
Patterns of HCI Design and Design of Patterns

Ahmed Seffah
Human-Centered Software Engineering Group

Department of Computer Science and Software Engineering
Concordia University, Montreal Canada

seffah@cse.concordia.ca

ABSTRACT
User interface design patterns also called HCI or interaction or
usability patterns have been introduced first as a medium to
capture and represent solutions to problems. Patterns
have been used also as a medium for transferring the expertise
of HCI designers and usability professionals to software
engineers, who are usually unfamiliar with UI design and
usability principles. Design patterns have been considered also
as a lingua franca for crossing cultural and professional
barriers between different stakeholders. Several HCI
professionals have introduced their own pattern languages with
specific terminology, classification and meanings. Patterns
have also been presented as building reusable blocks at
different levels of granularity, which can be combined to
compose new interactive systems. Despite the obvious and
acclaimed potential of these pattern-driven design approaches,
patterns usage has not achieved the acceptance and widespread
applicability envisaged by pattern pioneers such as Christopher
Alexander. This paper provides an analysis of the facts about
patterns usages, pattern languages and pattern-based design
approaches. Some shortcomings in the presentation and
application of HCI patterns are identified and discussed under
the prevailing fallacies. Based on the analysis of how patterns
have used so far, we draw some recommendations and future
perspectives on what can be done to address the existing
shortcomings. Making patterns more accessible, easily
understandable, comparable and integratable in software and
HCI design tools can promote HCI patterns to claim the
usability, usefulness and importance originally envisaged for
the pattern-oriented design approach.

Categories and Subject Descriptors: D.2.2
[Design Tools and Techniques], H.5.2 [User Interfaces]

General Terms: Design, Theory, Human Factors

Keywords: Design patterns, pattern-oriented design,
human-computer interaction, design methods

1. FROM BUILDING TO SOFTWARE DESIGN
PATTERNS

Among the early attempts to capture and use design knowledge
in the format of patterns, the first major milestone is often
attributed to the architect Christopher Alexander, in the late
1970s. In his two books, A Pattern Language (Alexander,
1977) and A Timeless Way of Building, he discusses the

capture and use of design knowledge in the format of patterns,
and presents a large collections of pattern examples to help
architects and engineers with the design of buildings, towns,
and other urban entities. To illustrate, Alexander proposes an
architectural pattern called Wings of Light (Alexander, 1977),
where the problem is:
with no concern for natural light - they depend almost entirely
on artificial light. But, buildings which displace natural light
as the major source of illumination are not fit places to spend

According to Alexander, every pattern has three essential
elements, which are: a context, a problem, and a solution. The
context describes a recurring set of situations in which the
pattern can be applied. The problem refers to a set of forces,
i.e., goals and constraints, which occur in the context.
Generally, the problem describes when to apply the pattern.
The solution refers to a design form or a design rule that can be
applied to resolve the forces. Solution describes the elements
that constitute a pattern, relationships among these elements, as
well as responsibilities and collaboration.

designers face by providing a possible solution within a
specific context. They follow a similar structure, and the
presented information is organized into pattern attributes, such
as Problem and Design Rationale. Most noteworthy, the
presented solution statement is abstract enough to capture only
invariant properties of good design. In addition, (Alexander,
1977) recognized that the design and construction of buildings
required all stakeholders to make use of a common language
for facilitating the implementation of the project from its very
beginnings to completion. If organized properly, patterns could
achieve this for all the participants of a design project, acting
as a communication tool for design.

In Notes (Alexander, 1964), Alexander argues that traditional
architectural design practices fail to create products that meet
the real needs of the user, and are ultimately inadequate in
improving the human condition. His patterns were introduced
in a hierarchical collection with the purpose of making
buildings and urban entities more usable and pleasing for their
inhabitants. Interestingly enough, this very same idea can be
extrapolated to HCI design, where the primary goal is to make
interactive systems that are usable and pleasing to users.

