
Proceedings of ICUSI 2024

- 34 -

SmartReviewHub: An AI Based Scientific Conference
Management System

Mihail Popescu
University of Craiova
Craiova, Romania
mihaixz4@gmail.com

Paul-Stefan Popescu
University of Craiova
Craiova, Romania
stefan.popescu@edu.ucv.ro

Marian Cristian Mihaescu
University of Craiova
Craiova, Romania
cristian.mihaescu@edu.ucv.ro

ABSTRACT
Conference management systems are one of the most essential
tools for evaluating papers submitted to conferences or
journals. These systems evolved over the years, providing
better functionalities to facilitate the conference management
process. The problem tackled by this paper is to provide a
system that enhances the user experience and ease of use for
all the actors involved. The approach was to integrate machine
learning and deep learning features in order to provide
features like concept extraction, plagiarism detection, spell
checker or even sentiment analysis. The result is an intelligent
conference system that can provide all the classic and new
functionalities for an optimised user experience.

Author Keywords
Conference system, machine learning, deep learning, user
experience.

DOI: 10.37789/ icusi.2024.6

INTRODUCTION
Scientific events rely on their management systems for
reviews, evaluation and paper ranking. Such systems mainly
include basic functionalities like paper uploading along with
an abstract, title, keywords, and authors; then, reviewers can
assign them automatically, or they can be assigned randomly
from a predefined list. After the evaluation part is completed,
a paper ranking is available, and we have the next step of
announcing the authors about the decision. Then, the camera-
ready paper is prepared, and in the end, we have the final
papers. This kind of functionality is quite common in many
paper management systems and provides the baseline on which
we propose our system. We also need to mention here that
there are several roles in such systems, and the most common
are author, program committee and organiser, and each of
them has several actions that can be performed. Most of the
systems like EasyChair [1], ConfBay, OpenConf [2],
Microsoft CMT, COMS, Papercept, ConfSys [3,4] and EDAS
implement the main functionalities.

Nowadays, machine learning and deep learning algorithms
have become more and more popular and are integrated into a
variety of systems, but most scientific management systems
don't benefit from what intelligent algorithms have to offer. We
propose a system that provides functionalities that help all the
main actors from such a system directly and indirectly.

The system presented in our paper addresses the idea that we can
merge standard conference systems with machine learning and
deep learning technologies in order to provide an up-to-date
system that includes new functionalities. These functionalities
are designed to increase productivity and reduce the time for all
the users of conference management systems.

The standard functionalities of the system include setting up a
conference, paper uploading, reviewer assignment, paper
evaluation, etc., and covering most of the features available in
standard conference management systems.

The advanced functions included in SmartReviewHub are:

● Concept extraction/topic detection. This is very
useful for keywords and more accurate reviewer matching.
● Plagiarism detection This can be performed using
third-party applications, but having an integrated feature
makes the process more convenient.
● Spell checkers help evaluate and improve the
language because most authors may not speak native
English. Like the previous one, there are third-party apps
that can be used, but having it implemented can increase
the user's experience.
● Sentiment analysis may not seem the most
relevant for scientific papers, but measuring how neutral a
paper is may provide insight into its quality.

The system's goal is to provide many functionalities and enhance
the user's experience and ease of use because the interface is
optimised to deliver the features exactly where they are needed.
We also consider optimising the number of actions an author
needs to do to accomplish their goal. Here, the system adds a
straightforward benefit because authors don't have to log into a
different system, upload their paper there, and re-upload it in the
standard conference management system.

Proceedings of ICUSI 2024

- 35 -

RELATED WORK
Research in the area of conference management systems plays
an important part and is quite actual, as presented in the
survey [5], which analyses EasyChair, ConfBay, OpenConf,
Microsoft CMT, COMS, and EDA as tools commonly
employed by conference organisers. The survey examines the
strengths and features of each system, with a focus on critical
aspects such as paper submission, the review process,
registration, agenda and program management, virtual
conference support, proceedings, and e-mail communication.
The analysis serves as a valuable resource for navigating the
complex landscape of CMS platforms, guiding organisers
toward optimal choices aligned with their unique event
management needs.

