
Proceedings of ICUSI 2024

- 72 -

Design and Implementation of a 2D Game Engine:
Algorithmic Approaches and Performance Optimization

Maria Pasca

Computer Science Department
Technical University of Cluj-Napoca

Str. Memorandumului 28
mariav.pasca@gmail.com

Constantin Nandra

Computer Science Department
Technical University of Cluj-Napoca

Str. Memorandumului 28
constantin.nandra@cs.utcluj.ro

ABSTRACT

This paper describes a solution for generating pseudo-random
mazes to act as environments for a puzzle-type game that
requires the player to make decisions while being chased by one
or more opponents. We focused on developing a flexible and
scalable solution, aiming to minimize the time required for the
generation process. Throughout the paper, we will describe the
inner workings of the proposed solution, while focusing on the
optimization of the maze generation and path finding aspects. We
also approach the problem from the perspective of path finding,
which is relevant for the implementation of the intelligent agent
chasing the player. Finally, we present the findings of a set of
tests done on the described solution, which was utilized in the
implementation of a maze-chase game, featuring NPC navigation
through the generated maze. These include both user and system
performance tests, as well as a user satisfaction survey.

Author Keywords
maze generation algorithms; dynamic path computing; game
development

DOI: 10.37789/ icusi.2024.11

INTRODUCTION
Ever since the beginning of the modern gaming industry in the
early 1970s, games have encapsulated significant advance- ments
in various aspects of technology, such as 3D rendering or
artificial intelligence. Those left an impact not only on the area
of computer science, but, as stated by Jakobsson and Carney [1]
also on fields such as archaeology, psychology or medicine,
where various tools have been developed to help facilitate
processes required in that line of work, like 3D mod- elling tools
for reconstruction or visualization.

Generally, games are one of the most demanding pieces of
software, both in terms of complexity and of computing re-
sources employed. Therefore, there has always been a need to
improve the efficiency of various parts of the game: from
rendering to decision making and content generation.

Conceptually, the research and development work described in
this paper started from the idea of coming up with a time and
resource efficient pseudo-random maze generation algorithm.
This was to be employed to generate content in a maze-chase
game engine, whose main elements are also briefly described in

the present paper. The game engine features several state
machines, used to orchestrate the application loop, as well as the
player and non-player character (NPC). For controlling the NPC,
the described solution relies on an accurate and effective path
finding algorithm, which was chosen based on the partic- ularities
of the selected maze generation algorithm. While we briefly
describe the workings of the game engine, throughout this paper
we will mainly focus on the maze generation and path finding
components.

In regard to maze generation, the approach commonly adopted is
to use graph theory algorithms for computing Minimum-
Spanning Trees [2], [3]. This way it chooses the shortest number
of edges needed for connecting all nodes in a graph, and, when
applied to maze generation, it would translate into a result that has
no cycles and where all nodes are within reach from each other.

Although it is a good generation method, depending on the
strategies that the algorithms are based upon, the difficulty of
solving the maze ranges from easy for a human agent and rather
difficult for an intelligent agent to easy for an intelligent agent, but
difficult for a human one [4], [3]. Because of this, one of the main
issues aimed to be solved is balancing the difficulty for all agents
involved in solving the maze.

Another issue followed is the scalability potential. As some
traditional algorithms used in maze generation were shown to have
an exponential time complexity, another question raised that seeks
to be answered is if there is a possibility of find- ing an approach
in which the dimensions of the maze will not dramatically affect
the time performance of the creation process.

The main contribution of our work was to experiment and
integrate various efficient methods of maze generation, path
finding, and rendering to create the main components of the game
engine described above. We focused on improving the maze
generation and path finding aspects of the game engine. We
validated its design by creating a maze-chase game and evaluating
the game in terms of usage of computing resources and player
satisfaction.

 In the following sections, the paper will provide an analysis on
works and solutions related to various aspects of the project, an
overview of the implementation, the experimental and

Proceedings of ICUSI 2024

- 73 -

performance testing results and final conclusions of the work.

