
Interactions in Smart Environments and the Importance of
Modelling

Peter Forbrig

University of Rostock, Department of Computer Science

Albert-Einstein-Str. 21

D-18051 Rostock, Germany

+49 381 498 7620

peter.forbrig@uni-rostock.de

ABSTRACT

One challenge in software engineering is the development

of smart environments that help users to intuitively

accomplish their tasks. The ideal smart environment

dynamically manages a diverse collection of devices, is

accessible by multiple users and effectively supports the

users’ tasks. The design of smart environments relies on

detailed models of devices, users and their tasks.

In this paper, we present our modelling language “CTML”

specifically developed for smart environments. We

demonstrate how the language was designed and how it

was used for usability evaluations in a virtual smart

environment. We then discuss the importance of “task

migrateability” – a usability principle often neglected by

contemporary smart environments. We argue that the

proper implementation of this usability criterion can

improve the usability of smart environments. Finally, we

investigate how tangible user interfaces are related to smart

environments and how this interaction technique can be

used to support task migrateability.

Keywords

Supportive user interface, task migratability, smart

environment

INTRODUCTION

One of the starting points for the development of new kinds

of systems assisting users was Marc Weiser’s vision of

ubiquitous computing [22]. According to this vision

supporting devices are weaving themselves automatically

into everyday life in such a way that allows people to

concentrate on their tasks.

Such an environment is considered to be smart. It tries to

analyze the user’s behaviour and to provide appropriate

assistance.

In recent years, such systems made their way from research

to industrial applications. Let us consider the domain of

meeting rooms where the performance of workshops has to

be supported. Within this context a presenter should be able

to concentrate on his talk, while the smart environment

(SE) intervenes by adjusting the projector, loading the

necessary files and capturing audiovisual data for meeting

documentation if needed. In the best case no direct

interaction is necessary.

Figure 1 gives a visual impression of our laboratory where

experiments are performed.

Figure 1: Smart Meeting Room in Rostock

Implicit interaction like going to the presentation area is

enough to present the slides of the speaker.

Experiences show [13] that the quality of support can be

increased if some information is given to the system. Most

important are the tasks the users want to perform within the

environment.

Task models are an appropriate starting point for interactive

processes development [7,9]. In [3] it is suggested to use

dynamic task models in order to build adaptive user

interfaces. The application of task models for smart

environments is discussed in [11] and [16]. We will shortly

discuss the collaborative task modelling language CTML.

More details of the language can be found in [23].

Afterwards we will discuss the aspect of usability

evaluation for smart environments. The virtual environment

ViSE will be used to demonstrate possible tool support for

usability evaluation. Finally we will discuss aspects of

LEAVE BLANK THE LAST 2.5 cm (1”) OF THE LEFT

COLUMN ON THE FIRST PAGE FOR THE

COPYRIGHT NOTICE.

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

1

interactions in smart environments and the role of task

migrateability. It will be also discussed whether tangible

user interfaces can be considered as supportive user

interfaces. At the end we conclude our ideas and

summarize the main contributions presented in the paper.

The Collaborative Task Modelling Language CTML

The collaborative task modelling language (CTML) was

developed in conjunction with modelling efforts in smart

environments. It is specified in detail in the thesis of Maik

Wurdel [23] and supports the idea of stakeholder-driven

process management and has the potential to be used

outside the context of smart environments [10].

Fundamental Assumptions

Four fundamental assumptions were the basis of the design

of CTML:

1. Role-based Modelling.

In limited and well-defined domains the behaviour of

an actor can be approximated through her role.

2. Hierarchal Decomposition and Temporal Ordering.

The behaviour of each role can be adequately

expressed by an associated collaborative task

expression.

Figure 2: Schematic Cooperation Model for Meeting

Scenario

3. Causal Modelling.

The execution of tasks may depend on the current state

of the environment (defined as the accumulation of the

states of all available objects) and in turn may lead to a

state modification.

4. Individual and Team Modelling.

The execution of tasks of individual users may

contribute to a higher level team task.

Collaborative Model

Based on these assumptions a collaborative model is

specified in a two-folded manner:

a. Cooperation Model.

Specifies the structural and behavioural properties of

the model like roles and task models

b. Configuration(s).

Specifies runtime information (e.g. actors assigned to

roles).

For each cooperation model several configurations may

exist in order to describe different situations in which the

model is used. These configurations specify the instances

of elements of the cooperation model and their behaviour.

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

2

Fig. 2 presents a schematic sketch of a cooperation model.

Elements in the inner circle represent modelling entities

(post fixed with “-1”) whereas diagrams outside of the

inner circle show detailed specifications of the

corresponding entities (post fixed width “-2”).The

cooperation model specifies the relevant entities on an

abstract level. Usually roles (e.g., A-1), devices (e.g., B-1),

a location model (C-1), a domain model (D-1) and a team

model (E-1) are necessary and can be specified.

