagrams play largely a supportive role in software design and that drawings

are often ephemeral because of the labor involved in translating them into

more permanent forms. These findings and others provide useful insights

into the design of a wide array of software-visualization tools as well as into

the use of diagrams in design work in general. Among the results, we find

that, in most cases, informal notation was used to support face-to-face

communication and that current tools were not capable of supporting this

need because they did not help developers externalize their mental models

of code. Instead, developers reported that the level of abstraction differs

with every conversation and even within a conversation.

Different tools for modeling sketches and prototyping are proposed in the

literature. We will not produce a comparison of these tools as it would be

310 Jorge Luis Pérez Medina

beyond the scope of this paper. However, we consider necessary to give a

list of some electronic tools to support sketching activities, especially

Gambit by (Sangiorgi & Vanderdockt, 2012) a cross-platform tool

conceived to support a collaborative User Centered Design (UCD) method

described in (Norman & Draper, 1986) and (Sangiorgi et al., 2012) to foster

creativity and discuss design ideas studied in van der Lugt (2002). The

sketching tool list related to UsiSketch is: JavaSketchIt (Caetano et al.,

2002), Damask by (Lin & Landay, 2002), SketchiXML proposed by

(Coyette et al., 2004), Denim by (Lin & Landay, 2008), Sketch API by

(Sangiorgi & Barbosa, 2010), Sketchify produced by (Obrenovic &

Martens, 2011), FlexiSketch by (West et al., 2013) , Rapido by Mitra (2015)

and FlexiSketch TEAM by (Wuest et al., 2015). FlexiSketch TEAM is a

solution for collaborative, model-based sketching of free-form diagrams. It

allows multiple users using their own tables to work simultaneously on the

same model sketch and use lightweight metamodeling mechanics to

collaboratively define custom notations on the fly. The similarity of

FlexiSketch TEAM with our tool is that users can define the syntax for

sketched symbols and links. However, the tools do not support distributed

collaboration with Multi-level prototyping, the exportation to a generic user

interface description language and the independent execution of the user

interface. The purpose of SketchiXML is the same as that of UsiSketch: to

sketch and simulate the user interface. However, the tools supports a

relatively low fidelity. The drawn widgets are not all the same size and they

are not aligned. This represents a great limitation when working on large

surface.

3. Key requirements

We argue that a software that supports sketching and simulation on

multiple device and platforms would enrich the collaboration of designers

and final users during requirements capture and analysis. One important

issue with sketch-based systems for prototyping and simulation of user

interfaces is that they must adapt the recognition of gestures on small and

large screens.

For define the requirements of UsiSketch an extensive literature review

was conducted in the areas of : (1) prototyping, specially with paper-pencil;

(2) interfaces edition; (3) interface description languages; (4) hardware and

The UsiSketch Software Architecture 311

pointing material.

Naturalness, intuitiveness, simulability, completeness, low-high fidelity

levels, exportability, collaborativity, short learning time, short production

time are some of the attributes desired by UsiSketch as a prototyping tools.

Today, prototyping activity is still on paper and many designers still

consider paper prototyping an efficient method (Ambler, 2007). Indeed,

nothing is more natural, when talking about prototyping, to take a sheet of

paper and shetch what is expected to see on the screen. It is a flexible,

intuitive and accessible method. Our interest is that the computer can

analyze and simulate the beahvoir of paper prototype allowing the designer

to sketch the user interfaces as easily as on paper.

Although UsiSketch can be used with a traditional pointing device

(mouse, track-pad), this tool must mainly designed for use with a pencil-

type pointing tool.

In the context of a Collaborative User Centered Design method based on

sketching we argue that a user working alone will preferably use a small or

desktop surface, while a group of people will be more comfortable with a

wall screen because the screen is projected, therefore more easily readable

by several people. Additionally, working directly on the screen give a

natural and better immersion. This kind of device is very interesting to favor

the intuitiveness of UsiSketch.

Usually, at the end of the prototyping step two types of prototypes are

produced: Disposable prototypes (the prototype is validated, thrown and re-

developed) or non-disposable (all or part of the prototype are recover for

further development). Unlike pure prototyping tools, interface editors are

not meant to create / simulate a prototype, but to define the final interface

used in a software. In this respect, their export capacity is generally very

good, as is their level of fidelity. They are also software of type

WYSIWYG, but they often offer the possibility of editing the source code

directly (if it is human-readable).

The techniques used by the interface editors and those of the prototyping

tools are generally similar. The fundamental difference between these two

classes of software is their mission: one grouping together software that

helps in pure prototyping, while the other serves to create interfaces that

will actually be used. We are interested in a prototyping tool were the

prototype can be created, modified and once validated reused in later stages

of the development process. The reuse of an UI prototype requires the

312 Jorge Luis Pérez Medina

consideration of an interface description language (García et al., 2009). A

systematic comparison of these language is outside the scope of this paper.

The interested reader may refer to (García et al., 2009) for a more

comprenhensive comparison. However, our focus is on UsiXML validated

by the W3C (Consortium usiXML, 2007) which gives a good visibility,

guarantees quality and a good standardization of the language.

We rely on the VOLERE model11 for the discovery and representation of

the requirements since it provides a set of resources for eliciting and

specifying requirements allowing also to improve requirements

specifications. We started by defining the main requirements, then we have

gradually added the smaller requirements. Each requirement was classified

into a list according to a importance level.

Based on the literature review and examining related work and especially

in (Coyette et al., 2004; West et al., 2015a; West et al., 2015b), we

identified a total of 42 main requirements for modeling sketches on very

large surfaces. The beneficiaries of these requirements are: Designers,

Testers and Developers. These requirements are grouped in Recognition (8),

Drawing-Rendering (9), Prototyping (4), Data (4), Simulation (4),

Ergonomics/Usability (6), and Architecture (7). The detail of these

requirements is beyond the scope of this paper, however, the requirements

are briefly described in the appendix sections. Through the next section we

will introduce UsiSketch which was developed according the list of

requirements.