RELATED WORKS

Maze generation
In a 2015 article published by Kozlova et al. [4], three algo-
rithms used for maze generation are described and compared
based on the visual aspect and the average path lengths of the
results. By comparing Prim, Depth-First Search (DFS) and
Recursive Division (RD) they came to the conclusion that, in
terms of maze complexity and aspect, those generated by Prim’s
algorithm are defined by recurring short corridors and those
generated through RD have longer straight passages, which
makes them easier to solve by a user with a top down view over
the mazes. Meanwhile, those generated by using DFS also have
longer passages, but because of the random nature of choosing the
expansion direction, they are also more sinuous which makes it
harder to visualise the path to the exit of the maze. The study’s
concluded that the use of DFS algorithm is advised for maze
generation as the result is de- fined by its long and winding
passages, which makes it more challenging to solve by a human
agent.

Gabrovšek [3] comes with an extension of the previous work.
This analyzes and compares three pairs of algorithms used for
MST computation, each pair based on a different strategy. These
are Wilson and Aldous Broder, both using the Random Walk
strategy, Recursive Backtracking and Hunt and Kill, both based
on DFS, and Prim and Kruskal, both greedy algorithms. These six
algorithms have been examined on three different grounds:
running time, average number of intersections and dead-ends,
and agent performance.

The study has shown that, experimentally in terms of time needed
for generating a 100x100 maze, Recursive Backtrack- ing was the
fastest algorithm, with a time of around 0.1 sec- onds, followed
by Prim and Aldous Broder, with times of around 0.25 seconds.
Meanwhile, on the opposite side of the spectrum, Kruskal and
Wilson are clearly the slowest ones, with execution times that
grew exponentially.

Taking into consideration the average number of intersections that
each resulted maze contains, by comparing them, Prim and
Kruskal take the first two places, followed relatively close by
Wilson and Aldous Broder, as the last two places are taken by
Hunt and Kill and Recursive Backtrack. Analysing them based on
their strategies, Hunt and Kill and Recursive Back- track, both
being expanded using the DFS approach, their tendencies are to
create mazes with longer passages—thus not many
intersections—than the other four. This can also be seen in the
table at Table 1, where ni represents the average number of
intersections in a generated 100x100 maze.

Another aspect featured in Figure 1 is the average number of
dead-ends—noted as nde—for each algorithm used for maze
generation. The result is similar to the previously analyzed av-
erage number of intersections. This again can be placed upon the
algorithms’ strategies, where Hunt and Kill and Recursive
Backtrack being based on DFS have a bias of creating mazes with

longer passages and, by extension, fewer and deeper dead-end
corridors.

Figure 1: Running times for the algorithms with respect to the maze
dimensions [3]

Table 1: The average number of intersections and dead ends for
each maze generation algorithm [3]

On the other hand, comparing the strategies on the cri- teria
of agent performance, the conclusions reached are that the ones
based on Random Walk—Wilson and Aldous Broder—achieved
the best results as it is hypothesised that the agents had a much
difficult time navigating their resulted mazes because of their
unbiased pathways. These are followed by Prim and Kruskal—
both using greedy approaches—that, even though after they were
adapted for pseudo-random maze generation, their passages and
dead ends are not as evenly distributed as in the previous
examples, which makes them easier to solve by an intelligent
agent.

The strategy that proved to create the easiest mazes to solve are
the ones based on DFS—Recursive Backtrack and Hunt and Kill.
For an uninformed intelligent agent, such as the ones briefly
described in this paper, the larger number of intersections means a
larger number of decisions that have to be made to continue the
navigation.

The work of Dagaev et al. [5], captures a more diverse se- lection
of maze generation algorithms besides the ones tradi- tionally
used for MST computation. Among these, one of the algorithms
mentioned—Eller—is characterised by the authors as a special one
as it doesn’t depend on having the graph read- ily available, but
rather on generating it row by row. Because of this, the complexity
of the algorithm is linear and easily scalable, and, according to
Jamis Buck [6], he describes it as ’striking a nice balance between
“long and winding” and “lots of cul-de-sacs”.’, which increases
the difficulty to navigate for both the human and the intelligent
agent.

Path finding

Beside the maze generation algorithms, Gabrovšek[
presents an evaluation on the efficiency
intelligent agents using different path finding
Random Walk, Breadth-First Search (BFS), Depth
(DFS) and Heuristic Depth-First Search (HDFS)
Manhattan Distance as the heuristic of choice. Despite them
being used as a way to further analyze the maze gen
algorithms, it also uncovers some details about their efficiency
various measured criterias. These are the average number of steps
it takes to find the optimal path, the average number of visited
intersections and the average number of visited dead
generated mazes of 100x100 cells.