The potential actions a user is able to perform are

determined by his role(s). More precisely a role is

associated with a collaborative task model (A-2 in Fig.4),

which is visually represented by a task tree in a CTT-like

notation [18]. Tasks are arranged hierarchically defining a

tree structure. Atomic tasks, non refined tasks, are referred

to as “actions”. In addition, tasks on the same level of

abstraction can be connected via temporal operators

defining the temporal order of task execution.

Role modelling is a common concept in software

engineering ([6; 10]). For use cases this concept is known

under the term “actor”. In the following, we will use the

term actor as an instance of a role, or a person that acts

according to the role. Roles are in this way abstractions of

actors sharing the same characteristics. They categorize

users of the same kind in terms of capability, responsibility,

experience and limitations according to the domain.

In [10] it is stated that a user is not limited to one role at a

time and role switching is often taking place. In CTML the

role concept is employed to define the pool of actions of a

user by means of task expressions. In task analysis and

modelling, this approach is quite common but is usually

restricted to a one-to-many relation of role and user [15;

16]. However this is a rather rigorous constraint. In the

domain of smart environments it is frequently the case that

an actor changes his role at runtime and that one role is

being performed by several actors simultaneously. This

might be the case in our modern business world as well.

The role concept implemented in CTML incorporates this

case.

In the example of Fig. 2 the roles are “Presenter”,

“Listener” and “Chairman”. They represent the different

types of stereotypical behaviour in the meeting scenario. .

At a given time t, several persons are acting as listeners

while there is normally only one presenter and one

chairman.

Besides the cooperation model a CTML specification also

contains one or more configurations providing essential

runtime information for the cooperation model. A

configuration represents necessary information for a

concrete situation. Different settings can follow the same

cooperation model. Obviously, different persons can

execute a meeting in a similar way. This is e.g. true for

defending a thesis.

As the cooperation model relies on a role-based

specification actors operating in the environment need to be

defined in accordance with a corresponding actor-role

mapping. More precisely an actor may fulfil more than one

role concurrently and a role may be assigned to different

actors simultaneously. Moreover, not only concurrent roles

fulfilling is allowed but also all other temporal operators

defined in CTML are possible.

None of the currently existing task modelling languages

supports this assumption even though this is a frequently

encountered case while working cooperatively. Considering

the example of the “Conference Session” one can imagine

the case of an actor presenting a paper in front of the

audience but also listening to other presentations afterward.

Therefore, the simultaneous (or more precisely ordered)

performance of more than one role is an important feature

of the language as it also allows separating a role from

another since they are assembled at runtime. Thus

modularization and separation of concerns are achieved.

Additionally some properties of actors are defined (e.g.,

initial position in the environment).

An example of a configuration for the schematic

Cooperation Model of Fig. 2 is presented in Fig. 3.

Figure 3: Configuration for the Cooperation Model

Not all before mentioned information have visual

counterparts however, the actor-role mapping is

represented by arrows. Penny fulfils the role Presenter and

Listener. Sheldon acts as a Chairman and Leonard as a

Presenter. The precise assignment of temporal operators for

an actor fulfilling more than one role is performed in the

dialog depicted in Fig. 4.

Figure 4: Assignment of Actors to Roles

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

3

In this example Penny first acts as “Presenter” and then as

“Listener”.

A configuration specifies the conditions under which the

cooperation model is used. Instances of model elements are

specified and behavioural information maybe additionally

provided.

Beside the temporal relations between tasks CTML allows

more specific relations in a similar way like OCL. These

constrains can be specified between tasks but also between

other model elements. CTML allows in this way the

specification of preconditions and effects of tasks. With

respect to the task expressions of the role chairman and the

role presenter the following preconditions can be defined.

a) A presenter is only allowed to start his

presentation if the talk had been announced by a

Chairman.

 Chairman.oneInstance.AnnounceTalk

b) A presenter can only respond to questions can if a

Chairman has opened the discussion.

 Chairman.oneInstance.OpenDiscussion

c) The precondition of the task of the chairman states

that a discussion can only be announced if all

presenters have finished their presentation

beforehand.

 Presenter.allInstances.EndPresentation

Effects of tasks can be specified by OCL-like expressions

as well

a) After a chairman announced the discussion all

notebooks in the room are switched off.

 Notebook.allInstances.switchOff

b) After a presenter started his presentation a

projector is switched on.

 Projector.oneInstances.switchON

c) After a presenter finished his presentation this is

recognised in the corresponding model. It results

in setting the attribute presented of the current

presenter to true.

 self.presented=true

Preconditions defined on this level of abstraction integrate

very well into the CTML approach of role based

descriptions. Quantifiers can be used to specify how many

actors fulfilling the role are addressed (one or all) by the

corresponding condition.

Additionally effects can be specified to characterize the

consequences of performing a task. Such effects are

especially important during requirements analysis. They

allow to precisely explore the domain and to support the

animation of the models.