4. UsiSketch software architecture

UsiSketch is an Eclipse plug-in developed in Java which supports

multiple computing platforms. It integrates the new algorithm, based on the

described method that recognizes UI sketching on very large surfaces

(Pérez-Medina, 2016). Figure 2 shows the principal components of the

UsiSketch. The general architecture is inspired by Model-View-Controller.

The tool uses the following libraries:

1. Eclipse Sketch developed by (Sangiorgi et al., 2010) contains the

shape recognition algorithms used in usiSketch.

2. UsiXML conceived by the Consortium usiXML (2007) contains all

Java classes to parsing and exports the forms to the User Interface

11 Volere Requirements home page. www.volere.co.uk.

The UsiSketch Software Architecture 313

eXtensible Markup Language (usiXML), an XML-compliant markup

language that describes the UI for multiple context of use as character

User Interfaces (CUIs), Graphical User Interfaces (GUIs), Auditory

User Interfaces, and Multimodal User Interfaces.

3. Castor Project12 provides the connection between XML and Java. It is

used in conjunction with the UsiXML library for parsing and

exporting a UsiXML file. Castor depends on both Commons-Logging

and JDOM libraries.

4. Commons-logging13 is in charge of the logging of all events when

exporting to UsiXML.

5. JDOM14 is required by UsiXML. It provides a complete, Java-based

solution for accessing, manipulating, and outputting XML data from

Java code.

We defined a utilization as a direct call from one module to another. An

event is a message sent from a module and captured by another. Utilization

and event of modules Config, Util and Events are not described.

4.1 The model package

The Model view includes the package: Graphics and Actions. The

following sections describe these packages.

4.1.1 Graphics

Graphics which contains all graphical elements used by the tool, as well

as the structures for storage. The elements are not the components displayed

on the screen, but the data required for their design (position, size, dots, ...).

There are four categories of objects, the first three contain the graphic

12 Castor Project. Castor is an open source data binding framework for Java[tm]. It is the shortest path

between Java objects, XML documents and relational tables. Castor provides Java-to-XML

binding, Java-to-SQL persistence, and more. (http://castor-data-binding.github.io/castor/).

13 Commons-logging. The Apache Commons Logging (JCL) provides a Log

interface that is intended to be both light-weight and an independent

abstraction of other logging toolkits. It provides the middleware/tooling

developer with a simple logging abstraction that allows the user (application

developer) to plug in a specific logging implementation.

(https://commons.apache.org/proper/ commons-logging/).
14 Jdom is a Java representation of an XML document. It provides a complete, Java-based solution for

accessing, manipulating, and outputting XML data from Java code. (http://www.jdom.org/).

314 Jorge Luis Pérez Medina

elements inheriting of the Graphics class. The fourth category corresponds

to the elementary storage structures:

1. A DotSet elements represent a hand drawing. This element is a set of

points connected in the form of a curve.

2. The VectorialShape element represents a vector shape. Several

classes inherit of VectorialShape depending on the type of form

defined. The VectorialShape allows manipulating a geometric form

and converting it in a smoothed representation.

3. Widget represents a Widget structure. The widget is the constitutive

element of a Graphical User Interface (GUI). Several classes inherit

from Widget. It can be a button, a text, a text field, a listBox, etc. The

purpose of this class is to inform the user, or allow him to interact

with the system used.

4. The GraphicsContainer is the structure of storage for elements of

type VectorialShape and Widgets. The AnnotationsContainer is the

structure of storage for elements of type DotSet used as annotations.

Windows represents an element containing its GraphicsContainer, its

AnnotationContainer and its HistoryManager.

The UsiSketch Software Architecture 315

Figure 2. Execution phase for Modeling Sketches.

Figure 3. Data structure of graphic elements for the listBox widget.

To store the graphic elements other than DotsSet, a specialized structure

was developed. It is designed to fulfill the requirement corresponding to the

management of several fidelity levels, changeable at any time. Figure 3

shows a graphical idea of the data structure. It corresponds to an inverted

tree whose nodes are graphic elements. In particular the leaves are

VectorialShapes recognized by the recognition engine. The addition of

drawn shapes is always performed in the leaves.

The structure also has a compose method which performs the

composition of forms in another form. The compound form then becomes

the parent of the nodes that comprise it. This method is only called by the

composition engine shapes.

When rendering, the path of this structure behaves differently depending

on the level of fidelity. For instance:

1. At the level of “fidelity widgets” and above: only root nodes are

searched.

2. At the level of “fidelity forms”: child nodes are drawn if and only if

the parent node is a Widget. In this case the parent node is not drawn.

3. At the level of “fidelity drawing”: only the leaves are drawn, in its

drawn shape really.

4.1.2 Actions

The “Actions” package groups all undoable actions. This module is at the

border of the model and controller view. The class contained in this package

316 Jorge Luis Pérez Medina

defines the methods undo() and redo() which implement the action to

perform. They are also used to manage the historical design, drawing as

well as when saving the file. The classes contained in this package are

created by HistoryManager, and the objects are stored in a log implemented

by the HistoricList class contained in this module.

4.2 The view package

The View manipulates the visual aspects. It contains the interfaces

implemented in eclipse and the connections made as a plug-ing. The Plug-in

package contains all the classes in charge of connecting UsiSketch to

eclipse. This module is also in charge of loading the views, opening files,

etc. The UI package contains all views of the application. Each view allows

managing the events that occur in it, and transmits the information to the

controller concerned, depending on the event. The views defined are:

1. WindowsEditor is in charge of managing the design of forms and

widgets.