The pattern concept was not well known until 1987 when
patterns appeared again at OOPSLA, the object orientation
conference in Orlando. There Kent Beck and Ward
Cunningham (Beck and Cunningham, 1987) introduced pattern
languages for object-oriented software construction in a
seminal paper. Since then many papers and presentations have
appeared, authored by renowned software design practitioners
such as Grady Booch, Richard Helm, Erich Gamma, and Kent
Beck. In 1993, the formation of (Hildside Group, 1993) by
Beck, Cunningham, Coplien, Booch, Johnson and others was
the first step forward to forming a design patterns community
in the field of software engineering. In 1995, Erich Gamma,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

Copyright 2010 ACM 978-1-4503-0246-3

C. Pribeanu, A-E. Reveiu (eds.), RoCHI 2010

1

Richard Helm, Ralph Johnson, and John Vlissides (the Gang-
of- Design Patterns: Elements of
Reusable Object-Oriented Software (Gamma et al., 1995).
(Gamma et al., 1995) documented 23 design patterns in their
book; one largely used pattern is the Observer.

2. PATTERNS OF HCI: A DEFINITION

The first milestone about patterns in HCI is the workshop
organized at CHI conference in 1997. Until 2001, the
discussion about patterns in the HCI community where more
focused on defining the concept of interaction pattern and its
roles. From the most generic to more HCI domain dependant, a
HCI pattern is:

Form, template, or model or, more abstractly, a set of rules
which can be used to make or to generate things or parts of
a thing;
A general repeatable interaction technique to a commonly
occurring user problem;

rent design
(Dix, 1998);

A general repeatable solution to a commonly-occurring
usability problem in interface design or interaction design;
A solution to a usability problem that occurs in different
contexts of use;

professionals that provides best practices for HCI design to
anyone involved in the design, development, evaluation, or

(Borchers, 2001).

In essence, patterns of HCI give an invariant solution to a
problem and are abstract enough to draw on the common
elements that hold between all instances of the resulting
solution. What is notable about design patterns is that they are
both concrete and abstract at the same time. They are concrete
enough to provide sound solutions to design problems, which
can be put immediately into practice. On the other hand, they
are abstract enough to be applied to different situations. HCI
focuses on the design of usable systems, and HCI patterns are
but one of a handful of design tools that provide a means to
abstract and reuse the essential details of successful and usable
design solutions. Prior to discussing patterns in detail, it is
important to review guidelines and claims, two other tools that
have influenced and promoted the reuse of design knowledge
in HCI.

Above all, patterns are problem-oriented, yet not toolkit-
specific. In addition, they are more concrete and easier to use
for novice designers, context-oriented, and promote
reusability. Overall, patterns have a number of benefits,
including:

They are a relatively intuitive means to document design
knowledge and best practices;
They are straightforward and readable for designers,
developers and other stakeholders, and can therefore be
used for communication purposes;
They come from experiments on good know-how and
were not created artificially;
They represent design knowledge from different views,
including social and organizational aspects, conceptual
and detailed design;
They capture essential principles of good design by telling
the designer what to do and why, but are generic enough
to allow for different implementations.

This last property is an especially discriminating characteristic
of patterns, allowing them to give rise to different

implementations of the same design solution. In other words,
patterns are an opportunity to bring together a UI design
solution and a software implementation solution in the same
place.

For example, different implementations are necessary to
support variations in design look and feel, platform preference
and usage context. For example, the Quick Access pattern, used
to logically group the most frequently used pages on a website,
can be implemented on three different platforms. For a web
browser on a desktop, the Quick Access pattern is
implemented as an index browsing toolbar; for a PDA, as a
combo box; and for a mobile phone, as a selection (Javahery
and Seffah, 2002).

As a conclusion, some important defining characteristics and
basic terminologies that are relevant to patterns include:
identification of the problem in context and with imposed
constraints, existence of the solution, recurrence of the
problem, invariance abstraction of aspects of the solution,
practicality of the solution, which needs to strike a balance
between optimality and objectivity, and communicability of
the problem and the process of arriving at the solution to the
user. The relationship between some of these characteristics is
illustrated in Figure 1.

Figure 1

3. MISCONCEPTIONS ABOUT DESIHM PATTERNS

Common misconceptions about patterns (Beck et al., 1996) can
be summarized as follows:

Patterns are only object-oriented;
Patterns provide only one solution;
Patterns are implementations;
Every solution is a pattern.