According to the average number of steps
optimal path, the agent using random walk is the most
one, situated at a very large margin from
inefficient one. On the other hand, the agent
be the most efficient, followed relatively close by
comparing the agents based on the average
intersections, the one using random walk again proves
most inefficient, in contrast to the BFS agent who had the lowest
numbers of visited intersections. The BFS agent is followed by
DFS again relatively close, while Heuristic DFS is in t

As for the average number of visited dead
similar to the previous ones in the sense that Random Walk
proved to be yet again the most inefficient agent
In contrast, the BFS agent is once again proving
efficient one, being the one with the least number
ends on average, but this time DFS is following really closely, in
some scenarios—the ones where the maze was
DFS approach—was even found to have a lower numbe
visited dead-ends than BFS.

From this, it can be concluded that BFS is the most efficient
uninformed algorithm for path finding, followed closely and be
even replaceable by DFS.

An alternative for the algorithms showed in
the A* algorithm, which is the most widely used and most
efficient path finding strategy, whose result
path given that the chosen heuristic is
consistent, as stated in [7]. Despite being the
widely used algorithm, its biggest problem
high usage of process memory. For this, the
recommend various modifications for reducing the needed
memory by limiting the searchable area for
using Beam Search.

IMPLEMENTATION DETAILS
The design of the game was heavily centered
flexibility and scalability. Hence the chosen architecture is
focused mainly on modularity, where each
separated into a different subsystem, as seen in Figure
Therefore, if follows the classical structure
with three main components, the rendering component, the game
engine and the intelligent agent component, and three auxiliary

Proceedings of ICUSI 2024

- 74 -

Beside the maze generation algorithms, Gabrovšek[3] also
 and accuracy of four

finding strategies. These are
First Search (BFS), Depth-First Search

First Search (HDFS)—it uses
the heuristic of choice. Despite them

being used as a way to further analyze the maze gen- eration
algorithms, it also uncovers some details about their efficiency on

average number of steps
timal path, the average number of visited

intersections and the average number of visited dead-ends on

 needed for finding the
optimal path, the agent using random walk is the most inefficient

from the second most
agent using BFS proved to

be the most efficient, followed relatively close by DFS. When
average number of visited

intersections, the one using random walk again proves to be the
agent who had the lowest

The BFS agent is followed by
DFS again relatively close, while Heuristic DFS is in third place.

As for the average number of visited dead-ends, the results are
similar to the previous ones in the sense that Random Walk

agent for path finding.
proving to be the most
number of visited dead-

ends on average, but this time DFS is following really closely, in
the ones where the maze was generated using a

have a lower number of

From this, it can be concluded that BFS is the most efficient
uninformed algorithm for path finding, followed closely and be

in the previous work is
A* algorithm, which is the most widely used and most

result is always the optimal
is both complete and

Despite being the most efficient and
problem is represented by its

the authors of the book
recommend various modifications for reducing the needed

for the agent, such as by

centered on its long-term
Hence the chosen architecture is

each main functionality is
separated into a different subsystem, as seen in Figure 2.

structure of a video game,
with three main components, the rendering component, the game

agent component, and three auxiliary

ones, the input decoder, the game
comprised of the representative classes for the game and UI
objects.

The communication between them is
state management. This way,
after the user’s input triggers another event
game, which triggers the initialization of the lose screen
intermediary state will be processed before continuing reading the
user’s input.

For the better orchestration of the events used for state processing,
all modules are invoked in a main
aggregator and as a controller. So,
the subsystems are collected in this component, which
caters the information to the appropriate structures for further
processing.

Figure 2: The communication between the modules of the system

Maze Generation
Following the conclusions of the
previous section, the algorithm
Eller.

Instead of employing traditional algorithms used for com
the Minimum-Spanning Trees, the reasoning behind choosing
one is based on two main factors: its
more balanced results in terms of solving difficulty for both
human users and intelligent agents.

There are two possible implementations for the algorithm
starting with an empty matrix followed by building the walls step
by step, or starting with each cell sur
creating the pathways. For this project the latter was chosen so
that the generation starts with each node separated
disjoint set that will later be
component.