2. PreviewFrame is in charge of the screen simulation.

3. HistoryView is in charge of listing the history of design, and allows

the user to return to a previous state.

4. GrammarView. In this view the designer can specify the grammars

required by the composition of widgets.

4.3 The controller package

The Controller view is in charge of the functional operations made in

UsiSketch. There may be recognition processing, combination, user actions,

etc. The main classes of the package Controllers are:

1. SketchingController which manages any action done in a drawing. It

may include the addition of a sketch, and a suppression or selection

command.

2. ActionController manages the actions carried out in an interface.

More concretely, it deals with control buttons in the windows view.

3. HistoryController manages the actions performed in the HistoryView.

4. The ShapeRecognizer package implements a thread which recognizes

the designed geometric forms and converts them into a smoothed

form. Its package recognizes a form based on a set of points

implemented by the class DotSet.

The UsiSketch Software Architecture 317

5. The GrammarRecognizer combines several simple forms in a

complex form or widget, according to pre-established rules.

6. The HistoryManager maintains a desing of history and draws a

prototype at any time.

4.4 Others packages

The Config package includes the variables of the plug-in. These

variables can be used to change the behavior or appearance of the software.

The Util package includes all classes used around the code. Finally, the

Events package implements the design pattern Observer-Observable. It

manipulates EventTrigger and EventListener classes. The event system is

used to notify changes of the lower layers of software to the upper layers.

For example, when a shape is added to the list of forms in a window, the

container sends an event to all the views and controllers involved. The

controller will then ask the GrammarRecognizer package to seek the new

correspondences, hoping to identify a new widget.

5. UsiSketch tool

In order to give the reader a good understanding of UsiSketch, this

section proposes the main features of the tool. UsiSketch is a prototyping

software based on the sketch, enabling fast prototype, intuitive, a low level

of loyalty, and reusable in the later stages of a software development life

cycle.

Figure 4 shows the main screen of UsiSketch. UsiSketch’s graphical user

interface is decomposed into three parts. It has a tool bar at the top of the

window that gives access to most of the features. The left side of the

window gives access to a list of files created by a UsiSketch project. The

last major component of the window is the workspace.

318 Jorge Luis Pérez Medina

Figure 4. UsiSketch’s graphical user interface.

The workspace is composed of a tool bar with the commands such as

create a new UI, generate the XML representation of the UI, undo, redo,

copy, paste, and change the fidelity level. Each of these commands can be

associated to one or several gestures. The fidelity slider allows the designer

to switch from fidelity levels to another just by moving the cursor. The

“none” rendering consists of leaving the drawing as it is without any kind of

beautification. The “low” level proposes a smoother representation as all the

vectorial shapes composing the widget are replaced by a smoother

representation. The “medium” level is a smoother representation than the

previous one. Its representation is made independently of the shapes that

were used to build the widget. Even if the representation of the textfield was

composed of two intersecting circles the representation remains the same.

Finally, the “high” level transforms the recognized widget by its

corresponding widget in language Java/Swing. A second part of the

workspace is the window selection area. It contains all the windows created

in a UsiSketch project.

The UsiSketch Software Architecture 319

Figure 5. The navigation editor of UsiSketch.

Designers can create/remove a selected window, select a window and

edit it. The drawing canvas is the key component of UsiSketch where the

designers will draw the user interface. When designers desire to add a new

representation to the UI, they just need to draw the representation where

needed. For each widget, a set of representations is predefined and can be

extended according to the designers’ wishes. Each of these representations

consists of a group of multi-stroke shapes, widgets or gestures and a list of

contraints. For instance, we can observe on the top of the drawing canvas

area that a picture is decomposed into three elements: a circle, a triangle,

and a rectangle. The constraints specify that the circle and triangle must be

inside the rectangle and the circle must be on the top of the triangle.

All these functionalities presented above permit proceeding to the design

as naturally as paper sketch. UsiSketch also incorporates advanced editing

functions to test the interaction of the user interfaces. Once the set of user

interfaces composing the project is completed, designers have the

possibility to sketch the relations between those screens. Figure 5 illustrates

the relations between screens. Based on these relations, UsiSketch allows

switching to a run mode where the end-user will have the opportunity to test

a running prototype without third-party.

320 Jorge Luis Pérez Medina

The run mode is part of the noticeable functionalities we integrated in

this tool. As stated earlier, integrating an expressive scenario editor was

very important, but we consider that testing this scenario easily is also

crucial. The run mode requires a designer to play the computer and move

the window accordingly to the user actions. So, UsiSketch incorporates a

navigation editor. The editor uses all information provided by the final user

and builds a run mode based on the sketches or the windows interpreted in

java. UsiSketch also produces an output that is general and context

independent. The output is based on user interfaces description languages

such as UsiXML and UIML.

The design history is another evolution that was integrated in UsiSketch.

When prototyping, a designer will try to explore many desings and evolve

very fast. Looking back to the previous steps can be very useful. In

UsiSketch, the designer can have a preview of the previous step and if

needed go back to this step at any moment.

5.1 Assessment requirements

UsiSketch is under development. Some requirements are not fully

completed. This section discusses the progress in the development.

The major features still missing are the ability to import an image and

convert it into UsiSketch file, and the recognition tests. In addition, the

composition rules of a widget are not editable via an interface yet.

In relation to the Drawing/Rendering, all the functionalities provided

during the requirements are implemented, except for the selection and

displacement of previously drawn shapes. However, the selection

functionality is under development.