Although most of the patterns are object-oriented, patterns
can also be found in variety of software systems,
independently of the methods used in developing those
systems (Beck et al., 1996). Patterns are widely applicable to
every software system, since they describe software
abstractions (Beck et al., 1996).

Patterns provide more than one solution. Patterns describe
solutions to the recurring problems, but do not provide an

Pattern

Context

Problem Solution

Apply

Communicable
Practical

Environment
Constraints

Recurrence

ConsequenceIdentity

C. Pribeanu, A-E. Reveiu (eds.), RoCHI 2010

2

exact solution, rather capture more than one solution. This
implies that a pattern is not an implementation, although it may
provide hints about potential implementation issues. The
pattern only describes when, why, and how one could create an
implementation.

Every solution is not necessary a pattern. Not every
solution, algorithm, or heuristic can be viewed as a pattern. In
order to be considered as a pattern, the solution must be
verified as recurring solution to a recurring problem. The
verification of the recurring phenomenon is usually done by
identifying the solution and the problem (the solution solves)
in at least three different existing systems. This method of
verification is often referred to as the rule of three. The
following example of (Alexander, 1979) illustrates this
misconception:

Window place Consider one simple problem that
can appear in the architecture. Let us assume that a
person wants be comfortable in a room, implying
that the person needs to sit down to really feel
comfortable. Additionally, the sunlight is an issue,
since the person is most likely to prefer to sit near the
light. Thus, the forces of pattern in this example are:

(i) The desire to sit down, and
(ii) The desire to be near light. The solution to

this problem could be that in every room
the architect should make one window into
a window place.

Not every pattern can be considered to be a good pattern.
There is a set of criteria that a pattern must fulfill in order to be
a good one. A pattern encapsulating these criteria is considered
to be a good pattern (Gamma et al., 1995; Alexander, 1977;
Coplien, 2001):

A solution (but not obvious);
A proven concept ;
Relationships;
Human component.

Thus, (Gamma et al., 1995; Alexander, 1977; Coplien, 2001)
claim, according to the criteria quoted above, that a good
pattern should solve a problem, i.e., patterns should capture
solutions, not just abstract principles or strategies. A good
pattern should be a proven concept, i.e., patterns should
capture solutions with a track record, not theories or
speculation. A good pattern should not provide an obvious
solution, i.e., many problem-solving techniques (such as
software design paradigms or methods) try to derive solutions
from first principles. The best patterns generate a solution to a
problem indirectly, which is a necessary approach for the most
difficult problems of design. A good pattern also describes a
relationship, i.e., it does not just describe modules, but
describes deeper system structures and mechanisms.
Additionally, a good pattern should contain a significant
human component (minimize human intervention). All
software serves human comfort or quality of life; the best
patterns explicitly appeal to aesthetic and utility.

4. PATTERNS AS A TOOL TO CAPTURE BEST
DESIGN PRACTICES

Historically, best practices reusability in HCI has attracted far
less attention in comparison with other disciplines like
software engineering, but this trend has been changing. There
have been many partially successful approaches to collect,
represent and deliver best design practices. The most popular
ones are:

Study of exemplars;
Practice under the instruction of a mentor;
Design principles to capture the mentor's implicit
knowledge;
Design rationale for organizing application of principles
to cases;
Design guidelines and style guides making principles
specific;
UI toolkits embodying some guidelines.

In the nineties, design guidelines became an increasingly
popular way to disseminate usability knowledge and ensure a
degree of consistency across applications (Macintosh, 1992;
Microsoft, 1995) and within organizations (Billingsley, 1995;
Rosenzweig, 1996; Weinschenk and Yeo, 1995). These
guidelines often took the form of style guides and were usually
platform-specific, prescribing how different kinds of windows
should look and interact with the user for tasks such as
choosing from lists or menu controls.

Introduced in the last decade, Claims (Sutcliffe, 2000) are
another means to capture and disseminate HCI design
knowledge. They are associated with a specific artefact and
usage context, providing design advice and possible trade-offs.
Claims are powerful tools because, in addition to providing
negative and positive design implications, they contain both
theoretical and cognitive rationale. They also contain
associated scenarios which provide designers with a concrete
idea of the context of use. When first introduced, claims were
limited in their generality because they were too narrowly
defined with specific scenarios and examples. Subsequently,
the paradigm of reuse was applied to claims in order to make
them more generic and applicable to a wider range of
application contexts.

