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ABSTRACT 

This paper describes a solution for generating pseudo-random 
mazes to act as environments for a puzzle-type game that 
requires the player to make decisions while being chased by one 
or more opponents. We focused on developing a flexible and 
scalable solution, aiming to minimize the time required for the 
generation process. Throughout the paper, we will describe the 
inner workings of the proposed solution, while focusing on the 
optimization of the maze generation and path finding aspects. We 
also approach the problem from the perspective of path finding, 
which is relevant for the implementation of the intelligent agent 
chasing the player. Finally, we present the findings of a set of 
tests done on the described solution, which was utilized in the 
implementation of a maze-chase game, featuring NPC navigation 
through the generated maze. These include both user and system 
performance tests, as well as a user satisfaction survey. 
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INTRODUCTION 
Ever since the beginning of the modern gaming industry in the 
early 1970s, games have encapsulated significant advance- ments 
in various aspects of technology, such as 3D rendering or 
artificial intelligence. Those left an impact not only on the area 
of computer science, but, as stated by Jakobsson and Carney [1] 
also on fields such as archaeology, psychology or medicine, 
where various tools have been developed to help facilitate 
processes required in that line of work, like 3D mod- elling tools 
for reconstruction or visualization. 
 
Generally, games are one of the most demanding pieces of 
software, both in terms of complexity and of computing re- 
sources employed. Therefore, there has always been a need to 
improve the efficiency of various parts of the game: from 
rendering to decision making and content generation. 
 
Conceptually, the research and development work described in 
this paper started from the idea of coming up with a time and 
resource efficient pseudo-random maze generation algorithm. 
This was to be employed to generate content in a maze-chase 
game engine, whose main elements are also briefly described in 

the present paper. The game engine features several state 
machines, used to orchestrate the application loop, as well as the 
player and non-player character (NPC). For controlling the NPC, 
the described solution relies on an accurate and effective path 
finding algorithm, which was chosen based on the partic- ularities 
of the selected maze generation algorithm. While we briefly 
describe the workings of the game engine, throughout this paper 
we will mainly focus on the maze generation and path finding 
components. 
 
In regard to maze generation, the approach commonly adopted is 
to use graph theory algorithms for computing Minimum- 
Spanning Trees [2], [3]. This way it chooses the shortest number 
of edges needed for connecting all nodes in a graph, and, when 
applied to maze generation, it would translate into a result that has 
no cycles and where all nodes are within reach from each other. 
 
Although it is a good generation method, depending on the 
strategies that the algorithms are based upon, the difficulty of 
solving the maze ranges from easy for a human agent and rather 
difficult for an intelligent agent to easy for an intelligent agent, but 
difficult for a human one [4], [3]. Because of this, one of the main 
issues aimed to be solved is balancing the difficulty for all agents 
involved in solving the maze. 
 
Another issue followed is the scalability potential. As some 
traditional algorithms used in maze generation were shown to have 
an exponential time complexity, another question raised that seeks 
to be answered is if there is a possibility of find- ing an approach 
in which the dimensions of the maze will not dramatically affect 
the time performance of the creation process. 
 
The main contribution of our work was to experiment and 
integrate various efficient methods of maze generation, path 
finding, and rendering to create the main components of the game 
engine described above. We focused on improving the maze 
generation and path finding aspects of the game engine. We 
validated its design by creating a maze-chase game and evaluating 
the game in terms of usage of computing resources and player 
satisfaction. 
 
 In the following sections, the paper will provide an analysis on 
works and solutions related to various aspects of the project, an 
overview of the implementation, the experimental and 
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performance testing results and final conclusions of the work. 

RELATED WORKS 

Maze generation 
In a 2015 article published by Kozlova et al. [4], three algo- 
rithms used for maze generation are described and compared 
based on the visual aspect and the average path lengths of the 
results. By comparing Prim, Depth-First Search (DFS) and 
Recursive Division (RD) they came to the conclusion that, in 
terms of maze complexity and aspect, those generated by Prim’s 
algorithm are defined by recurring short corridors and those 
generated through RD have longer straight passages, which 
makes them easier to solve by a user with a top down view over 
the mazes. Meanwhile, those generated by using DFS also have 
longer passages, but because of the random nature of choosing the 
expansion direction, they are also more sinuous which makes it 
harder to visualise the path to the exit of the maze. The study’s 
concluded that the use of DFS algorithm is advised for maze 
generation as the result is de- fined by its long and winding 
passages, which makes it more challenging to solve by a human 
agent. 
 