We find that the absence of a list of available widgets and their grammar

could bring problems in learning gestures. This is a significant barrier to

offer an intuitive software with fast handling. However, this problem will be

partially solved when the grammar editing window is be available.

However, we think that it will not be enough. We consider that a direct

visual display of the window (without possibility of change) is needed in

addition to the grammar editing view.

It would take a direct visual display of the window (no possibility of

change) in addition to the grammar editing view. This list will be accessible

at any time (e.g. through a button) and would display all existing widgets

and their grammar. This feature also requires a relatively large effort to

The UsiSketch Software Architecture 321

implementation based on a generic grammar because we need to build a

representative image.

Another aspect that we must consider is the navigation. The navigation is

functional but still very perfectible. Indeed, the only possible actions are on

the windows when clicking on a clickable widget (e.g. a button). Moreover,

the only recognized events is the click on an item.

A UsiSketch project can be saved as a .usk file. Exporting a UsiSketch

project into UsiXML file is also implemented. However, navigation rules

from one page to the other are not exported yet.

Actually, an interface defined in UsiSketch must be simulated summary.

However, this functionality can be enhanced. The only proposed dynamic

behavior is the click of a button. It is not possible to change the text of a

field, check a box or other dynamic behavior. Although it is not vital to use

the software, Improving this functionality would be appreciated.

It is interesting to see that for writing text, some volunteers have

preferred to use the annotation mode rather than draw lines representing

labels, but only for static text. Similarly, they also added via the button text

annotation. We believe that it is better to use the annotations mode instead

of drawing lines representing labels, but only for static text. Similarly, it is

possible to add the label of a button via the annotations.

One possible solution for managing text would be to add another

drawing mode, (for instance the “text mode”), which should recognize any

gesture as text and convert it into label with the desired content. This

functionnality would allow a complete export into UsiXML and seems more

intuitive for the final user. Note however, that the widget "label" will then

serve as dynamic text fields: “we knew that we would put one, but we did

not know what it would contain in advance”.

We consider that the delete link in the navigation view is not intuitive:

the final user need to redefine the link to get the "delete" menu of links is

not practical. An alternative is to use the same mechanism as the rubber

used in the drawing view.

The absence of borders on the drawing area also could be a

troublemaker. Some users might prefer to have a clear view of the edges on

a prototype, to have a more precise idea of the final UI.

Finally, we consider adding the ability to duplicate the last widget

designed to place it several times on the windows faster. This functionality

could complete the functionalities of copy and paste.

322 Jorge Luis Pérez Medina

6. Benefits and Shortcomings

6.1 Flexible prototyping by sketching of Graphical User Interfaces

The popularity of touch-devices to enable users to insert information

directly on the screen, using their fingers or a pen, instead of a mouse is

increasing and they are getting more and more common. The paper and

pencil approach is without doubt the fastest for flexible and rapid

prototyping: no constraints are to be respected. However, its automated

reuse is very difficult.

UsiSketch combines a pointing technology with pattern recognition

techniques and combination of shapes to allow the recognition of drawn

objects. This recognition allows dynamically changing the behavior of the

prototyped interface, and exporting objects in a usable format in the later

stages of software development.

6.2 A Cross-platform tool

UsiSketch is a Java GUI designer built as an Eclipse plug-in which

supports multiple computing platforms. It incorporates a new mechanism

that recognizes User Interface by modeling sketches on very large

interaction surfaces. The tools provide an environment to allow users to

insert objects in compliance with predefined grammars by capturing their

gestures, typically using a pen on a tablet.

6.3 A standardized export format

In UsiSketch, any gesture representation is expressed in an XML format

stored in a graphical grammar. UsiSketch transforms the users’

representation into processable User Interface. The export process is based

on the UsiXML language. The promised universality makes good support

for this functionality.

6.4 Recognition of widgets and other gestures

UsiSketch has the ability to recognize shapes and combinations of

shapes. Actually, UsiSketch recognizes and interprets 8 basic predefined

shapes (i.e., triangle, rectangle, line, cross, wavy line, arrow, ellipse, and

The UsiSketch Software Architecture 323

circle); 32 different types of widgets (ranging from check boxes, listboxs,

textfields, buttons, video multimedia, ...), and 6 basic commands (i.e., undo,

redo, copy, paste, cut, new window).

Users of different domains can combine multiple simple shapes in a

more complex combination or widget, according to pre-established rules.

The recognition is done at the time of drawing, and not at the end thereof.

The high fidelity elements are widgets. These are very numerous, and new

ones appear frequently. Therefore, and since the recognition algorithms are

based on a supervised learning, wanting to recognize these individual

widgets requires a training phase of the tool for each of them. Such a

process would be tedious, and will never be completed: for every new

widget, we should repeat the process.

We have addressed the solution using the representation of a low fidelity

widget as a composition of simple geometric shapes. For this reason, we

decided to implement pattern recognition only on these geometric forms,

greatly reducing the number of shapes to recognize. This reduces the time

needed to train the algorithm. These forms are then combined in predefined

grammars.

UsiSketch does not support mapping a text for a widget. This function

must be carried out through text recognition. This kind of recognition uses

other algorithms. We plan to consider this item in future software upgrades.

6.5 Multiple representations for a widget

UsiSketch has the possibility to recognize and interpret several

representations for a widget at run-time. The contextual grammars used to

define forms as a composition of simpler shapes allow conceiving a

mechanism to define multiple representations of a widget. In this way, any

custom object could be easily added by adding a new representation in the

grammar. Theses representations can be structured in a hierarchical way.

The hierarchy can then be augmented or modified with new representations.