Tranformations

It was already mentioned that our experimental basis is a

smart meeting room. The room is equipped with a lot of

sensors, projectors and cinema screens (see Fig. 1)

Bayesian algorithms try to infer next possible actions of the

users and based on that information convenient assistance

is to be provided.

Bayesian Networks have to be specified and have to be

trained. Additionally, the number of nodes in the network

can be really huge. Therefore, the specification of such

networks is time consuming.

It is possible to slightly extend task models by priorities

and take such models as input for a transformation that

generates a Bayesian network with initial values for

probabilities of transitions. The idea was published in [12]

and will be shortly described here again.

Let us assume that a workshop has to be organized in the

smart meeting room. There is the following plan:

A. Presenter Paul gives a talk

B. Presenter Sheron gives a talk

C. Presenter Leonard gives a talk

D. Discussion of all presentations

The idea is that Paul starts the workshop with his

presentation. Afterwards Sheron will give her talk.

According to the plan Leonard is the third speaker. The

workshop will be finished by a discussion. The tasks A, B,

C and D can be considered as a schedule of the workshop.

This schedule can be considered as a team model that all

participants want to execute in a collaborative manner. This

team model is specified as task model in our approach (see

Fig. 1).

For the workshop schedule the corresponding task model is

presented in Fig. 5. (We decided to use the choice “|=|”

temporal operator instead of the enable “>>” one because

variations of the schedule should be possible. This can also

be reached if the temporal operator is defined a little bit

more flexible.)

Figure 5: Task model with priorities

W

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

4

Task A, B and C can be executed in any order but A has the

highest priority (90). B has the priority 9 and C the priority

1. This can be interpreted in such a way that C starts with

1%, B with 9% and A with 90%.

Based on this information an initial Bayesian Network can

be generated.

Figure 6: Bayesian Network

The nodes in the network represent the already performed

tasks. Initially none task was performed. There is the

probability of 90% (.9 from 1.0) that task A is performed

first. After A was performed (Node {A}) there is the

chance of 90 % that task B is performed and 10% that Task

C is performed. After two talks were presented with 100%

probability the third missing talk will be given. After all

three talks were given there will definitely be a discussion.

For a given task model the corresponding initial Bayesian

Network can be generated automatically. A plug-in for

Eclipse was developed for that purpose.

The generated Network can be used immediately and can

be further trained.

The Role of Models

Models play an important role in software engineering in

general. We already discussed that they are important for

the development of smart environments as well. The

requirement process of such systems needs to incorporate

several entities. We consider actors, stationary and personal

devices with their interplay and additional constraints (e.g.

location and domain information) as most relevant.

Thus, the result of the requirements analysis phase is a

specification describing the interaction between actors and

their devices. Based upon the previous sections and

experimental modelling we found the next three phases to

be of particular importance.

The first phase is about creating a scenario that is written in

natural language as text and which describes the actors,

their dependencies and the envisioned behaviour of the

system under development on a high level of abstraction.

Next, use cases can be specified using the created scenario.

In the last phase task models are created based on use

cases.

.

The presented specification language CTML can be used

for different purposes.

Possible usages are:

1. Requirements Analysis

Similar to use cases, task models allow

developers to elaborate whether the main

functionality of a system has been understood.

2. Runtime Support

Interpreters are able to animate the models. In

conjunction with sensors in the room the

animation can be triggered and control the

provided assistance.

3. Basis for further models

Cooperative task models can be transformed

to Bayesian networks that get initial values

and are later further trained. Such networks

can control the assistance provided by the

room.

The discussed approach with its variations is always

focusing on the tasks users have to perform.

Following a user-centred approach is always a crucial

factor to successfully assist people while performing their

tasks.

Technology driven prototypes have shown that user-

centeredness is often disregarded. Satisfying user needs is

the most important objective for smart environments.

Therefore thoroughly performed requirements engineering

is crucial to build those systems. In particular, the process

is driven by use cases which are built upon scenarios in

early stages.

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

5

USABILITY EVALUATION

To ensure an adequate integration of all software and

hardware components, user studies have to be conducted.

One should start with test cases that are specified as

screenplays and later allow people to freely interact. This

requires a lot of resources since several people have to act

in the environment. Therefore a certain level of quality

should be reached beforehand.

For traditional interactive software “expert evaluation” is

an accepted method to identify bugs before user testing.

Unfortunately, expert evaluation is not feasible for a

cooperative smart environment where several people have

to act.

One idea is to use a virtual environment that allows an

expert to control several virtual persons. This idea was

mainly developed and evaluated by

Expert Tests

ViSE (Virtual Smart Environment) [16] is a prototypical

implementation of such a system. It was mainly developed

by Stefan Propp [19].

An expert can perform the following interactions with the

virtual room.

He can:

• Change the location of a person

• Attach items to persons

• Change device states

• Establish connections between devices

Fig. 7 provides a first impression of the virtual environment

by presenting parts of the user interface. Those parts of the

user interface are taken by a screenshot while running an

example.