Gabrovšek [3] comes with an extension of the previous work. 
This analyzes and compares three pairs of algorithms used for 
MST computation, each pair based on a different strategy. These 
are Wilson and Aldous Broder, both using the Random Walk 
strategy, Recursive Backtracking and Hunt and Kill, both based 
on DFS, and Prim and Kruskal, both greedy algorithms. These six 
algorithms have been examined on three different grounds: 
running time, average number of intersections and dead-ends, 
and agent performance. 
 
The study has shown that, experimentally in terms of time needed 
for generating a 100x100 maze, Recursive Backtrack- ing was the 
fastest algorithm, with a time of around 0.1 sec- onds, followed 
by Prim and Aldous Broder, with times of around 0.25 seconds. 
Meanwhile, on the opposite side of the spectrum, Kruskal and 
Wilson are clearly the slowest ones, with execution times that 
grew exponentially. 
 
Taking into consideration the average number of intersections that 
each resulted maze contains, by comparing them, Prim and 
Kruskal take the first two places, followed relatively close by 
Wilson and Aldous Broder, as the last two places are taken by 
Hunt and Kill and Recursive Backtrack. Analysing them based on 
their strategies, Hunt and Kill and Recursive Back- track, both 
being expanded using the DFS approach, their tendencies are to 
create mazes with longer passages—thus not many 
intersections—than the other four. This can also be seen in the 
table at Table 1, where ni represents the average number of 
intersections in a generated 100x100 maze. 
 
Another aspect featured in Figure 1 is the average number of 
dead-ends—noted as nde—for each algorithm used for maze 
generation. The result is similar to the previously analyzed av- 
erage number of intersections. This again can be placed upon the 
algorithms’ strategies, where Hunt and Kill and Recursive 
Backtrack being based on DFS have a bias of creating mazes with 

longer passages and, by extension, fewer and deeper dead-end 
corridors. 

 

Figure 1: Running times for the algorithms with respect to the maze 
dimensions [3] 

Table 1: The average number of intersections and dead ends for 
each maze generation algorithm [3] 

On the other hand, comparing the strategies on the cri- teria 
of agent performance, the conclusions reached are that the ones 
based on Random Walk—Wilson and Aldous Broder—achieved 
the best results as it is hypothesised that the agents had a much 
difficult time navigating their resulted mazes because of their 
unbiased pathways. These are followed by Prim and Kruskal—
both using greedy approaches—that, even though after they were 
adapted for pseudo-random maze generation, their passages and 
dead ends are not as evenly distributed as in the previous 
examples, which makes them easier to solve by an intelligent 
agent. 
 
The strategy that proved to create the easiest mazes to solve are 
the ones based on DFS—Recursive Backtrack and Hunt and Kill. 
For an uninformed intelligent agent, such as the ones briefly 
described in this paper, the larger number of intersections means a 
larger number of decisions that have to be made to continue the 
navigation. 
 
The work of Dagaev et al. [5], captures a more diverse se- lection 
of maze generation algorithms besides the ones tradi- tionally 
used for MST computation. Among these, one of the algorithms 
mentioned—Eller—is characterised by the authors as a special one 
as it doesn’t depend on having the graph read- ily available, but 
rather on generating it row by row. Because of this, the complexity 
of the algorithm is linear and easily scalable, and, according to 
Jamis Buck [6], he describes it as ’striking a nice balance between 
“long and winding” and “lots of cul-de-sacs”.’, which increases 
the difficulty to navigate for both the human and the intelligent 
agent. 

Path finding 



 

 

Beside the maze generation algorithms, Gabrovšek[
presents an evaluation on the efficiency 
intelligent agents using different path finding
Random Walk, Breadth-First Search (BFS), Depth
(DFS) and Heuristic Depth-First Search (HDFS)
Manhattan Distance as the heuristic of choice. Despite them 
being used as a way to further analyze the maze gen
algorithms, it also uncovers some details about their efficiency
various measured criterias. These are the average number of steps 
it takes to find the optimal path, the average number of visited 
intersections and the average number of visited dead
generated mazes of 100x100 cells. 
 