Each UI element can be sketched and recognized or not depending on its

shape and the wish for the user to see it recognized or not.The object

recognition is only on-demand. Those shapes which are not recognized are

simply added and maintained throughout the process. The objects that are

correctly recognized are beautified and the name is added. If an object is not

recognized, it is simply maintained as it is, but could be annotated for

further handling in the future.

324 Jorge Luis Pérez Medina

6.6 Multiple levels of fidelity for a gesture

Figure 4 illustrates the fonctionality allowing the user to change the level

of fidelity of the prototyped user interface. UsiSketch supports many

widgets in four fidelity levels: none: (only the drawing is displayed), low

fidelity (the drawing is displayed with recognized portions), medium

fidelity (the drawing is beautified where portions are recognized, including

the predefined shapes), and high fidelity (a genuine user interface is

produced with widgets for those recognized objects).

6.7 Performance of recognition when the UI has many shapes

UsiSketch allows changing old widgets without having to redraw them.

Our tool accommodates several representations for a single object, without

affecting significantly the system response time. A combination of shapes

depending on the drawing order does not allow this feature. However, the

execution time of a research combination increases with the number of

shapes drawn on a window. Although optimizations offered by constrained

programming severely limit this effect, we believe that a window containing

a large number of shapes can slow the performance of the combination. We

expect to achieve a comprehensive testing to get results in such estimates

and find affordable solutions.

6.8 User Interface dynamics

Currently the only proposed dynamic behavior is the click of a button. It

is not possible to change the text of a field, check a box or other dynamic

behavior. In addition, the prototyped user interfaces however remain very

unrepresentative. We note that the operation of UsiSketch is limited for

highly dynamic interfaces. For instance, when the user interface has

incorporated a google maps widget. The only solution at present would be

to copy each page and simulate the dynamic navigation. Although it is not

vital to use our tool, improving this feature would be good.

6.9 Multiple fidelity transition

The User Interface of UsiSketch has a slider to give users the

functionality to easily and quickly change between the four fidelity levels.

A UI in the low fidelity mode is often referred to as a wireframe

The UsiSketch Software Architecture 325

representation, independent of any particular technology. A high fidelity

mode displays genuine belonging to the Java platform. Different widget sets

and look & feel could be used alternatively that mimic a high fidelity

representation in other window managers and operating systems like Linux,

Open Look, and MacOS X. If a UI element has not been recognized, it is

simply kept as it is.

6.10 The use of multi-strokes

During the development of the tool, we found that the use of a multi-

stroke features does not allow users to draw at the speed they want. That is

to say, after some time without any stroke (about 300 ms), the software

considers that the gesture is completed. An alternative that seems more

effective is to use a minimum and maximum time window, after each

stroke. The recognition is performed on it. If a stroke is drawn before a

certain time, recognition returns the most similar shape. If, and only if, this

second recognition returns a most similar form, the gesture is considered

multi-strokes.

6.11 Additional features

Figure 6. Illustration of the use of blocks. (a) Definition of block. (b) An example of user interface.

The rectangle at the right is the bloc defined in (a). (c) The final UI with an intermediate fidelity

level: the gesture is remplaced by block.

326 Jorge Luis Pérez Medina

The major features are currently still lacking the ability to import an

image and convert it into UsiSketch file. We also intend to develop an

edition interface for generic grammars with visualization of their

representative image. We want to achieve the functionality to duplicate the

last widget designed, to place it several times faster.

We also intend to achieve a feature to define blocks. Figure 6 shows the

representation of a block. Each block would have its specific content and

would be identified by a gesture chosen by the user.

The user can then add a block on any window drawing the representative

gesture of the block, and by framing the gesture by a rectangle to specify the

block borders. A block can be seen as an element of type “box” in the

syntax of UsiXML. It ensures the export to UsiXML. The scenario for

creating a block would be:

1. The user informs the software that he wants to create a block.

2. The software asks the user to define the gesture representing the

block. The gesture is then added as a training gesture to the pattern

recognition module.

3. A new drawing area is created and the user can begin to describe the

block content.

4. After setting the block, the user must choose the window(s) where

the block can be placed and draw the gesture representing the block

framed by a rectangle.

It may be necessary to insert an intermediate level of fidelity between

“Low” and “Medium”, where the representative forms of a block would be

replaced by their contents (see Figure 6).

7. Conclusion

We have presented an architecture for UsiSketch conceived from a list of

42 requirements. UsiSketch is a tool that supports horizontal prototyping. It

provides collaborative design of user interfaces, even in very large surfaces

where final designers conceive in a consensual manner the UI of a system.

UsiSketch takes advantage of different technologies, both software and

hardware. Indeed, the software itself is a sketch prototyping tool which

involves image recognition technology as well as prototyping tools.

UsiSketch is easily accessible and does not require prior learning. It has the

ability to represent many fidelity levels for a UI and also provide and

The UsiSketch Software Architecture 327

simulate the behavior of a prototype representing the final UI as closely as

possible. The solution also relies on usiXML which is a description

language for graphical user interfaces. It considers the capability of the tool

to provide directly reusable resources that will be useful in later stages of

the development process, avoiding in this way an additional cost.

As we have seen in the paper, the tool now allows doing what it was

designed for: rapid prototyping with multiple fidelities. However, its full

potential remains to be developed. The reflections during the development

phase and informal tests are a first base of work to expand the software

requirements and improve the software in parallel. We consider to

extending the activity to sketching in another domains of human-computer

interaction, specifically, we are interested in extending the UsiSketch tool to

support the design of task models. Finally, we will be able to easily evaluate

the feasibility of our tool by conducting user experiments. The results will

be used to evaluate the performance of the tool, and obtain new research

perspectives.