Figure 7: Specification of a user

On the left hand side of Fig. 7 one can see the interaction

options for an expert for changing the state of an actor

while on the right hand side the current state of one task

model of this actor is visualized. This task model is related

to the role an actor is performing.

Currently Stefan plays the role of a Presenter. This can be

seen on both sides. The role presenter is clicked and the tab

for the role presenter is visible. In the configuration model

it must have been specified that Stefan plays the role of the

“Participant” and the role of “Presenter” because both

options are visualised in the graphical user interface.

Additionally, a laptop and a microphone were identified to

be attached to Stefan. This can be done interactively or can

be the result of sensing.

One can see details of the task performance on the right

hand side of Fig. 5. The state of the animated task models

can be seen for each role. The roles are represented by

different tabs.

In his role as Presenter Stefan moved to the front of the

audience (move_to_front was executed). Additionally, it

can be seen that with this action he started to prepare his

talk (prepare_talk is running). At the moment it is still not

possible to give his talk (give_a_talk is blocked) because

the slides have to be loaded (load_slide task is enabled) to

finish his preparation.

However, by taking a seat (take seat is enabled) Stefan

could finish his talk without giving his presentation or

discussing any questions. There is no problem if models are

specified in this way. They are only used to specify the

expected behaviour and to provide corresponding

assistance. There is no need to specify the models in a more

strict way.

In this view (right part of Fig. 7) one can see the temporal

relations between tasks as well. They are presented in

specific nodes meaning that all sub-nodes follow this

temporal relation. The enabling operaror (>>) menas e.g.

that move_to_front, has to be finished before load_slides

can be executed.

This representation of the running task model is in some

way a short reminder of the model specification the

animation is base on.

It was already mentioned that tasks can have preconditions

and effects. It is of course of great interest for the usability

expert to see these specifications. Sometimes this might

even be necessary to understand the current state of a task.

The virtual environment ViSE gives support in this respect

as well. It provides a special view for constrains and their

values during animation. Fig. 8 provides a view on the

preconditions for the task “present”.

Figure 8: Evaluated Constrains

For the presentation task there are three preconditions

specified. Those preconditions can be interpreted in the

following way. A Presenter has to be located in the

“Presentation Zone” and has to carry a device of type

laptop or PDA. Additionally this device has to be

connected to a VGA port. All three pre conditions have to

be fulfilled before the task give talk can be started.

concrete user (model entity)

available / active roles

progress of task performance

(for each role of the participant)

carried devices

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

6

Constrains can be edited textually or the state of the system

has to be changed if constrains are not fulfilled.

Fig. 7 gives an impression of how the two dimensional

virtual environment looks like.

Figure 9: Location model in ViSE

In the environment different zones can be specif

screenshot of Fig. 9 only the presentation zone is

visualised. An example with more zones

zone, three different listener zones and two presentation

zones) is presented in the screenshot of Fig. 10.

In the example of Fig. 9 Stefan is visible in the middle of

the bottom of the Figure. He is outside of the presentation

zone and would not be able to give his talk.

Christoph is in this zone.

The usability expert can move Christoph out of the

presentation zone and move Stefan into this zone.

Constrains and animated models will be updated

accordingly. The expert can observe whether the models

changed in a way that seems to be reasonable. If thi

the case he can refer to the problem and ask for changing

the models. Often new constrains will be introduced or

existing ones have to be changed.

The usability expert is really able to perform experiments

employing the virtual environment. He can

persons into the presentation zone and check what happens.

Discussions can be inspired by precise examples and

decisions can be made based on the specified models

trains can be edited textually or the state of the system

has to be changed if constrains are not fulfilled.

how the two dimensional

In the environment different zones can be specified. In the

only the presentation zone is

An example with more zones (one entrance

zone, three different listener zones and two presentation

is presented in the screenshot of Fig. 10.

visible in the middle of

outside of the presentation

zone and would not be able to give his talk. At the moment,

The usability expert can move Christoph out of the

presentation zone and move Stefan into this zone.

Constrains and animated models will be updated

The expert can observe whether the models

changed in a way that seems to be reasonable. If this is not

the case he can refer to the problem and ask for changing

the models. Often new constrains will be introduced or

perform experiments

the virtual environment. He can e.g. move two

persons into the presentation zone and check what happens.

Discussions can be inspired by precise examples and

decisions can be made based on the specified models.

User Tests

After expert evaluation was performed and problems in the

models were solved further tests are necessary. R

have to perform tasks in the smart environment. They have

first to act according to predefined scenarios and can act

later more freely.

Having recorded theses evaluations by videos

problem is the participants’ privacy

in such a way that people are not recognized anymore but

this is very time consuming. It would be better if there is a

system that is able to visualise the data that are captured by

sensors in the environment.