However, the interest in paper management systems is not
new, as we can see in [6], which presents a Conference
Management Online System that provides an easier way of
managing events when conducting a conference or in [7].

One key feature previously discussed was the automatic
assignment of reviewers to papers as presented in [8], which
provides an algorithm for an automatic assignment that takes
into account all - selected keywords, reviewers' bids and
conflicts of interest and tries to find the most accurate
assignment while maintaining load balancing among
reviewers.

Another relevant task for conference management systems is
the detection of conflicts of interest, as presented in [9]. The
authors propose an utterly novel framework that can be
practically implemented to improve the performance of
existing systems. They map the reviewer assignment problem
to an equilibrium multi-job assignment problem. Moreover,
they propose a meta-heuristic greedy solution to solve it using
weighted matrix factorisation.

Other systems are constantly developed and kept up to date,
like MyConfree presented in [10], which was created 15 years
ago but is still in use.

SYSTEM DESIGN
The system is designed so that multiple types of roles with
their specific attributes can interact seamlessly through the
web application. Figure 1 shows the main actions each role can
take.

An author can upload documents, perform various tests and
other processing actions on them, or send them directly for
review to the conference they choose. They will also see all the
information about the documents, tests, and results clearly and
straightforwardly.

Figure 1. Use case diagram

A reviewer receives documents only for the conferences to which
they are assigned and has all the tools needed for evaluation,
including viewing the documents and returning the results.

A tracker, in the same way, receives documents for the
conferences where they are assigned and has all the information
necessary to match the documents with the reviewers who are
qualified to assess them through a simple UI.

An organiser can create conferences with the most relevant
information and then assign specific people as reviewers or
trackers to them. They also have the option to delete the
conferences they made when they end or if an issue arises.

The admin can accept or deny requests for reviewer accounts
and change the roles of any user on the platform. Additionally,
they are provided with relevant information for all ongoing
reviews to resolve any issues.

A person can hold different roles at different conferences, so an
account should be able to have multiple roles simultaneously. A
custom user model was created in Django to accommodate this,
where each role status is saved as a Boolean value. The admin
role, however, is managed in a separate Django model.

Proceedings of ICUSI 2024

- 36 -

Consolidating all the primary roles into a single model
simplifies the interconnection of all the models required for
other functionalities. As shown in Figure 2, most tables are
connected to the CustomUser table, with only the table related
to the admin role functionality being separate.

Figure 2. Database design

Another core component of the system design is how
documents are sent from one role to another. Instead of having
a single copy of the document in the database shared between
different roles, different copies were created. This way, when
an author sends a document for review, the tracker receives a
copy of it saved under their ID in the database. The exact
process is followed when the tracker sends it to the reviewers
later on. This method uses more memory space but enhances
the safety of the reviewing process.

Having all the roles in one model and creating a copy of the
documents for each role added a level of complexity when
creating some functionalities and, for example, differentiating
between the documents uploaded by the author and those
received by the tracker and reviewer when they are being sent,
rejected, tested on, etc.

Figure 3 presents the central system architecture along with the
functionalities implemented in the system. The system
processes author-uploaded documents to perform spell-
checking, plagiarism detection, sentiment analysis, and entity
extraction. In the first step, we have the User Dashboard
Request, which is the initial step in which an author makes a
request from the dashboard interface. This could be a request
to upload a document for a conference. Django Development
Server is the next step where a Django development server
receives and handles the request. Django serves as the web
framework to manage incoming requests, interact with the
database, and coordinate the processing pipeline. The text
extraction (Fitz/Python-docx) extracts the text document
content.