References

Ambler, S. W. (2007). Agile adoption rate survey results : March 2007. Retrieved from

http://www.ambysoft.com/surveys/agileMarch2007.html

Caetano, A., Goulart, N., Fonseca, M., Jorge, J. (2002) JavaSketchIt: Issues in Sketching

the Look of User Interfaces. In Proceedings of the 2002 AAAI Spring Symposium -

Sketch Understanding (Palo Alto, March 2002). AAAI Press (2002) 9–14.

Cherubini, M., Venolia, G., DeLine, R., & Ko, A. J. (2007). Let’s go to the whiteboard:

How and why software developers use drawings. In Proceedings of the SIGCHI

Conference on Human Factors in Computing Systems CHI’2007 (pp. 557–566). New

York, NY, USA: ACM. doi:10.1145/1240624.1240714.

Coyette, A., Faulkner, S., Kolp, M., Limbourg, Q., & Vanderdonckt, J. (2004). Sketchixml:

Towards a multi-agent design tool for sketching user interfaces based on usixml. In

Proceedings of the 3rd Annual Conference on Task Models and Diagrams

TAMODIA’2004 (pp. 75–82). New York, NY, USA: ACM.

doi:10.1145/1045446.1045461.

Guerrero-Garcia, J., Gonzalez-Calleros, J. M., Vanderdonckt, J., & Munoz-Arteaga, J.

(2009, November). A theoretical survey of user interface description languages:

Preliminary results. In Web Congress, 2009. LA-WEB'09. Latin American (pp. 36-43).

IEEE.

 Hammond, T., & Davis, R. (2002). Tahuti: A geometrical sketch recognition system for

uml class diagrams. In AAAI Spring Symposium on Sketch Understanding (pp. 59–68).

Stanford, California: AAAI Press.

328 Jorge Luis Pérez Medina

Kim, H., Kwak, K., Jung, J., Myung, I., & Hahn, M. (2010). Tablaction: Col- laborative

brainstorming system with stylus-fingertip interactions on tablet pcs. In Proceedings of

the 9th ACM SIGGRAPH Conference on Virtual- Reality Continuum and Its

Applications in Industry VRCAI ’2010 (pp. 81–84). New York, NY, USA: ACM.

doi:10.1145/1900179.1900195.

Klemmer, S. R., Newman, M. W., Farrell, R., Bilezikjian, M., & Landay, J. A. (2001). The

designers’ outpost: A tangible interface for collabo- rative web site. In Proceedings of

the 14th Annual ACM Symposium on User Interface Software and Technology

UIST’2001 (pp. 1–10). New York, NY, USA: ACM. doi:10.1145/502348.502350.

Landay, J.A., Myers, B.A. (1995). Interactive Sketching for the Early Stages of User

Interface Design. In Proceedings of ACM Conference on Human Factors in Computing

Systems, CHI’1995, Denver, 7-11 mai 1995, ACM Press, New York, 43-50.

Landay, J.A., Myers, B.A. (2001). Sketching Interfaces: Toward More Human Interface

Design. IEEE Computer, vol. 34, num. 3, 56-64.

Lin, J., & Landay, J. A. (2002). Damask: A tool for early-stage design and prototyping of

multi-device user interfaces. In Proceedings of The 8th Inter- national Conference on

Distributed Multimedia Systems (2002 International Workshop on Visual Computing)

(pp. 573–580).

Lin, J., & Landay, J. A. (2008). Employing patterns and layers for early-stage design and

prototyping of cross-device user interfaces. In Proceedings of the ACM Conference on

Human Factors in Computing Systems CHI’2008 (pp. 1313–1322). New York, NY,

USA: ACM. doi:10.1145/1357054.1357260.

van der Lugt, R. (2002). Functions of sketching in design idea generation meetings. In

Proceedings of the 4th Conference on Creativity & Cognition C&C’2002 (pp. 72–79).

New York, NY, USA: ACM. doi:10.1145/581710.581723.

Mitra, R. (2015). Rapido: A sketching tool for web api designers. In Proceedings of the

24th International Conference on World Wide Web WWW ’15 Companion (pp. 1509–

1514). Geneva, Switzerland: International World Wide Web Conferences Steering

Committee. doi:10.1145/2740908.2743040.

Newman, M.W., Lin, J., Hong, J.I., Landay, J.A. (2003). DENIM: An Informal Web Site

Design Tool Inspired by Observations of Practice. Human-Computer Interaction, vol.

18, 259-324.

Nielsen, J. (1993). Prototyping. Chapter 4. In Usability Engineering, Nielsen, J. (Ed.),

Academic Press, 93-101.

Norman, D. A., & Draper, S. W. (1986). User Centered System Design; New Perspectives

on Human-Computer Interaction. Hillsdale, NJ, USA: L. Erlbaum Associates Inc.

Obrenovic, v., & Martens, J.-B. (2011). Sketching interactive systems with sketchify. ACM

Trans. Comput.-Hum. Interact., 18 , 4:1–4:38. doi:10.1145/1959022.1959026.

Oehlberg, L., Simm, K., Jones, J., Agogino, A., & Hartmann, B. (2012). Showing is

sharing: Building shared understanding in human-centered design teams with dazzle. In

Proceedings of the Designing Interactive Systems Conference DIS’2012 (pp. 669–678).

New York, NY, USA: ACM.doi:10.1145/ 2317956.23180 57.

The UsiSketch Software Architecture 329

Pérez Medina, J. L. (2016) Methods for Modelling Sketches in the Collaborative

Prototyping of User Interfaces. Revista Romana de Interactiune Om-Calculator 9(3),

183-216.

Pérez Medina, J. L., & Vanderdonckt, J. (2016). A Tool for Multi-Surface Collaborative

Sketching. Workshop on Cross-Surface at ISS2016. Niagara Falls, Canada, 06-09

november 2016.