5. HCI DESIGN PATTERN LANGUAGES

A number of pattern languages have been suggested in HCI.

1999) Interaction Design Patterns, and (Tidwell, 1997) UI
Patterns and Techniques play an important role. In addition,
specific languages such as (Laakso, 2003) User Interface
Design Patterns and the UPADE Language (Engelberg and
Seffah, 2002) have been proposed as well. Different pattern
collections have been published including patterns for Web
page layout design (Tidwell, 1997) and (Coram and Lee, 1998)
for navigation in large information architectures, as well as for
visualizing and presenting information.

Pattern languages have three essential elements. First, the
language has to contain a standard pattern definition. One
format for defining patterns was presented in the previous
section with the common attributes Context, Problem,
Solution, Forces, Related Patterns, and Examples. Secondly,
the language must logically group patterns. (Tidwell, 1997)
organizes her patterns according to different facets of UI
design; categories include Content Organization, Navigation,
Page Layout, and Actions/Commands. Another example is the
Experiences pattern language, developed by (Coram and Lee,
1998), which concentrates on t
software systems. The main focus is on the interactions
between the user and the interfaces of software applications.
Patterns are grouped according to different focus areas and
user interface paths such as interaction style, Explorable
interface, and symbols. Thirdly, pattern interrelationships
should be described. In Experiences language, the relationships
between the patterns are mapped and indicated by arrows,

C. Pribeanu, A-E. Reveiu (eds.), RoCHI 2010

3

Distinguishing between different types of relationships
reinforces the generative nature of pattern languages, and
supports the idea of using patterns to develop complete
designs. However, for designers to be able to use patterns
effectively and with efficacy to solve problems in HCI and
interactive system design, patterns need to be intimately
related to a design process. Based on the design problem,
pattern languages should provide starting points for the
designer, and a means to systematically walk the designer from
pattern to pattern.

6. PATTERN LANGUAGES AND THE USER-CENTRIC
DESIGN PROCESS

Pattern languages are interesting tools which can guide
software designers through the design process. However, there
exists no commonly agreed upon UI design process that
employs pattern languages as first class tools. Several people
have tried to link patterns to a process or framework, bringing
some order to pattern languages, and suggesting that
potentially applicable patterns be identified early on based on
user, task and context requirements. A pattern-driven design
process should lead designers to relevant patterns based on the
problem at hand, demonstrate how they can be used, as well as
illustrate combinations with related patterns.

In the Pattern-Supported Approach (PSA) Framework, HCI
patterns are used at various levels to solve problems relating to
business domains and processes, tasks, structure and
navigation, and GUI design (Granlund and 1999).
The main idea that can be drawn from PSA is that HCI patterns
can be documented identified and instantiated according to
different parts the design process giving us knowledge as
early on as during system definition. For example, during
system definition or task and user analysis, depending on the
context of use, we can decide which HCI patterns are
appropriate for the design phase. Although PSA shows the
beginnings of associating patterns to the design process,
pattern interrelationships and their possible impact on the final
design are not tackled in detail.

(Duyne et al., 2003) describe a second approach, where
patterns are arranged into 12 groups that are available at
different levels of web design. Their pattern language has 90
patterns that address various aspects of web design, ranging
from creating a navigation structure to designing effective page
layouts. The order of their pattern groups generally indicates
the order in which they should be used in the design process.
In addition, patterns chosen from the various groups have links
to related patterns in the language. The highest level pattern
group in their scheme is Site Genres, which provides a
convenient starting point into the language, allowing the
designer to choose the type of site to be created. Starting from
a particular Site Genre pattern, various lower level patterns are
subsequently referenced. In this way, the approach succeeds
not only in providing a starting point into the language, but
also demonstrates how patterns of different levels may interact
with one another.