Then, the documents, including their metadata and possibly the
extracted text, are stored in an SQLite3 database. This allows for
persistent storage and easy retrieval of documents. The text
Preprocessing (NLTK) module includes tasks such as
tokenisation, removing stop words, and other normalisation
processes to prepare the text for analysis. The spell Checking
(PyEnchant) checks the text for English spelling errors using
PyEnchant and outputs Suggestions or corrections for any
detected spelling errors. Plagiarism Detection (Gensim) is
another functionality that checks for plagiarism. Gensim is a
library often used for topic modelling and similarity detection.
The Sentiment Analysis (Transformers) module performs
sentiment analysis using transformer models, which are state-of-
the-art in natural language processing (NLP) for understanding
the sentiment or emotions expressed in the text. Entity extraction
is the last functionality, which is conducted using spaCy to
identify entities, such as names, dates, locations, etc., within the
text and outputs a list of recognised entities with their types. The
results from all the analyses (spell checking, plagiarism
detection, sentiment analysis, and entity extraction) are compiled
and returned to the author.

Web App Features
Every role has its own dashboard page where specific
functionalities are available. These are accessible through
buttons on the header that appear only if the user has the
required roles.

The author dashboard has a section where you can upload
documents in either DOC or PDF formats, along with their topic
and keywords. After a document is uploaded, it appears in the
uploaded documents section, where the author can see its status
and perform multiple actions.

Each document has a preview button. When pressed, it extends a
section under the document to show the contents. For PDF
documents, it uses the built-in PDF viewer for browsers, and for
Word documents, it extracts the text from the document and
displays it directly.

Four functionalities are designed to aid the author in testing and
processing their document before sending it for review.

One functionality is spell-checking, triggered by a button with
the same name. It only supports the english language. The text is
extracted using one of the functions for extracting text from
either PDF or DOC. Then, the spell check function uses the
PyEnchant library to create an English dictionary and iterates
through each word to check if it is correctly spelt. The results are
returned on a new page where the author is redirected. All the
text from the document is displayed, with only the mistakes
marked in yellow.

Another functionality intended to aid the author in extracting
relevant entities from their document through a natural language
model. This can help them find new or more fitting keywords for
their paper. The model is implemented through the spaCy library,

Proceedings of ICUSI 2024

- 37 -

which provides the en_core_web model in three sizes: small
(sm), medium (MD), and large (LG). Their main difference is
how much computing power they will use, resulting in more
or less accurate outputs. The model first tokenises the text by
splitting it into basic units such as words and punctuation, then
reduces the words to their base form (lemmatisation) and
identifies the parts of speech for each word through POS
tagging (part-of-speech tagging). Lastly, it extracts named
entities, such as people, works of art, historical events,
languages, laws, etc. This is done after the 'keywords helper'
button is pressed, and the results are returned as a list with the
words and their tags. The results are displayed on a new
page within columns for each category. A word cloud of the
most common words is generated using the WordCloud
library and the results list for better visualisation. The output is
then converted into a base64 image to be displayed on the
webpage.

The sentiment check functionality is designed to use a model to
examine a document and determine its overall sentiment—
negative, positive, or neutral. A scientific paper should be as
neutral as possible; this test can give the author an impartial
perspective on their paper.

This feature can have deeper implications on what words or
phrases are considered neutral, positive or negative based on
what data it is trained on. That is why it is left up to the author to
decide whether they want to use it and consider the result or not
before they send the paper up for review. The results should be
treated as a suggestion rather than a factual conclusion.

Figure 3. Main system design

The Transformers library created and maintained by Hugging
Face was used for this functionality. It contains multiple
models, one of which is BERT [11] (Bidirectional Encoder
Representations from Transformers). BERT can learn the
context of all words in a sentence by analysing them bi-
directionally, and it can be fine-tuned for various specific tasks
such as text classification, sentiment analysis, question
answering, and more. BERT excels at understanding the
complex context of words and phrases, making it ideal for
tasks that require a deep understanding of natural language
and an excellent choice for sentiment analysis of scientific
papers.

In the implementation, the text is extracted from the document
for which the 'sentiment check' button was pressed. It is then
sent to a function where the text is tokenised and analysed by
the BERT model, which returns one of the three possible
sentiments. The result is displayed on the author dashboard
page in a section under the chosen document.