According to the average number of steps 
optimal path, the agent using random walk is the most
one, situated at a very large margin from
inefficient one. On the other hand, the agent
be the most efficient, followed relatively close by 
comparing the agents based on the average
intersections, the one using random walk again proves
most inefficient, in contrast to the BFS agent who had the lowest 
numbers of visited intersections. The BFS agent is followed by 
DFS again relatively close, while Heuristic DFS is in t
 
As for the average number of visited dead
similar to the previous ones in the sense that Random Walk
proved to be yet again the most inefficient agent
In contrast, the BFS agent is once again proving
efficient one, being the one with the least number
ends on average, but this time DFS is following really closely, in 
some scenarios—the ones where the maze was
DFS approach—was even found to have a lower numbe
visited dead-ends than BFS. 
 
From this, it can be concluded that BFS is the most efficient 
uninformed algorithm for path finding, followed closely and be 
even replaceable by DFS. 
 
An alternative for the algorithms showed in
the A* algorithm, which is the most widely used and most 
efficient path finding strategy, whose result
path given that the chosen heuristic is
consistent, as stated in [7]. Despite being the 
widely used algorithm, its biggest problem
high usage of process memory. For this, the
recommend various modifications for reducing the needed
memory by limiting the searchable area for
using Beam Search. 
 

IMPLEMENTATION DETAILS 
The design of the game was heavily centered
flexibility and scalability. Hence the chosen architecture is 
focused mainly on modularity, where each
separated into a different subsystem, as seen in Figure 
Therefore, if follows the classical structure
with three main components, the rendering component, the game 
engine and the intelligent agent component, and three auxiliary
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Beside the maze generation algorithms, Gabrovšek[3] also 
 and accuracy of four 

finding strategies. These are 
First Search (BFS), Depth-First Search 

First Search (HDFS)—it uses 
the heuristic of choice. Despite them 

being used as a way to further analyze the maze gen- eration 
algorithms, it also uncovers some details about their efficiency on 

average number of steps 
timal path, the average number of visited 

intersections and the average number of visited dead-ends on 

 needed for finding the 
optimal path, the agent using random walk is the most inefficient 

from the second most 
agent using BFS proved to 

be the most efficient, followed relatively close by DFS. When 
average number of visited 

intersections, the one using random walk again proves to be the 
agent who had the lowest 

The BFS agent is followed by 
DFS again relatively close, while Heuristic DFS is in third place. 

As for the average number of visited dead-ends, the results are 
similar to the previous ones in the sense that Random Walk 

agent for path finding. 
proving to be the most 
number of visited dead-

ends on average, but this time DFS is following really closely, in 
the ones where the maze was generated using a 

have a lower number of  

From this, it can be concluded that BFS is the most efficient 
uninformed algorithm for path finding, followed closely and be 

in the previous work is 
A* algorithm, which is the most widely used and most 

result is always the optimal 
is both complete and 

Despite being the most efficient and 
problem is represented by its 

the authors of the book 
recommend various modifications for reducing the needed 

for the agent, such as by 

centered on its long-term 
Hence the chosen architecture is 

each main functionality is 
separated into a different subsystem, as seen in Figure 2. 

structure of a video game, 
with three main components, the rendering component, the game 

agent component, and three auxiliary 

ones, the input decoder, the game
comprised of the representative classes for the game and UI 
objects. 
 
The communication between them is
state management. This way, 
after the user’s input triggers another event
game, which triggers the initialization of the lose screen
intermediary state will be processed before continuing reading the 
user’s input. 
 
For the better orchestration of the events used for state processing,
all modules are invoked in a main
aggregator and as a controller. So,
the subsystems are collected in this component, which 
caters the information to the appropriate structures for further 
processing. 

Figure 2: The communication between the modules of the system

Maze Generation 
Following the conclusions of the
previous section, the algorithm
Eller. 
 
Instead of employing traditional algorithms used for com
the Minimum-Spanning Trees, the reasoning behind choosing
one is based on two main factors: its
more balanced results in terms of solving difficulty for both 
human users and intelligent agents.
 
There are two possible implementations for the algorithm
starting with an empty matrix followed by building the walls step 
by step, or starting with each cell sur
creating the pathways. For this project the latter was chosen so 
that the generation starts with each node separated
disjoint set that will later be
component. 
 