ViSE can be used for this purpose as well. It

present interactions in the meeting room in an anonym

way. A common language for the real and the virtual room

were defined In this way both environments can

communicate with each other.

ViSE was enhanced by a replay

captured sensor data with different animation speeds.

Movements are visualised in a bird’s eye view

10). In this example it is again the meeting room.

devices are represented by i

the movement are visualised but also traces representing

previous locations.

During replay further expert

It might be possible that additional tasks were identified. A

corresponding information can be stored.

Further views provide several logs and visualizations of

sensor data on demand, for instance the progress of task

performance as animated task model.

Figure 10: Replayed meeting Vi

After expert evaluation was performed and problems in the

solved further tests are necessary. Real users

have to perform tasks in the smart environment. They have

cording to predefined scenarios and can act

Having recorded theses evaluations by videos, an emerging

the participants’ privacy. One can edit the video

in such a way that people are not recognized anymore but

this is very time consuming. It would be better if there is a

system that is able to visualise the data that are captured by

ViSE can be used for this purpose as well. It can be used to

present interactions in the meeting room in an anonymous

A common language for the real and the virtual room

In this way both environments can

communicate with each other.

a replay mode that allows replaying

captured sensor data with different animation speeds.

sed in a bird’s eye view (see Fig.

In this example it is again the meeting room. Users and

icons. Not only the location and

visualised but also traces representing

During replay further expert observations can be annotated.

It might be possible that additional tasks were identified. A

on can be stored.

Further views provide several logs and visualizations of

demand, for instance the progress of task

rmance as animated task model.

Replayed meeting ViSE

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

7

SUPPORTIVE USER INTERFACES IN SMART

ENVIRONMENTS

The general term of “supportive user interfaces” fits to

nearly all interactive applications as in some way every

user interface has to be supportive. As a result of the

Supportive User Interface workshop SUI 2011, [5])

participants agreed on the following more specific and

precise definition:

“A supportive user interface (SUI) exchanges information

about an interactive system with the user, and/or enables its

modification, with the goal of improving the effectiveness

and quality of the user's interaction with that system.“ [6].

The most important aspect of this definition is the fact that

the user interface should be adaptable in order to give the

user the opportunity to interact with the system in a more

appropriate way according to the specific encountered

context of use.

This idea is based on the “Meta-User Interface” approach

[4] that has been introduced to control and evaluate the

state of interactive ambient spaces.

We will focus in our discussion on the role of supportive

user interfaces in smart environments.

With task models and Bayesian networks we already

discussed different approaches to control smart

environments. Such models try to infer next possible

actions of the users and based on that information

convenient assistance is provided.

“This creates complex and unpredictable interactive

computing environments that are hard to understand. Users

thus have difficulties to build up their mental model of such

interactive systems. To address this issue users need

possibilities to evaluate the state of those systems and to

adapt them according to their needs.” [16]

Meta-UIs are mentioned by the authors as a solution for

this problem.

Roscher et al. [20] discuss a functional model and a system

architecture for Meta-User Interfaces for smart

environments. They focused on the development of a user

interface that allows controlling devices in different ways.

 “The Migration menu provides possibilities to redistribute

a UUI (ubiquitous user interface) from one interaction

resource to another, e.g. transfer the graphical UI to a

screen better viewable from the users’ current position.

Through the Distribution menu the user can control the

distribution on more fine grained levels by distributing

selected parts of the UI among the available IRs.”

For ubiquitous user interfaces the five features shapeability,

distribution, multimodality, shareabilty and mergeability

are specified and presented in [21]. These results are

originally from [2].

“1. Shapeability:

Identifies the capability of a UI to provide

multiple representations suitable for different

contexts of use on a single interaction resource.

2. Distribution:

Identifies the capability of a UI to present

information simultaneously on multiple interaction

resources, connected to different interaction

devices.

3. Multimodality:

Identifies the capability of the UI to support more

than one modality.

4. Shareability:

Denotes the capability of a UI to be used by more

than one user (simultaneously or sequentially)

while sharing (partial) application data and

(partial) interaction state.

5. Mergeability:

Denotes the capability of a UI to be combined

either partly or completely with another UI to

create combined views and input possibilities.”

These features characterize the technical properties of user

interfaces in a given ubiquitous environment. However, the

usability of such user interfaces is not yet considered.

In our discussion we will especially focus on the dynamic

allocation of tasks (task migratability) and the possibility to

influence this allocation by a supportive user interface. We

will also discuss the role of tangible Meta-UIs.

TASK MIGRATABILITY

Task migratability is one of the usability criteria of

interactive systems. It specifies the transfer of control for

tasks execution between user and system.

“It should be possible for the user or system to pass control

of a task over to the other or promote the task from a

completely internalized one to a shared and cooperative

venture” [9].

Many interactive systems are static in this respect. The

software designer decides often already during the

development phase which task is to be allocated to which

actor. There are rarely systems where control between user

and software system can be changed on different levels.