Petrie, J.N., Schneider, K.A. (2006). Mixed-Fidelity Prototyping of User Interfaces. In

Proceedings of 13th International Workshop on Design, Specification, and Verification

of Interactive Systems, DSV-IS’2006, Dublin, 26-28 juillet 2006, Lecture Notes in

Comput- er Science, Springer-Verlag, Berlin.

Safin, S., & Leclercq, P. (2009). User studies of a sketch-based collabora- tive distant

design solution in industrial context. In Y. Luo (Ed.), Cooperative Design, Visualization,

and Engineering (pp. 117–124). Springer Berlin Heidelberg volume 5738 of Lecture

Notes in Computer Science. doi:10.1007/ 978-3-642-04265-2_16.

Sangiorgi, U., & Vanderdonckt, J. (2012). Gambit: Addressing multi-platform

collaborative sketching with html5. In Proceedings of the 4th ACM Symposium on

Engineering Interactive Computing Systems EICS’2012 (pp. 257–262). New York, NY,

USA: ACM. doi:10.1145/2305484.2305527.

Sangiorgi, U. B., & Barbosa, S. (2010). Sketch: modeling using freehand drawing in

eclipse graphical editors. In FlexiTools 2010: ICSE 2010 Workshop on Flexible

Modeling Tools, Cape Town, South Africa.

Sangiorgi, U. B., Beuvens, F., & Vanderdonckt, J. (2012). User interface design by

collaborative sketching. In Proceedings of the Designing Interactive Systems

Conference DIS’2012 (pp. 378–387). New York, NY, USA: ACM.

Tuddenham, P., Davies, I., & Robinson, P. (2009). Websurface: An interface for co-located

collaborative information gathering. In Proceedings of the ACM International

Conference on Interactive Tabletops and Surfaces ITS’2009 (pp. 181–188). New York,

NY, USA: ACM. doi:10.1145/1731903.1731938.

UsiXML Consortium. UsiXML, a General Purpose XML Compliant user Interface

Description Language, UsiXML V1.8, 23 February 2007. Available on line:

http://www.usixml.org.

Vanderdonckt, J., & Coyette, A. (2007). Modèles, méthodes et outils de support au

prototypage multi-fidélité des interfaces graphiques. Revue d’Interaction Homme-

Machine.

West, D., Seyff, N., & Glinz, M. (2013). Flexisketch: A mobile sketching tool for software

modeling. In D. Uhler, K. Mehta, & J. Wong (Eds.), Mobile Computing, Applications,

and Services (pp. 225–244). Springer Berlin Heidelberg volume 110 of Lecture Notes of

the Institute for Computer Sciences, Social Informatics and Telecommunications

Engineering. doi:10.1007/978-3-642-36632-1_13.

Wuest, D., Seyff, N., & Glinz, M. (2015a). Flexisketch team: Collaborative sketching and

notation creation on the fly. In IEEE/ACM 37th IEEE International Conference on

Software Engineering ICS’2015 (pp. 685–688). volume 2. doi:10.1109/ICSE.2015.223.

330 Jorge Luis Pérez Medina

Wuest, D., Seyff, N., & Glinz, M. (2015b). Sketching and notation creation with

flexisketch team: Evaluating a new means for collaborative requirements elicitation. In

Proceedings of IEEE 23rd International Conference on Requirements Engineering

RE’2015 (pp. 186–195). doi:10.1109/RE.2015.7320421.

Appendix

1. Recognition requirements

1 During the design of the UI, UsiSketch must be able to recognize a geometric shape

and convert it into a smoothed form. The forms to be recognized are: line, arrow,

wavy line, triangle, rectangle, circle, cross). A smoothed form has a higher fidelity

level that its equivalent freehand-drawn. It is also necessary for the combination of

forms.

2 During the design of the UI, when a new form is recognized the software must be

able to limit all forms of recognition, that is, to minimize the learning process for

recognition. This means that UsiSketch must be able to combine multiple simple

forms in a more complex form or widget, according to pre-established rules. Every

time a new form is added to a window, the software must check whether it is

possible to combine it with other forms.

3 During the training recognition phase, the developed recognition algorithm must

learn from mistakes and adapt to its user. If there is an error in the recognition, the

designer must be capable to report the error.

4 During the design of the UI, when a new form is recognized and several

combinations are possible but are mutually exclusives. UsiSketch must be capable to

decide what is the combination of forms to choose, and have the same behavior at

any time. The most constrained combination is by definition more difficult to

validate, it must be the priority. If two mutually exlusive combinations are possible

based on a list of forms, the most constrained combination should be selected.

5 When the designer needs to define a new widget or change a composition rule, the

software must have the ability to perform it outside the software code. This allows

great flexibility of the tool in the definition of compositions, allow the designer to

only follow the composition rules that suit him.

6 The designers must edit composition rules using a simple and intuitive interface

without programming.

7 If the designer already has a paper prototype and wants to use it, UsiSketch must be

able to import low fidelity paper prototype or an image drawn in a UsiSketch

project.

8 During the design of the UI, the designer will have the ability to edit the text

description of widgets rather than have to do it later in an editor at the hightest

fidelity level. For that, UsiSketch must be able to recognize the manuscript text and

convert it into its computer equivalent.

2. Drawing – Rendering requirements

The UsiSketch Software Architecture 331

9 UsiSketh must always be consistent with the current model drawing. UsiSketch must

be compliant with “what you see is what you get” (WYSIWYG).

10 Some widgets could be unique and specific to a UI. In this case, it is impossible to

represent all situations. However, the tools must therefore leave more free space for

the designers. UsiSketch must have a design mode based on recognition. After each

drawing, the application must analyze it and return the recognized vector shape. The

designer may also want to give a visual feedback, via annotations.