The pseudocode for Eller’s algorithm
is the one defined by Jamis Buck [

1. Initialize of the cells on the

2. Randomly concatenate neighboring
of the same set.

3. Initialize the nodes in the

game surface generator and the one
comprised of the representative classes for the game and UI

The communication between them is provided through flags and
 when the result of a state’s routine

after the user’s input triggers another event—such as losing the
game, which triggers the initialization of the lose screen—the
intermediary state will be processed before continuing reading the

he better orchestration of the events used for state processing,
main component, which doubles as an

controller. So, all user input and results from
the subsystems are collected in this component, which later on
caters the information to the appropriate structures for further

The communication between the modules of the system

the research work summarized in the
ithm of choice for generating the maze is

Instead of employing traditional algorithms used for com- puting
Spanning Trees, the reasoning behind choosing this

factors: its scalability potential and the
balanced results in terms of solving difficulty for both

human users and intelligent agents.

There are two possible implementations for the algorithm—
starting with an empty matrix followed by building the walls step
by step, or starting with each cell surrounded by walls and then
creating the pathways. For this project the latter was chosen so
that the generation starts with each node separated in its own

later be merged into a singular connected

algorithm used for the implementation
is the one defined by Jamis Buck [8]:

the first row in individual sets.

neighboring cells which are not part

the next row.

4. Descend by randomly concatenating the nodes in the current
row with the corresponding ones in the next row.

5. Repeat steps 2-4 until the execution reaches
the maze.

6. In the last row concatenate all neighboring nodes
not a part of the same disjoint sets.

The adaptation brought to this algorithm was to switch steps
three and four so that the result can be stored
the main component.

A maze can be illustrated as an undirected
the cells represent the nodes and the edges of
the pathways. This way the cells’ initializations can be
equivalently interpreted as the nodes’ initializations
These nodes store its coordinates in the graph/maze,
connected to, and the parent node.

As stated in the second step, the random
boring cells is performed on nodes that are
connected component. For this, the first
whether or not to unite the current node to
check the direction in which the union will
linked to the left or the right neighbor. After the direction is
chosen, it’s checked that the two nodes are not
connected, in which case the process is stopped
continues with the next node. Otherwise, the two are finally
coupled by storing their addresses in each others’ neighbors lists.

As the algorithm is based upon the generation
row, a vital step is represented by expanding
components to the next rows. This action, similarly to the
previous one, first chooses whether or not to link the current node
with the one right under it. If the answer is
process directly, as they are by definition part
sets. For guaranteeing that the result is correct, there are
cases in which it is highly important to descend
next row. These are characterised by the
current node is the last one in the row that is part
connected component. If no previous nodes decided to go down
to the next row, the current one must do so
the set further in the maze, until it’s united with another one.

After the nodes of the current row have been processed, the next
row now becomes the current row. For
addresses stored in the current row have to be updated with the
ones currently in the next row, so that new sets of nodes can be
initialized later on.

When reaching the last row, if there are more
remaining, it is its duty to make sure that the final result
constitutes a single connected component that contains all nodes
in the graph. For this, all nodes in the last row are analyzed
if the neighboring ones are part of different
them is set up so that the components

Proceedings of ICUSI 2024

- 75 -

Descend by randomly concatenating the nodes in the current
row with the corresponding ones in the next row.

reaches the last row of

In the last row concatenate all neighboring nodes that are

The adaptation brought to this algorithm was to switch steps
stored for further usage in

undirected acyclic graph, where
of the graph repre- sent

the pathways. This way the cells’ initializations can be
initializations in a graph.
graph/maze, the nodes it’s

 union with the neigh-
are not part of the same

 action after choosing
to a nearby node is to

will take place—will it be
linked to the left or the right neighbor. After the direction is

not already indi- rectly
stopped and the execution

continues with the next node. Otherwise, the two are finally
coupled by storing their addresses in each others’ neighbors lists.

generation of the result row by
expanding the connected

This action, similarly to the
previous one, first chooses whether or not to link the current node

answer is yes, it starts the
part of different disjoint
correct, there are some

descend to the node in the
 scenario in which the

current node is the last one in the row that is part of the current
nodes decided to go down

 for the continuation of
it’s united with another one.

After the nodes of the current row have been processed, the next
For that to happen, the

addresses stored in the current row have to be updated with the
new sets of nodes can be

more than one disjoint set
remaining, it is its duty to make sure that the final result
constitutes a single connected component that contains all nodes

For this, all nodes in the last row are analyzed and,
different sets, a link between

components are now merged.

Figure 3: The generated maze using Eller’s algorithm
The final result is an undirected
be translated in the traditional maze visualization, just like in
Figure 3.