Some systems like an autopilot of an airplane exist where

the pilot can give control to the system or take it back.

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

8

The Importance of Task Migratability

An interesting study has been conducted by V. Hinze-Hore

[14]. She looked at the publications of the ten most cited

authors in HCI and counted the number of times that a

particular HCI principle was proposed by one of these

significant authors. Multiplying this number by a

weighting factor derived from the author citation frequency

allowed a ranking of HCI principles to be determined.

According to this procedure, task migratability is ranked

the fifth among all usability principles.

A crucial pre-request for delivering an optimal assistance to

a user is to recognize in which way the current task of the

user is at best supported by an interactive system.

Sometimes it might be easier to perform a sub-task without

computer support. Therefore “designers need to acquire a

deeper understanding of what the tasks of the users might

be in certain situations and how to support their

achievement.” [8] Depending on the encountered situation,

adaptations should be possible.

Task Migratabilty in Smart Environments

Currently task migratability seems to be not a big issue in

smart environments. In general the systems try to support

users as much as possible. There is no discussion how users

can reduce provided support. The interface of the room is

fixed and cannot be configured or adapted.

Sometimes it is possible to explicitly configure the

environment via a user interface [20]. This can be one

solution to that problem. However, to realize such an idea,

devices with which users can interact are required.

The concept of a Meta-UI is not directly related to task

migratability. Often user interfaces elements are only

distributed to different devices in a different way while the

allocation of tasks remains the same.

However, the concept of Meta-UIs can also be applied in

such a way that a new configuration of a system results in a

different task allocation.

Consequently, Meta-UIs combined with supportive user

interfaces can then be employed to make task migratability

conceivable and possible in smart environments.

TANGIBLE USER INTERFACES

Tangible user interfaces are often used in conjunction with

table top systems. A user interacts with digital information

through physical objects. The goal is a seamless coupling

between the two very different worlds of bits and atoms

[6].

In our smart environment a pencil plays such a role of

tangible user interface. In case the pencil is in the box, no

white board is needed and the cinema screen can go down

(Figure 11). If somebody takes the pencil out of the box the

cinema screen has to move up, otherwise the user might get

the idea to write on the screen. Therefore, the smart

environment has to react accordingly (Figure 12).

Figure 11 Pencil is in the box

Figure 12 Pencil is in hand and not in the box

Sensors in the box help to achieve this behaviour.

However, for the user the pencil seems to be the tangible

user interface that allows him to interact with the

environment. This pencil can be considered as a very

simple supportive user interface. It allows configuring the

room and the room itself can be considered as an interface

to the people acting in it.

Tangible user interfaces seem to be an interesting option

for supportive user interfaces. Physical objects can be used

to configure the interface of the smart environment.

Tracked objects can help to identify the desired kind of

support based on the inferred meeting type (brain storming

session, workshop, business meeting, coffee break, etc.).

Certain physical objects can be identified and selected to

create a language for communication with the environment.

The location of such objects and their special relation to

each other can be considered as code. This code can be

interpreted as a command by the environment.

Following agreements or definitions could be made. If the

coffee pot is located on the table, this means that a business

meeting is currently taking place. If the coffee pot is

placed on the side board, a workshop is performed. A

coffee pot on the window sill signals a brainstorming

session and finally during a coffee break the pot has to be

placed on a small table next to the big meeting table.

Here the coffee pot plays the role of the supportive user

interface. Its location configures the provided support.

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

9

Additionally, objects can also be used to signal the

environment’s level of support that is appreciated.

On the one hand, a vase standing on the big meeting table

might express that all available support in the environment

should be provided. On the other hand, if the vase stands on

the window sill no assistance is needed. Users want to

control everything in a manual way. Certain states in

between these both extreme states can be specified as well.

However, the usage of tangible user interfaces in smart

environments raises new challenges which can be

formulated in the following set of questions:

1. Should already existing objects from the domain be

used or specific new objects be introduced?

 While existing objects might be more convenient,

 they might have the disadvantage that they are

 used for their original purpose and thus placed

 somewhere. New introduced objects like

 stones seem to be safer and less confusing

 because the manipulation of those objects will not

 be performed often since they do not play another

 role in the room.

2. Should one object in different states/locations or

several objects be used to specify the input to the

environment?

 There seems to be context dependant learn ability

 problem. Is it easier to memorize the different

 states of one object or different objects?

3. Should existing metaphors in favour of new introduced

metaphors be used?

 There is again the question of learn ability. Does

 the metaphor fit to the mental models of the users?

 Is it convenient for the users to act according to

 the metaphor?

There seems to be no general answer to all of those

questions. Based on a thorough analysis of the application

domain, design decisions have to be made like in classical

interactive systems

TANGIBLE UI VERSUS GUI

Tangible user interfaces cannot express all necessary

information in an appropriate way. They are very helpful if

a specific state and which is an element of a limited state

space has to be determined. This is possible for discrete

levels of assistance or specific configurations of the room.