The final functionality of this type is comparing the chosen
document with all the other documents uploaded by authors
on the site. This is achieved using a Python library called

Gensim, which implements multiple algorithms and models.
For example, Latent Dirichlet Allocation (LDA) [12] is used
to discover hidden topics in a set of documents, and
Word2Vec is an algorithm for learning vector representations
of words in a multidimensional space.
To implement this, the document for which the 'compare
documents' button is pressed and all the other documents are
retrieved. The text is extracted and preprocessed by the
'preprocess_text' function, and then a dictionary is created by
the 'corpora. The function of the dictionary (processed_texts)
is where each word is mapped to a unique ID. Next, a corpus
is created by converting each preprocessed text to a bag-of-
words representation using the 'dictionary.doc2bow(text)'
function. The similarities between the selected document and
all the other documents are then calculated using
'index[corpus[0]]', where 'corpus[0]' is the bag-of-words
representation of the selected document. The similarities are
sorted in descending order, and the top similar documents are
selected by slicing the sorted list and retrieving the
corresponding documents and their similarity scores. The
results are returned as a list of tuples containing a document
and its similarity score for the top similar documents.

Proceedings of ICUSI 2024

- 38 -

The document names, authors and their contents are kept
anonymous because some documents that are checked can still
be in the process of reviewing, or their authors may not have
made the work public. This differs from mainstream plagiarism
checkers, which use databases of finished works where the
authors consent to be checked upon. So, it would raise some
issues if authors could have a way to access any information
about the documents other than theirs in the database.

After completing all the checks, an author can read all the
information about ongoing and upcoming conferences on the
'Conferences' page, which helps them decide the best
conference for their paper. Notably, the conferences on this
page are automatically moved from the 'Planned' to the
'Ongoing' section by a function that compares the current date
with the start and end dates of the conferences.

Once the author has decided where to send their paper, they can
use the 'Send to review' button. This opens a form in a section
under the document where they can update the keywords and
topic and select the conference to which they want to send the
document. After making the desired changes and pressing the
'Send' button, the 'send_to_review' function sends a copy of the
document to all the trackers assigned to the chosen conference
by saving copies of the chosen document under the IDs of the
trackers. The status of all those documents, including the
author's original version, is then changed to "Submitted".

The status is a field in the document model that can be either
Uploaded, Submitted, Under Review, Reviewed, or Rejected. It is
used to indicate the review stage of the document. When the
author uploads a document, it is saved with the status
'Uploaded'. Once successfully sent to a conference, its status
changes to 'Submitted'. When at least one reviewer accepts the
document for evaluation, the status changes to 'Under_Review'.
Once all the reviewers return their evaluations, the status
changes to 'Reviewed'.

When the author receives at least one result from a reviewer, the
'View Feedback' button appears under the document that
received feedback. When pressed, the 'get_feedback' function
returns all the results in a section under the document.
The feedback form fields that the reviewer must fill out and the
author will see are: 'What's wrong:' (text type), 'What can be
improved' (text type), 'Score' (number type), and 'Decision'. The
'Decision' field is a dropdown with the following options:
'Reject', 'Accept with small revisions', 'Accept with major
revisions', and 'Accept'. These fields provide enough space for
the reviewer to write their observations, resulting in a
meaningful review process.

An organiser can access specific functionalities for their role on
the organiser dashboard page. This page has three sections: one
for creating new conferences, another for assigning trackers or
reviewers, and the last one for viewing already created
conferences with the option to delete them. A conference is

created through a form with the following fields: Conference
name, Start date, End date, Location, Description, and Picture.
After making at least one conference, the organiser can use a
search bar to find users to assign as either reviewers or trackers to
their conference. When assigning a user, the
'assign_user_to_conference' function includes checks to ensure a
user isn't both a reviewer and a tracker at the same conference.