Maze Validation
To make sure that the result is
a single connected component that contains all elements in the
maze, so that any two nodes can be connected through one
singular path—another process
According to Cormen et al. [9
computing the connected components is by using the Depth
Search algorithm.

Because of this, DFS has been
mented for the validation process in which, instead of count
the time when each node is visited and then pro
the number of visited nodes, that is later compared to the
number of nodes in the maze,
is neighboring a node (different from the parent node) that has
already been visited, so that the maze wil

Path finding
Generally, the clear choice for
the existing solutions would be
its effectiveness, its biggest shortcoming
usage of process memory, which
the processor in a dynamic scenario
path has to be computed after each iteration. Because of this
aspect and the fact that the resulted maze is essentially
Depth-First Search seems suited
with some slight adaptations to make it more
avoiding to recompute the entire
Given that in a tree there is a single path between any two nodes,
it means that the only existing
between those two nodes two and also between any two nodes
covered by the path. Thus, by extending this to the current maze,
it means that after computing a path the first step would be to
check if the new destination node i
case, instead of recomputing
next coordinates to the intelligent agent. If,
part of the already computed path,
should intersect the already existing one, which means that part of
the result is already computed and the only unknown part is from
the destination to the current path.
The pseudocode for the path finding algorithm is based upon the
one presented in Introduction to Algorithms
adaptations mentioned previously added to it, and can be observed
in Figure 4.

The worst case scenario for this implementation is that in which
the path from the new destination

Figure 3: The generated maze using Eller’s algorithm
undirected graph with no cycles that can then

be translated in the traditional maze visualization, just like in

is indeed correct—it is represented by
component that contains all elements in the

maze, so that any two nodes can be connected through one
process is developed for this step.

9], in case of a static graph, a way of
computing the connected components is by using the Depth-First

been chosen as the algorithm imple-
mented for the validation process in which, instead of count- ing
the time when each node is visited and then processed, it counts
the number of visited nodes, that is later compared to the total

 and checks to see if the current node
is neighboring a node (different from the parent node) that has
already been visited, so that the maze will not have cycles.

for the intelligent agent after studying
be using the A* algorithm. In spite of
shortcoming is represented by its high

which would increase the workload for
scenario just like this one, where the

path has to be computed after each iteration. Because of this
aspect and the fact that the resulted maze is essentially a tree,

suited for the task of path finding, but
with some slight adaptations to make it more time efficient, by

entire path.
Given that in a tree there is a single path between any two nodes,

existing path is already the optimal one
between those two nodes two and also between any two nodes

Thus, by extending this to the current maze,
it means that after computing a path the first step would be to
check if the new destination node is on the path or not. In that

 the path, it would just provide the
next coordinates to the intelligent agent. If, instead, the node is not

computed path, analogous, the optimal path
already existing one, which means that part of

the result is already computed and the only unknown part is from
the destination to the current path.
The pseudocode for the path finding algorithm is based upon the
one presented in Introduction to Algorithms [9], with the slight
adaptations mentioned previously added to it, and can be observed

The worst case scenario for this implementation is that in which
destination node and the existing path

intersect in the root node. In that case it would
steps as if there is no existing path stored, but with the

Figure 4: The updated DFS pseudocode

Figure 5: The worst case scenario for the current
algorithm

State orchestration
For the system to work accordingly, it has
state machine in which each state has a set
be triggered depending on the internal and

For this, several decision trees have been drawn, one for the
entire application, one for each main state, and two for the
characters—one for the player character and
player character.
When talking about the entire system, the three
found on are the menu state, the game state,

• menu state represents those moments in the execution
of which the program has one of the menus
screen. They can be either the title screen,
screen, the lose screen, or the pause
comprising of a backdrop and two buttons that make
up the menu.

Proceedings of ICUSI 2024

- 76 -

would just follow the same
steps as if there is no existing path stored, but with the extra steps

of searching the nodes in the list
This can be easily visualized in Figure
the destination, the red node is the root and the orange path is the
already existing path
.

pseudocode

current path finding

 been designed as a
 of routines that can
 external events.

or this, several decision trees have been drawn, one for the
entire application, one for each main state, and two for the

and one for the non-

three states it can be
state, and the exit state.

state represents those moments in the execution
menus as the active

be either the title screen, the win
pause screen, each

backdrop and two buttons that make

• game state is used for when the application has a
game in progress. In
used to compute the state of the main character, but it
can also trigger the pause
the program back to the
can progress to the menu
pausing, by losing or by

• exit state is triggered when the corresponding button
is pressed in the title screen.
processes needed for cleaning the allocated memory
and destroying the window before the application
stops its execution.