11 Concerning the above requirement; UsiSketch must also incorporate an annotation

mode where no recognition is made.

12 The desired user experience must be as natural as possible. Many people can draw

certain shapes with several strokes (for example: when a designer sketches a cross).

This requires the recognition algorithm to be able to handle it. As a consequence,

UsiSketch must support multi-trait recognition.

13 The designer must be able to delete a gesture placed by mistake or when it become

obsolete.

14 UsiSketch must offer a way to select a widget or group of widgets and allow the

designers to move, copy or delete them.

15 UsiSketch should allow moving a selection when designers require aligning widgets,

or moving them to a different area of the windows without having to erase and

redraw them.

16 Concerning the above requirement; UsiSketch must offer a way to copy, cut and

paste a selection.

17 A lower fidelity level is more pleasant during the drawing. Conversely, a high

fidelity level is more pleasant during the creation of interactions between windows

and widgets. UsiSketch must allow incorporating multiple fidelity levels, changeable

at any time by the user. The fidelity levels must be: (1) drawing fidelity: the designs

are displayed as were drawn, nothing else; (2) form fidelity: recognized forms are

displayed smoothed, widgets are not displayed; (3) fidelity widgets: widgets are

displayed as representative images, the remaining forms as smooth representations;

(4) fidelity simulation: widgets are displayed as real widgets, the remaining forms in

smoothed representation.

3. Navigation requirements

18 During the Interface design, typical actions on a widget or window (e.g. show, hide,

minimize, maximize, setText, …) must be defined. It allows more faithful

simulability than just a display of statically windows.

19 The design of interactions between widgets and the simulation requires that typical

events/actions for a widget (like as onClick or onChange events) must be set. This

will perform certain actions of a widget.

20 The designer can increase the fidelity of the prototype without having to use a

keyboard.

21 UsiSketch must be able to structure the graphic elements in the form of a tree. It

must allow desingers to work on a structured prototype, where the containers contain

their widgets, rather than a “flat” view, where containers have only a visual function.

332 Jorge Luis Pérez Medina

In other words, the widgets must be added to a container of type widget,

automatically or manually. The structure should be compatible with the project

UsiXML.

4. Data requirements

22 The interface is designed to be exported in a standardized format, allowing editing

the result with a higher fidelity editor, chosen by the designer. The software must be

able to export a usiSketch project into a UsiXML file.

23 UsiSketch must be able to export a project into another representation than UsiXML.

This requirement aims to ensure high system interoperability.

24 UsiSketch must be able to import a UsiXML file and convert it into UsiSketch

format when part of the prototype has been defined through another compatible

UsiXML software, or when the source file in UsiSketch format is not available. It

may be convenient to recycle an old UI and change it, or just annotate it. It avoids to

re-design a complex interface if a similar interface has already been defined.

5. Simulattion requirements

25 During the interface design, an interface defined in UsiSketch must be simulated

summarily. It means that if the designer wants to test its interface, UsiSketch must

allow the designer to test/simulate the interface without having to export it into

UsiXML file every time.

26 When a designer wants a review of its current design prototype. A UI defined in

UsiSketch must be sent from a designer to testers for simulation and feedback.

27 Each tester must be able to give one or more feedback when testing a prototype.

28 The feedbacks provided are used to improve the prototype. This requires designers to

have access to a list of feedbacks provided by the(s) tester(s).

6. Ergonomy requirements

29 UsiSketch must be simple to learn and use. The learning curve of using the software

be as fast as possible. The designers should at ease from the first contact with the

software.

30 UsiSketch should be designed for use with tablets. It is necessary to limit the

exchanges stylus-keyboards or stylus-mouse. Conversely, as many prototyping

operations as possible must be accessible through the pointer.

31 Buttons smaller than 50x50 pixels are unpleasant to use with a stylus. The buttons on

toolbars must be sufficiently large to be easy to click. A 50x50 pixel button size is an

acceptable size.

32 In order to see the evolution of a designed UI, and also to allow backtracking,

UsiSketch must maintain a desing of history and drawing of a prototype at any time.

33 The designer must be able to undo/redo an action contained in the design history of

the prototype.

34 Historic of actions must be kept and backward steps should be allowed any time

even after close. Furthermore, this ensures a good reconstruction of the UI. The log

The UsiSketch Software Architecture 333

history can be compressed to reduce the size of the prototype and reduce time spent

for reconstruction. A prototype saved under UsiSketch format shall a compressed

design and drawing history.

7. Architecture requirements

35 UsiSketch must be developed as an Eclipse plugin. Eclipse environment is a well-

known tool for developers. This should facilitate the use and learning of the tool.

36 UsiSketch can run on any computer device and should be useable regardless of a

specific operating system.

37 The tester has no right to modify the interface. He does not need to access the

drawing functionality, but only to access the navigation mode.

38 The drawing/design and simulation modules should be developed as two separate

programs.

39 UsiSketch does not integrate code or library under GPL or LGPL. These licences are

highly copyleft, which means that their integration requests the software to be

distributed under the same license.

40 If a new widget appears and is widely used, UsiSketch must allow to incorporate the

use of new widgets. The architecture must be designed to facilitate the addition of

new types of widgets.

41 Research in shape recognition remains very active and a more efficient method may

thus be found in the future. UsiSketch must guarantee a possible migration to the

new method at lowest cost. An easily replaceable module for UsiSketch also allows

designers to test different algorithms more easily. The recognition module should be

easily replaceable by a module that implements another algorithm.

42 UsiSketch should consider that final users play the role of testers during the UI

prototyping. The test module should be available online, and ideally without any

need of installation, so, typically a Web interface.