Tracker can find functionalities on the tracker dashboard page that
are specific to their role. The first section shows the conferences
where the tracker has been assigned. The following section
displays the ongoing reviews in these conferences, defined as
reviews where a reviewer has accepted a document. Another
section lists the reviewers and their relevant information for the
conferences the tracker is overseeing. The last section shows the
documents sent for review and relevant information about the
authors who submitted them. This setup allows the tracker to
match documents to reviewers based on their specialisations,
workplaces, and achievements. After selecting a reviewer from the
dropdown menu, the tracker presses the 'Match Reviewer' button,
which calls the 'match_reviewer' function and makes a copy of the
document under the reviewer's ID. The tracker can repeat this
process multiple times, and when no more matches are possible,
they can use the remove button to delete the document for
themselves. If no suitable match is found, the tracker can reject the
document, which deletes it for itself and notifies the author on the
author dashboard page that the document was rejected.

A reviewer can find the main functionalities of their role on the
reviewer dashboard page. The first section displays the
conferences where they have been assigned as a reviewer. The
next section shows all the documents assigned to them, with a
search bar to help them search by topic or keywords. A document
can only be previewed, accepted, or removed in this section. If a
reviewer accepts a document, the status of the reviewer's copy and
the author's document is changed to 'Under_Review,' and it is
moved to the last section for documents under review. Here,
reviewers can download the document or return it with feedback.
When the 'Return Document' button is pressed, a form opens under
the document where the reviewer can write feedback, provide a
score, and give their decision on acceptance.

An admin can access the main functionalities of their role on the
admin dashboard page. The first section shows all the reviewer
account requests along with important information. These requests
can be approved or denied. The second section is for changing
user roles. The admin can search for a user using the search bar,
and the result will show their name, e-mail, and checkboxes for
each role. If a checkbox is checked, the user has that role; if not,
they don't. An admin can check or uncheck these boxes to change
roles. The last section displays all ongoing reviews for all
conferences, showing authors' and reviewers' names and e-mails.
This helps the admin resolve any potential issues that might arise
during the review process. The source code can be found here:
https://github.com/Mihail-Popescu/Sistem-pentru-gestiunea-
articolelor-stiintifice

Proceedings of ICUSI 2024

- 39 -

RESULTS
For testing purposes, two accounts were created for each role,
including two accounts for the author role. On each author's
account, three random scientific papers were uploaded on the
internet, each with a considerable number of pages, words and
characters. This allowed me to test the functionalities of the
author dashboard more comprehensively.
Figure 4 shows a test done for the spell-checking functionality
used on the 'Cloud Computing' document. It illustrates two
critical observations about the library's workings and my
implementation.

Figure 4. Spell checking example

One observation is that some words are marked as wrong
because they are combined with punctuation marks or are
names that aren't in the library's dictionary. This leaves much
room for improvement, which can be addressed by better
extraction and separation of the words or by checking for false
positives.

The other observation is that the spell-checking library works as
intended overall. Most words are correctly checked, and the
inconsistencies mentioned earlier provide good examples of words
being marked as wrong.
Figure 5 shows a test for the keywords finder functionality used in
the 'Visualising topic uncertainty in topic modelling' document.
Multiple observations can be made about the output given by the

model.

One is that there are both relevant and irrelevant results. Most
irrelevant results are repetitions or simply words that don't fit their
category. As was mentioned in more detail in the system design,
there are multiple sizes of the 'en_core_web' model. The smallest
version was used for testing purposes, while in a real-case
scenario, the most extensive version can be used for the most
accurate results.
If wanted, duplications can be removed by filtering the model
results. It can still be useful for some people to see how many
times a keyword appears in their paper.
As for the relevant results, many fit their sections and could be
useful in a real-case scenario for an author looking to find more or
better keywords.

Figure 6 displays an example of a sentiment check test used on the
'Coordinate System' document, which came out as neutral. Every
time the sentiment check button is pressed, the model processes the
text and generates a new result. Assuming the scientific papers
used for testing are neutral, the model's output should be neutral
most of the time. For the 'Coordinate System' document, the model
returned eight results as neutral and two as negative out of ten
tests.