The pseudocode for Eller’s algorithm
is the one defined by Jamis Buck [

1. Initialize of the cells on the

2. Randomly concatenate neighboring
of the same set. 

3. Initialize the nodes in the

game surface generator and the one 
comprised of the representative classes for the game and UI 

The communication between them is provided through flags and 
 when the result of a state’s routine 

after the user’s input triggers another event—such as losing the 
game, which triggers the initialization of the lose screen—the 
intermediary state will be processed before continuing reading the 

he better orchestration of the events used for state processing, 
main component, which doubles as an 

controller. So, all user input and results from 
the subsystems are collected in this component, which later on 
caters the information to the appropriate structures for further 

The communication between the modules of the system 

the research work summarized in the 
ithm of choice for generating the maze is 

Instead of employing traditional algorithms used for com- puting 
Spanning Trees, the reasoning behind choosing this 

factors: its scalability potential and the 
balanced results in terms of solving difficulty for both 

human users and intelligent agents. 

There are two possible implementations for the algorithm—
starting with an empty matrix followed by building the walls step 
by step, or starting with each cell surrounded by walls and then 
creating the pathways. For this project the latter was chosen so 
that the generation starts with each node separated in its own 

later be merged into a singular connected 

algorithm used for the implementation 
is the one defined by Jamis Buck [8]: 

the first row in individual sets. 

neighboring cells which are not part 

the next row. 



 

 

4. Descend by randomly concatenating the nodes in the current 
row with the corresponding ones in the next row.

5. Repeat steps 2-4 until the execution reaches
the maze. 

6. In the last row concatenate all neighboring nodes
not a part of the same disjoint sets. 

 
The adaptation brought to this algorithm was to switch steps 
three and four so that the result can be stored
the main component. 
 
A maze can be illustrated as an undirected
the cells represent the nodes and the edges of
the pathways. This way the cells’ initializations can be 
equivalently interpreted as the nodes’ initializations
These nodes store its coordinates in the graph/maze,
connected to, and the parent node. 
 
As stated in the second step, the random 
boring cells is performed on nodes that are
connected component. For this, the first 
whether or not to unite the current node to
check the direction in which the union will
linked to the left or the right neighbor. After the direction is
chosen, it’s checked that the two nodes are not
connected, in which case the process is stopped
continues with the next node. Otherwise, the two are finally 
coupled by storing their addresses in each others’ neighbors lists.
 
As the algorithm is based upon the generation
row, a vital step is represented by expanding
components to the next rows. This action, similarly to the 
previous one, first chooses whether or not to link the current node
with the one right under it. If the answer is
process directly, as they are by definition part
sets. For guaranteeing that the result is correct, there are
cases in which it is highly important to descend
next row. These are characterised by the 
current node is the last one in the row that is part
connected component. If no previous nodes decided to go down 
to the next row, the current one must do so 
the set further in the maze, until it’s united with another one.
 
After the nodes of the current row have been processed, the next
row now becomes the current row. For
addresses stored in the current row have to be updated with the 
ones currently in the next row, so that new sets of nodes can be 
initialized later on. 
 
When reaching the last row, if there are more
remaining, it is its duty to make sure that the final result 
constitutes a single connected component that contains all nodes 
in the graph. For this, all nodes in the last row are analyzed
if the neighboring ones are part of different
them is set up so that the components

Proceedings of ICUSI 2024 

- 75 - 

Descend by randomly concatenating the nodes in the current 
row with the corresponding ones in the next row. 

reaches the last row of 

In the last row concatenate all neighboring nodes that are 

The adaptation brought to this algorithm was to switch steps 
stored for further usage in 

undirected acyclic graph, where 
of the graph repre- sent 

the pathways. This way the cells’ initializations can be 
initializations in a graph. 
graph/maze, the nodes it’s 

 union with the neigh- 
are not part of the same 

 action after choosing 
to a nearby node is to 

will take place—will it be 
linked to the left or the right neighbor. After the direction is 

not already indi- rectly 
stopped and the execution 

continues with the next node. Otherwise, the two are finally 
coupled by storing their addresses in each others’ neighbors lists. 

generation of the result row by 
expanding the connected 

This action, similarly to the 
previous one, first chooses whether or not to link the current node 

answer is yes, it starts the 
part of different disjoint 
correct, there are some 

descend to the node in the 
 scenario in which the 

current node is the last one in the row that is part of the current 
nodes decided to go down 

 for the continuation of 
it’s united with another one. 