7. PATTERNS-ORIENTED DESIGN

(Javahery and Seffah, 2002) proposed a design approach called
Pattern-Oriented Design (POD). The initial motivation for
POD arose from interviews carried out with software
developers using our patterns from the UPADE web language.
These interviews revealed that in order for patterns to be
useful, developers need to know how to combine them to
create complete or partial designs. Providing a list of patterns
and loosely defined relationships, as is the case for most HCI
pattern languages, is insufficient to effectively drive design

solutions. Understanding when a pattern is applicable during
the design process, how it can be used, as well as how and why
it can or cannot be combined with other related patterns, are
key notions in the application of patterns.

POD provides a framework for guiding designers through
stepwise design suggestions. At each predefined design step,
designers are given a set of patterns that are applicable. This is
in stark contrast to the current use of pattern languages, where
there is no defined link to any sort of systematic process.
Pattern relationships are explicitly described, allowing
designers to compose patterns based on an understanding of
these relationships.

As a practical illustration, we have applied POD within the
context of the UPADE pattern language for web design. Each
pattern in UPADE provides a proven solution for a common
usability and HCI-related problem occurring in a specific
context of use for web applications. Patterns are grouped into
three categories, corresponding closely to the various steps and
decisions during the process of web design: Architectural,
Structural, and Navigation Support. Structural patterns are
further sub-categorized into Page manager and Information
container patterns. During each design step, designers choose
from a variety of applicable patterns: (1) Architectural, relating
to the architecture of the entire Website; (2) Page manager,
establishing the physical and logical screen layout; (3)
Information container, providing ways to organize and
structure information; and (4) Navigation support, suggesting
different models for navigating between information segments
and pages.

(Taleb et al., 2006) have described five types of relationships
between categories patterns. This multi-criterion classification
is based on the original set of relationships (Zimmer 1994;
Duyne et al., 2003; Yacoub and Ammar, 2003) used to classify
the patterns proposed in (Gamma et al., 1995). The
relationships are used to compose a UI design, allowing
designers to make suppositions such as: For some problem P,
if we apply Pattern A, then Patterns B and C apply as sub-
ordinates, but pattern D cannot apply since it is a competitor.
The relationships are explained below.

In POD, designers first should follow a POD model. The
model acts as a guide for designers in making stepwise design
decisions. To illustrate POD modeling, for website design, we
define four steps that designers should follow: (1) Defining the
architecture of the site with architectural patterns, (2)
Establishing the overall structure of each page with page
manager patterns, (3) Identifying content-related elements for
each page with information container patterns, and (4)
Organizing the interaction with navigation support patterns.
(Landay and Myers, 2001) and (Welie and Van Der Veer,
2003) also propose to organize their Web pattern languages
according to both the design process and UI structuring
elements (such as navigation, page layout and basic dialog
style).

Designers should exploit relationships between patterns. We
have described five types of relationships between the UPADE
patterns, published in (Taleb et al., 2006; Javahery et al.,
2006). The same relationships can easily be applied to other
pattern libraries. This multi-criterion classification is based on
the original set of relationships (Zimmer 1994; Duyne et al.,
2003; Yacoub and Ammar, 2003) used to classify the patterns
proposed in (Gamma et al., 1995). The relationships are used
to compose a UI design, allowing designers to make
supposit
X, then Patterns Y and Z apply as sub-ordinates, but pattern S

C. Pribeanu, A-E. Reveiu (eds.), RoCHI 2010

4

8. PATTERNS AS REUSABLE BUILDING BLOCKS:
STRUCTURAL VERSUS BEHAVIORAL APPROACH

The development of interactive applications using design
patterns as reusable design components requires a careful look
at composition techniques. Several methods have been
proposed for composition. For example, (Yacoub and Ammar,
2003) proposed two composition techniques categorized and
illustrated as: Behavioral versus Structural Composition.

Behavioral composition approaches are concerned with objects
as elements that play multiple roles, where each role is part of
a separate pattern. These approaches are also known in the OO
literature as interaction-oriented or responsibility-driven
composition (Wirfs-Brock and Wilkerson, 1989). Although,
the POD composition approach uses notation and composition
techniques that are based on the pattern structure (i.e., its class
model), (Yacoub and Ammar, 2003) find it useful to be
familiar with existing composition techniques that utilize the
pattern's behavior model.