Going deeper, each one of them has a set of substates that
define their progress, that can be visualized in Figure

Figure 6: The state diagrams
the game (right)

When talking about the chara
with variations depending on
be seen in the flowcharts depicted in Figure

list used for storing the existing path.
can be easily visualized in Figure 5, where the green node is

the destination, the red node is the root and the orange path is the

state is used for when the application has a
 this case, the input is mostly

compute the state of the main character, but it
pause menu, which would send

the program back to the menu state. Naturally, this
menu state in three ways, by
by winning the game.

triggered when the corresponding button
is pressed in the title screen. This one starts the
processes needed for cleaning the allocated memory
and destroying the window before the application

Going deeper, each one of them has a set of substates that
define their progress, that can be visualized in Figure 6.

diagrams for the title screen (left) and for
the game (right)

characters, their states are similar, but
on their specific actions, which can

be seen in the flowcharts depicted in Figure 7.

Figure 7: The characters’ flowcharts: player (left), enemy
(right)

Display and input capture
For rendering the game elements accordingly
down manner, the engine responsible with
devel- oped using the second iteration of SDL (Simple
Directmedia Layer) library. SDL offers support
displaying the objects on the screen, but also with the
communication with the other hardware devices used for
input or output [10].

For portraying the various objects on the screen, for each of
them have been defined sprite sheets that the
can process and then display on the screen.
both have four frames that are defined, one
direction: up, down, left, right, that can be visualized

8.

Figure 8: Sprite sheets—player (top), enemy

For the maze cells, there have been drawn 15 frames, for each
combination of walls, and two additional ones for the
destination cell, one for when it is locked, and
is unlocked, which can be seen in Figure 9.
So, additionally to the rendering engine the input decoder has
also been developed with the help of the library for its
keyboard support.

Figure 9: Destination cell’s frames—left: locked, right: un
locked

TESTING AND VALIDATION

Experimental Testing
The game has been tested on a number of
playing 5 rounds after the warm-up ones used to understand
the controls and the pacing of the game. Each
part of the 22-25 age group, with and without
gaming experience.

For each of them we computed the win to lose ratio, the
average time spent in a game round, and
spent in a winning round. The statistics have shown that for
inexperienced players the average time spent
than for the ones with previous gaming experience, but the
difference is relatively small, the longest time being 24.83

Proceedings of ICUSI 2024

- 77 -

igure 7: The characters’ flowcharts: player (left), enemy

accordingly in a 2D top-
with this task has been

oped using the second iteration of SDL (Simple
support not only for

the objects on the screen, but also with the
communication with the other hardware devices used for

For portraying the various objects on the screen, for each of
the rendering engine

can process and then display on the screen. The characters
 for each navigation
visualized in Figure

enemy (bottom)

For the maze cells, there have been drawn 15 frames, for each
combination of walls, and two additional ones for the

and one for when it
.

So, additionally to the rendering engine the input decoder has
also been developed with the help of the library for its

left: locked, right: un-

 8 participants, each
up ones used to understand

Each player chosen is
without video previous

For each of them we computed the win to lose ratio, the
and the average time

spent in a winning round. The statistics have shown that for
spent in game is higher

than for the ones with previous gaming experience, but the
difference is relatively small, the longest time being 24.83

seconds, followed in second
fastest time being 12.87 seconds. More
Table 2.

No. Avg. time
<s>

Avg.
(Win)

1 24.83 27.46
2 13.44 19.4
3 13.29 14.83
4 17.82 17.82
5 16.07 24.45
6 13.45 18.1
7 12.87 13.17
8 14.19 16.29

Table 2: Players’ statistics after
application

Another aspect that can be observed from this table is the
difference between the average
and the average time overall.
shorter losing rounds, courtesy of the enemy catching the
player’s character during the
it has time to navigate through the maze properly.
average longest registered times for winning rounds is 27.46
seconds and the shortest 13.17 seconds.
esting to see is that, beside the longest time being acquired by
an inexperienced user, the shortest registered time by an
inexperienced user is 18.1 seconds, w
the times obtained by the more experienced users.