In the context of our application domain (smart meeting

rooms), different presentation styles can be supported

(presentation of the current slide with one projector,

presentation of all slides in a sliding window mode,

presentation of the outline with one projector and

presentation of the current slide with another one, …). It

will not be possible to support the loading process of a

given presentation from the file system in a convenient way

employing tangible interactions.

There might have been profiles specified, that allow

selecting files based on predefined specifications in a

tangible way. This would be easy to use. In the general case

where an arbitrary file has to be uploaded, a graphical user

interface is much more appropriate.

Again a broad variety of assistance can be envisioned.

Everything is configured via a GUI like in [20] and [21], or

everything is selected for predefined specifications by

tangible objects. It is of course to follow a strategy that is

something in between those extreme strategies. It depends

on the context which strategy fits best.

For a very important meeting most facts might be known

and can be configured beforehand. There might also be

some time for a preparation beforehand.

During brainstorming sessions, ideas might come up to

present something that has to be configured via a GUI or a

tangible user interface.

Discussion

We introduced tangible user interfaces for smart

environments as a subset of supportive user interfaces.

In fact tagged objects can play the role of a Meta-UI. They

help to explicitly inform the environment about the

intention of the users that have otherwise to be deduced

implicitly from a lot of sensor data. This is especially

helpful if no historical data are available that allow training

the algorithms of the smart environment. In such cases the

direct expression of intentions is very helpful.

Such a tangible user interface has the advantage of

informing the environment explicitly. However, it delivers

wrong results if objects are not manipulated in the correct

way. In this case correct deduction might be overruled by

the tracked objects that are not used in the expected way.

Tangible objects should therefore follow a metaphor that is

easy to learn and to remember. Further studies have to

show for each context the kind of metaphors and objects

that are appropriate to be used for communicating with a

smart environment.

CONCLUSIONS

In this paper we argued for using models in connection

with smart environments, We insisted on the fact that they

are helpful in the requirements analysis phase because they

focus on the tasks users have to perform. It was discussed

how the specification language CTML might be helpful in

specifying and evaluating smart environments. The virtual

smart environment ViSE was developed for this purpose. It

was shown that expert evaluation is possible for

cooperative tasks with such a virtual environment.

Additionally, the replay of evaluations in the real

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

10

environment can be provided in an anonymous way using

ViSE.

Additionally we argued in this paper to consider task

migratability as an important aspect for smart

environments.

At the moment, this aspect plays only a minor role in the

discussions. We believe that the acceptance of the concept

of smart environments may increase if the user is able to

influence the dynamic task allocation in a convenient way.

It has also to be shown by experiments that the combination

of tangible and graphical user interfaces can improve the

usability of smart environments. In both cases task

migratability has to be taken more into account.

ACKNOWLEDGMENTS

The presented ideas were developed together with Anke

Dittmar, Maik Wurdel, Stefan Propp and Michael Zaki

during the last years. Some of the research was performed

within the graduate school MuSAMA (Multimodal Smart

Appliance Ensembles for Mobile Applications) which is

funded by the German National Research Foundation

(DFG), Graduate School 1424.

REFERENCES

1. Blumendorf, M., Lehmann, G., Feuerstack, S., and

Albayrak, S.: Executable Models for Human-Computer

Interaction. In Interactive Systems. Design,

Specification, and Verification, T. C. Graham and

Philippe Palanque (Eds.). Lecture Notes In Computer

Science, Vol. 5136. Springer-Verlag, Berlin, Heidelberg

238-251.

2. Blumendorf, M. Multimodal Interaction in Smart

Environments A Model-based Runtime System for

Ubiquitous User Interfaces. PhD Thesis, Technical

University of Berlin, 2009.

3. Clerckx, T., Luyten, K., and Coninx, K.: DynaMo-AID:

a Design Process and a Runtime Architecture for

Dynamic Model-Based User Interface Development, In

Proc. of The 9th IFIP Working Conference on

Engineering for Human-Computer Interaction Jointly

with The 11th International Workshop on Design,

Specification and Verification of Interactive Systems,

pp 11-13, 2004.

4. Coutaz, J. Meta-User Interfaces for Ambient Spaces. In

Proc. of the 5th Int. Ws. on Task Models and Diagrams

for Users Interface Design: TAMODIA 2006, pp 1-15,

Coninx, K., Luyten, K. and Schneider, K. A. (eds.),

Springer LNCS 4385. Hasselt, Belgium, October 23-24,

2006.

5. Demeure, A. Lehmann, G., Petit, M. and Calvary, G.

(Eds), Proceedings of the 1st International Workshop on

Supportive User Interfaces: SUI 2011 Pisa, Italy, June

13, 2011, http://ceur-ws.org/Vol-828/.

6. Demeure, A. Lehmann, G., Petit, M. and Calvary, G.

SUI 2011 Workshop Summary Poster, in [5].