Behavioral approaches enable to modeling and composing
patterns, while having advantages and drawbacks. Formalizing
the behavior specification of individual patterns is important
for the purpose of clarifying their semantics and facilitating
their utilization by any pattern composition approach. Several
authors have proposed various approaches, such as: the
approach presented by (Henderson-Sellers et al., 1996) on role
modeling and synthesis using the OO role analysis method, the
works of (Riehle, 1997) presented at the OOPSLA conference
in 1997. This approach in (Henderson-Sellers et al., 1996;
Riehle, 1997) applies the concepts of role models suggested by
Henderson-Sellers to pattern composition. Others approaches
are presented in the composition field such as the approach

which uses design patterns and frameworks as architectural
fragments and merges roles and components to produce
applications and finally, another approach three-layer

Kent, 1998), which takes a visual specification approach to
describe design patterns.

Structural composition approaches build a design by gluing
pattern structures that are modeled as class diagrams.
Structural composition focuses more on the actual realization
of the design rather than abstraction, using different types of
models, such as role models. Behavioral composition
techniques, such as roles (Henderson-Sellers et al., 1996;
Riehle, 1997; , leave several
choices to the designer with less insight on how to continue to
the class design phase. Techniques that consider both structural
and behavioral views could be complex and difficult to use.
Therefore, the POD approach advocates a structural
composition approach with pattern class diagrams (Henderson-
Sellers et al., 1996; Riehle, 1997;
1996). Constructional design patterns in which a pattern
interface can be clearly specified lend themselves to a
structural composition approach (Henderson-Sellers et al.,
1996; Riehle, 1997; 1996).

(Yacoub and Ammar, 2003) discussed several structural
composition techniques and contrast these techniques with a
proposed POD methodology. One approach for pattern-
oriented design is proposed by (Ram et al., 1997). In contrast
to the top-down approach, this approach describes a bottom-up
process to design software using design patterns. This
approach shows how related patterns can be selected; however,
it does not clearly show how patterns can be composed.
Nevertheless, it gives an example of previous attempts in the

literature to develop a systematic process for pattern-oriented
software development.

9. PATTERN MODELING AND REPRESENTATION

We can look at patterns in general as artifacts that have three
main milestones, organized from a user perspective (Figure 2).

Figure 2. Major milestones and users of patterns

Pattern Delivery

On the pattern user side, we can say that patterns are harvested
and represented with the main goal of being delivered to other
users who implement them as solutions. A delivery paradigm
is essential in the pattern approach because it indicates that
patterns arrived effectively to potential users; a knowledge
dissemination view. This means that patterns should be
represented in a way that software developers can learn, master
and apply easily and effectively in their context. This
implementation highlights the main role of patterns, promoting
effective reuse. If patterns were harvested and written down
just for the sake of archiving them then we have missed on the
great benefits of patterns.

Pattern Discovery

On the pattern writer side, the discovery of a pattern is only the
beginning. Harvesting is a carefully selected metaphor that
indicates the hard work associated with patterns. By observing
existing artifacts and problems that have been solved
successfully, we can detect a repeated structure or behavior
that is worth recording. By asserting its importance, we can
write down the essential components and if possible- analyze
them. An expert can provide insight as to why this
combination is good or why it works well and in what context.
Finally guidance of how to reuse this solution can be added to
assist in modifying and reapplying the solution.

Pattern Representation

Representation of patterns can be seen as a vehicle a medium
or an infrastructure to bridge the gap between the two main
activities; delivery and discovery. This representation is
essentially about how to format the solution in a way that
allows it to mature from its solution-format into a pattern. In
essence, a pattern is a solution alongside other information that
supports it. The reason is that in order for a solution to be used
by others, they have to be convinced that this is a good
solution. Part of this come by annotating pattern solution with
expert analysis and comments, listing of some cases where the

possibly some code examples.

Bearing in mind that no two systems are exactly the same, and
that every new software is a new adventure, patterns are
typically annotated with important guidance on how to apply
them in different contexts and situations. Some details are left

C. Pribeanu, A-E. Reveiu (eds.), RoCHI 2010

5

out to allow the end user to rematerialize an abstract pattern
back into a concrete solution that is adapted to the new design.
Having decided on what to write, the sibling question would be
how to best represent this information: through UML
diagrams, simple diagrams, images, text, source code, or a
combination of all of them.