Figure 6. Sentiment analysis example

Figure 7 shows the result of the' compare documents' functionality
used in the 'Coordinate System' document. The scores for the two
most similar documents are displayed in descending order. Both
the documents and their authors are kept anonymous.

Figure 5. Concept extraction example

Proceedings of ICUSI 2024

- 40 -

Figure 7. Similarity score example

The similarity scores range from zero to one, with zero
representing very low similarity and one representing very
high similarity. All documents used for testing had their
highest scores under 0.3, representing less than 30%
similarity, in the low to moderate similarity range. Also, while
testing, comparing the same document with itself gave a
similarity score of 0.9 - 1.0. The preprocessing function can be
fine-tuned to achieve even more accurate results.

CONCLUSION
The development and implementation of this web app have
proven to be a valuable exercise in integrating public libraries
that provide natural language models for document analysis.
By creating a robust system that accommodates multiple user
roles, we have enhanced the design and reliability of
conference paper submissions and reviews.

The app's functionalities, such as spell-checking, sentiment
analysis, entity extraction, and document comparison, provide
authors with comprehensive tools to refine their submissions
before review. The automated status tracking and detailed
feedback system also streamline the review process, ensuring
clear communication and constructive feedback between
authors and reviewers.

Future improvements could focus on refining the models'
preprocessing functions and expanding the range of
functionalities where those models are used. Moreover, the
app's design allows for the potential integration of new
features and enhancements based on user feedback and
technological advancements.

Overall, this project underscores the potential of combining
modern web development frameworks with advanced natural
language processing libraries to create efficient and user-
friendly solutions for academic and professional
environments.

REFERENCES
1. Goghate, A., Yerlekar, A., Turkar, H.,
Nanotkar, A., Dhok, A., & Sakhare, N. (2024). Easy
Chair–Research Paper process Handling in Salesforce.
Educational Administration: Theory and Practice, 30(4),
5674-5679.
2. Hasan, L. R., & Abuelrub, E. (2013).
Usability Testing for IAJIT OpenConf Journal
Management System. J. Softw., 8(2), 387-396.

3. Yadav, Y., & DESAI, D. B. C. (2023, May).
ConfSys-An Intelligent Conference Management System. In
Proceedings of the 27th International Database Engineered
Applications Symposium (pp. 127-130).

4. Yadav, Y. O. (2024). ConfSys 4: An
Advanced Conference Management System with
Automatic Semantic Header Generation (Doctoral
dissertation, Concordia University).

5. Ishak, W. H. W., Yamin, F. M., Mohsin, M. F.
M., & Mansor, M. F. (2023). A Comparative Review
of Conference Management System. Journal of
Technology and Operations Management, 18(2), 87-93

6. Ahmad, K., Abdullah, A. A., & Zeki, A. M.
(2012, November). Web-based conference management
system for higher learning institutions. In 2012
International Conference on Advanced Computer
Science Applications and Technologies (ACSAT) (pp.
340-343). IEEE.

7. Bioco, J., & Rocha, A. (2019). Web application
for management of scientific conferences. In New
Knowledge in Information Systems and Technologies:
Volume 1 (pp. 765-774). Springer International
Publishing..

8. Kalmukov, Y. (2011). Architecture of a
conference management system providing advanced paper
assignment features. arXiv preprint arXiv:1111.6934..

9. Pradhan, D. K., Chakraborty, J., Choudhary, P.,
& Nandi, S. (2020). An automated conflict of interest
based greedy approach for conference paper assignment
system. Journal of Informetrics, 14(2), 101022.

10. Santiputri, M., Agustin, N. S., & Delimayanti, M.
K. (2018, October). MyConfree: a web-based conference
management system. In 2018 International Conference on
Applied Engineering (ICAE) (pp. 1-4). IEEE

11. Devlin, J., Chang, M. W., Lee, K., & Toutanova,
K. (2018). Bert: Pre-training of deep bidirectional
transformers for language understanding. arXiv preprint
arXiv:1810.04805.

12. Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003).
Latent dirichlet allocation. Journal of machine Learning
research, 3(Jan), 993-1022

.