Regarding the win to lose ratio, the
all users, where the majority obtained a 3/2 ratio (3 partici
pants), and four obtaining a 4/1 ratio.
that the game is balanced, as it has a medium to easy diffi
culty, and it’s easy to understand
and newcomers.

In terms of player satisfaction,
asked to rate the game based on seven criteria, ranging fro
the aspect of the menu and of the game, to the menu
navigation and control of the character, to the maze’s and
enemy’s dif- ficulty and to the user’s experience overall.
consensus has been that the participants were pleased with the
aspect of the application and the
of the maze and the enemy,
difficulty. Overall, all players
the gaming experience. Their
improved centered around the player
integrating the timers in the window so that the player can
properly see when they can use
increasing the competitiveness
scoring system and a hall of
see who has the highest scores.

Performance testing
For the purpose of performance testing, the application had
been tested on a Lenovo laptop with the following

in second place by 17.82 seconds, and the
seconds. More details can be seen in

Avg. time
(Win) <s>

W/L
ratio

Gaming
experience

27.46 3/2 No
19.4 3/2 Yes
14.83 4/1 Yes
17.82 5/0 Yes
24.45 4/1 No
18.1 3/2 No
13.17 4/1 Yes
16.29 4/1 Yes

after the experimental testing of the
application

Another aspect that can be observed from this table is the
average time spent in winning rounds

average time overall. This can be explained by the
shorter losing rounds, courtesy of the enemy catching the

the beginning of the rounds, before
it has time to navigate through the maze properly. Here the

d times for winning rounds is 27.46
seconds and the shortest 13.17 seconds. What is also inter-
esting to see is that, beside the longest time being acquired by
an inexperienced user, the shortest registered time by an
inexperienced user is 18.1 seconds, which is comparable to
the times obtained by the more experienced users.

ratio, the results are similar among
all users, where the majority obtained a 3/2 ratio (3 partici-
pants), and four obtaining a 4/1 ratio. The outcome shows
that the game is balanced, as it has a medium to easy diffi-

understand both by seasoned players

satisfaction, each participant has been
asked to rate the game based on seven criteria, ranging from
the aspect of the menu and of the game, to the menu
navigation and control of the character, to the maze’s and

ficulty and to the user’s experience overall. The
consensus has been that the participants were pleased with the

and the game’s controls. In terms
enemy, they rated them at a medium
players claimed they were satisfied by

Their feedback on what can be
centered around the player experience, by

integrating the timers in the window so that the player can
properly see when they can use an ability again, and

competitiveness of the game by introducing a
of fame view in which the users can

who has the highest scores.

For the purpose of performance testing, the application had
been tested on a Lenovo laptop with the following

Proceedings of ICUSI 2024

- 78 -

specifications:
• Intel Core i7 2.30 GHz CPU
• 32GB RAM memory
• NVIDIA GeForce RTX 3050 GPU.
• Windows 11 OS

Maze generator
For measuring the performance of the implemented maze
generation algorithm, the process has been called to create a
100x100 cells maze, similarly to the algorithms included in
the analysis contained in [3].

Figure 10: Top 5 performing algorithms for generating a
100x100 maze

By analyzing the profiler, after the call of the function at
8.437, the task was in execution until 8.563, which meant that
the algorithm’s implementation needed 0.125 seconds to
generate the result. Comparing this result to the ones in Fig. 1
(encompassed in Fig. 10), this time places Eller’s algorithm
in the second place behind Recursive Backtrack—who has a
time of around 0.1 seconds—and ahead of Prim and Aldous
Broder—both with times over 0.2 seconds.

System’s performance
For measuring system’s performance, the process memory
needed during the running of the application has been
followed in the profiler. For covering all bases, the test
consisted of opening the application, playing a full game
round, reaching the end title card, starting another game,
pausing, resuming the game, then pausing again and exiting
the game from the pause menu, then closing the application
from the title screen.
For this analysis, 8 snapshots have been taken in various mo-
ments of the execution of the program:

1. Opening the application, in the title screen, the
process memory reached and stayed at 183 MB.

2. During the first game round, when in the beginning it
was observed a spike in the process memory, jumping
from 183 to 208 MB, then decreasing and staying at
202 MB. The spike could have been caused by the
initialization routines of the game, with the
generation of the game surface and resetting the
game objects. Once those routines ended, the
memory evened at 202 MB during the entire game.