The success of pattern approach depends on all those three
milestones. As we discuss the potential benefits of applying
patterns in design reuse, we can not claim that patterns are

activities, the direct reusability of designs represents only a
small portion of the total effort. It requires a considerable
amount of experience and work to modify existing designs for
reuse. Many design ideas can only be reused when abstracted
and encapsulated in suitable formats. Despite the creative
nature of their work, software designers still need to follow
some structured process to help control their design activities
and keep them within the available resources. Partial
automation of this process, combined with sound experience
and good common sense can significantly facilitate the
analysis and design phase of software development. Within
this process, tools can help glue patterns together at higher
design levels the same way we do with code idioms and
programming language structures. For example, the Smalltalk
Refactoring Browser, a tool for working with patterns at the
source code level, assists developers using patterns in three
ways:

- Generate program elements (e.g. classes, hierarchies) for
new instances of a pattern, taken from an extensible
collection of "template" patterns.

- Integrate pattern occurrences with the rest of the program
by binding program elements to a role in a pattern (e.g.
indicating that an existing class plays a particular role in a
pattern instance)

- Check whether occurrences of patterns still meet the
invariants governing the patterns and repairing the
program in case of problems

10. OPEN ISSUES

A universally accepted taxonomy for pattern is still missing in
HCI. Patterns deal with different levels of abstraction and have
to be considered at different stages. Therefore, if languages are
not structured logically, it can be confusing for designers
trying to work with them. Some authors have suggested their
own partial classifications to facilitate the use of patterns. For
example, (Welie, 1999) discusses a taxonomy based on the
domain of Web application, GUI or Mobile UI design patterns.
(Tidwell, 1997) organizes her patterns according to different
facets of UI design; categories include Content Organization,
Navigation, Page Layout, and Actions/Commands.

Furthermore, pattern languages need to clearly define pattern
relationships. Currently, pattern interrelationships are often
incomplete and not context-oriented. This is, by far, the most

serious drawback of current languages. For example, the
Experiences language describes some pattern relationships, but

their descriptions, but do not define the precise nature of the
relationship. This is a limitation since relationship definitions
are an important factor in determining the circumstances under

context of use.

A further challenge is the lack of tool support, which makes it
difficult to capture, disseminate and apply patterns effectively
and efficiently. Tools need to be developed with three major
objectives in mind. Firstly, tools are needed to support UI
designers and software engineers involved in UI development.
Secondly, as a research forum for understanding how patterns
are really discovered, validated, used and perceived, tools are
also required. Thirdly, automation tools are needed to support
the usage of patterns as prototyping artifacts and building
blocks. The following are some of the required features (Gaffar
and Seffah, 2006):

Tools have to be designed to accept proposed or potential
patterns in many different formats or notations. Therefore
patterns in versatile formats can be submitted for
reviewing;
A common editorial board for reviewing and validating
patterns is also required. Before publishing, collected and
contributing, patterns must be accessed and acknowledged
by the editorial committee. We are inviting HCI patterns
practitioners and researchers to set up and join this
committee;
A pattern ontology editor to capture our understanding of
pattern concepts and to put them into relation with each
other (Taxonomy) will be an important step toward a
systematic usage of patterns as well as the emergence of a
pattern-assisted design tool;
Tools are needed to allow us to attach semantic
information to the patterns. Based on this information and
our ontology, patterns will be placed in relationships,
grouped, categorized and displayed;
A pattern navigator can also provide different ways to
navigate through patterns or to locate a specific pattern.
The pattern catalogue can be browsed by pattern groups
or searched by keyword. Moreover, a pattern wizard will
find particular patterns by questioning the user;
A pattern viewer will help in providing different views of
the pattern, adjusted to the preferences of the specific

11. REFERENCES

For further information on patterns including an exhaustive list
of references, please visit the IPE (Integrated Pattern
Environment Website) at hci.concordia.ca

C. Pribeanu, A-E. Reveiu (eds.), RoCHI 2010

6