7. Diaper, D., Stanton, N.: The Handbook of Task

Analysis for Human-Computer Interaction, Lawrence

Erlbaum Assoc. Inc., 2003

8. Dittmar, A. and Forbrig, P., Selective modeling to

support task migratability of interactive artifacts,

Proceedings of the 13th IFIP TC 13 international

conference on Human-computer interaction – Interact

2011, Lisbon, Portugal, Springer-Verlag, Volume Part

III, ISBN 978-3-642-23764-5, p. 571-588.

9. Dix, A., Finlay, J.E., Abowd, G.D. and Beale, B.:

Human-Computer Interaction, 3rd edn, Prentice-Hall,

Englewood Cliffs (2003)

10. Forbrig, P., Dittmar, A., Brüning, J., and Wurdel, M.:

Making Task Modeling Suitable for Stakeholder Driven

Workflow specifications, Universal Access in Human-

Computer Interaction. Design for All and eInclusion -

6th International Conference, UAHCI 2011, Held as

Part of HCI International 2011, Orlando, FL, USA, July

9-14, 2011, Proceedings, Part I , pp 51-60.

11. Forbrig, P., Wurdel, M. and Zaki, M.: The roles of

models and patterns in smart environments, EICS

Workshop, Copenhagen, 2012.

12. Giersich, M., Forbrig, P., Fuchs, G., Kirste, T., Reichart,

D., and Schumann, H:. Towards an Integrated Approach

for Task Modeling and Human Behavior Recognition.

In Proc. HCI International 2007: 12th International

Conference on Human-Computer Interaction, volume 1

of LNCS, pages 1109–1118, Beijing, China, July 22-27

2007. Springer.

13. Giersich, M.: Concept of a Robust & Training-free

Probabilistic System for Online Intention Analysis in

Teams, PhD Thesis, University of Rostock, 2009.

14. Hinze-Hoare, V. Review and Analysis of Human

Computer Interaction (HCI)Principles, July 2007,

http://arxiv.org/ftp/arxiv/papers/0707/0707.3638.pdf

15. Ishii, H. and Ulmer, B., Tangible bits: towards seamless

interfaces between people, bits, and atoms. In:

Proceedings of the CHI’97 conference on human factors

in computing systems, Atlanta, Georgia, March 1997,

pp 234 – 241.

16. Luyten, K., Vandervelpen, C., Conix, K.: Task

modelling for ambient intelligent environments – design

support for situated tasks, In Proceedings of the 4th

international workshop on Task models and diagrams

(TAMODIA '05). ACM, New York, NY, USA, 87-

94.Propp, S. and Forbrig, P.: ViSE – A Virtual Smart

Environment for Usability Evaluation, in Proc. HCSE

2011, Reykjavik, 2010, Springer, pp 39-46.

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

11

17. Malý, I., Cuřìn, J., Kleindienst, J., and Slavìk, P:.

Creation and visualization of user behavior in ambient

intelligent environment. In 12th International

Conference on Information Visualisation (IV08) -

International Symposium of Human-Computer

Interaction (HCI), London, United Kingdom, July 2008.

IEEE Computer Society, pp 497-502.

18. Malý, I., Slavik, P., and Kleindienst, J.: Combination of

models and logs for visual analysis of data from

usability evaluation. In Proceedings of the Third

IASTED International Conference on Human Computer

Interaction (HCI '08), Daniel Cunliffe (Ed.). ACTA

Press, Anaheim, CA, USA, 279-284.

19. Propp, S. Usability-Evaluation in intelligenten

Umgebungen, PhD Thesis, University of Rostock, 2011.

20. Roscher, G., Blumendorf, M. and Albayrak, S. Using

Meta User Interfaces to Control Multimodal Interaction

in Smart Environments, Proceedings of the IUI'09

Workshop on Model Driven Development of Advanced

User Interfaces, http://ceur-ws.org/Vol-439/paper4.pd

21. Roscher, D., Lehmann, G., Blumendorf, M. and

Albayrak, S. Design and Implementation of Meta User

Interfaces for Interaction in Smart Environments, in [5]

22. Weiser, M.: The Computer for the 21st Century,

Scientific American, 265, pp. 94-104, 1991

23. Wurdel, M.: An Integrated Formal Task Specification

Method for Smart Environments, PhD Thesis,

University of Rostock, 2011

24. Zaki, M., Wurdel, M., and Forbrig, P., Pattern

Driven Task Model Refinement, International

Symposium on Distributed Computing and Artificial

Intelligence, DCAI 2011, Salamanca, Spain, 6-8 April

2011, Ed. Ajith Abraham and Juan M. Corchado and

Sara Rodriguez-Gonzalez and Juan F. De Paz Santana,

Advances in Soft Computing, Vol. 91, ISBN = 978-3-

642-19933-2 , p. 249-256.

V. Posea, G.S. Cojocar (eds.), RoCHI 2012

12