3. When the game reached the end state and the
winning title card was initialised, the process memory
decreased again to 183-184 MB.

4. When starting the second round another spike in the
mem- ory could be seen at 208 MB, then followed
again by the decrease and stabilization at 202 MB.

5. Opening the pause menu, when a spike to 210 MB
was registered followed by the return and
stabilization at 202 MB.

6. Closing the pause menu and resuming the game,
when after a hiccup to 205 MB it returned to 202
MB.

7. During the second opening of the game menu, when
nothing changed in terms of process memory.

8. Going back to the title screen, when after a spike to
210 MB it immediately decreases to 184 MB.

When exiting the program it’s captured a constant decrease
that reaches 173 MB when the profiler stops running.
This shows that, in terms of performance, the allocations and
deallocations are done accordingly, with little to no residual
allocated memory remaining and no leaks registered during
the execution of the program.

CONCLUSIONS
The research and development work presented within this
paper focused on identifying and implementing time and
resource-efficient pseudo-random maze generation and path
finding methods to be used as key components for a game
engine meant to facilitate the development of maze-chase type
games. We explored various maze generation and path finding
methodologies to enhance the gameplay experience for both
human players and intelligent agents.

We selected Eller’s algorithm for maze generation due to its
scalability and balanced difficulty. This proved to be highly
competitive when compared to the traditional methods for
computing MST, by also generating a result that balances the
long and winding roads with the larger number of
intersections, making it more challenging for both human and
intelligent agents, results that can be seen in the section
focused on Testing.

While A* is widely regarded as the most efficient path find-
ing strategy, its high memory usage posed a challenge in our
dynamic scenario. Therefore, for path finding through the
resulted maze, we adapted Depth-First Search to leverage pre-
viously computed paths, reducing the need for re-
computation.
With these maze generation and path finding components as
the basis, we described a game engine that can be used for
maze-chase game development, which we piloted it by devel-
oping a game and testing it for user and system performance,
as well as user satisfaction.

As for future improvements, there are two main concerns: the
algorithmic nature of the project and the potential game engine
developments.

For the former, these improvements are related to the further

Proceedings of ICUSI 2024

- 79 -

optimization of the used algorithms—treating the resource
efficiency problem in the worst case scenario for the enhanced
DFS implementation, and reducing the process time for maze
generation by using multithreading.

Acknowledgment
This work was supported by the project AITECH - “Excellence
research in the field of artificial intelligence and big data”,
38PFE/2021.

REFERENCES
[1] M. Jakobsson and L. Carney, “Games innovation:

The role of games in societal innovation,” 2023.
[Online]. Available:
https://gamelab.mit.edu/research/games-
innovation/

[2] B. Courtehoute and D. Plump, “A fast graph program
for computing minimum spanning trees,” arXiv
preprint arXiv:2012.02193, 2020. [Online].
Available: https://arxiv.org/abs/2012.02193

[3] P. Gabrovšek, “Analysis of maze generating
algorithms,” IPSI Transactions on Internet
Research, vol. 15, pp. 23–30, Jan 2019.

[4] A. Kozlova, J. Brown, and E. Reading,
“Examination of representational expression in
maze generation algorithms,” in IEEE Conference
on Computational Intelligence and Games.

IEEE, Aug 2015.

[5] A. Dagaev, A. Sorokin, R. Kovalenko, and E.
Yakovleva, “Mazes creation for further study of
swarm intelligence,” IOP Conference Series:
Materials Science and Engineering, vol. 919, p.
052058, Sep 2020.

[6] J. Buck, “Maze generation: Algorithm recap,” Feb
2011. [Online]. Available:
https://weblog.jamisbuck.org/2011/ 2/7/maze-
generation-algorithm-recap

[7] S. J. Russell and P. Norvig, Artificial
Intelligence: a modern approach, 4th ed.
Pearson, 2021.

[8] J. Buck, “Maze generation: Eller’s algorithm,”
Dec 2010. [Online]. Available:
https://weblog.jamisbuck.org/ 2010/12/29/maze-
generation-eller-s-algorithm.html

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms ed. 3.
Cambridge, Massachusetts: MIT Press, 2009.

[10] S. D. Layer, “Simple directmedia layer -
homepage,” 2024. [Online]. Available:
https://www.libsdl.org/