After the nodes of the current row have been processed, the next 
For that to happen, the 

addresses stored in the current row have to be updated with the 
new sets of nodes can be 

more than one disjoint set 
remaining, it is its duty to make sure that the final result 
constitutes a single connected component that contains all nodes 

For this, all nodes in the last row are analyzed and, 
different sets, a link between 

components are now merged.

Figure 3: The generated maze using Eller’s algorithm
The final result is an undirected
be translated in the traditional maze visualization, just like in 
Figure 3. 
 

Maze Validation 
To make sure that the result is
a single connected component that contains all elements in the 
maze, so that any two nodes can be connected through one
singular path—another process
According to Cormen et al. [9
computing the connected components is by using the Depth
Search algorithm. 
 
Because of this, DFS has been
mented for the validation process in which, instead of count
the time when each node is visited and then pro
the number of visited nodes, that is later compared to the
number of nodes in the maze, 
is neighboring a node (different from the parent node) that has 
already been visited, so that the maze wil
 

Path finding 
Generally, the clear choice for
the existing solutions would be
its effectiveness, its biggest shortcoming
usage of process memory, which
the processor in a dynamic scenario
path has to be computed after each iteration. Because of this 
aspect and the fact that the resulted maze is essentially
Depth-First Search seems suited
with some slight adaptations to make it more
avoiding to recompute the entire
Given that in a tree there is a single path between any two nodes,
it means that the only existing
between those two nodes two and also between any two nodes 
covered by the path. Thus, by extending this to the current maze, 
it means that after computing a path the first step would be to 
check if the new destination node i
case, instead of recomputing 
next coordinates to the intelligent agent. If,
part of the already computed path,
should intersect the already existing one, which means that part of 
the result is already computed and the only unknown part is from 
the destination to the current path.
The pseudocode for the path finding algorithm is based upon the 
one presented in Introduction to Algorithms
adaptations mentioned previously added to it, and can be observed 
in Figure 4. 
 
The worst case scenario for this implementation is that in which
the path from the new destination

Figure 3: The generated maze using Eller’s algorithm 
undirected graph with no cycles that can then 

be translated in the traditional maze visualization, just like in 

is indeed correct—it is represented by 
component that contains all elements in the 

maze, so that any two nodes can be connected through one 
process is developed for this step. 

9], in case of a static graph, a way of 
computing the connected components is by using the Depth-First 

been chosen as the algorithm imple- 
mented for the validation process in which, instead of count- ing 
the time when each node is visited and then processed, it counts 
the number of visited nodes, that is later compared to the total 

 and checks to see if the current node 
is neighboring a node (different from the parent node) that has 
already been visited, so that the maze will not have cycles. 

for the intelligent agent after studying 
be using the A* algorithm. In spite of 
shortcoming is represented by its high 

which would increase the workload for 
scenario just like this one, where the 

path has to be computed after each iteration. Because of this 
aspect and the fact that the resulted maze is essentially a tree, 

suited for the task of path finding, but 
with some slight adaptations to make it more time efficient, by 

entire path. 
Given that in a tree there is a single path between any two nodes, 

existing path is already the optimal one 
between those two nodes two and also between any two nodes 

Thus, by extending this to the current maze, 
it means that after computing a path the first step would be to 
check if the new destination node is on the path or not. In that 

 the path, it would just provide the 
next coordinates to the intelligent agent. If, instead, the node is not 

computed path, analogous, the optimal path 
already existing one, which means that part of 

the result is already computed and the only unknown part is from 
the destination to the current path. 
The pseudocode for the path finding algorithm is based upon the 
one presented in Introduction to Algorithms [9], with the  slight 
adaptations mentioned previously added to it, and can be observed 

The worst case scenario for this implementation is that in which 
destination node and the existing path 



 

 

intersect in the root node. In that case it would
steps as if there is no existing path stored, but with the

Figure 4: The updated DFS pseudocode

 

Figure 5: The worst case scenario for the current
algorithm 

State orchestration 
For the system to work accordingly, it has 
state machine in which each state has a set 
be triggered depending on the internal and 
 
For this, several decision trees have been drawn, one for the 
entire application, one for each main state, and two for the 
characters—one for the player character and
player character. 
When talking about the entire system, the three
found on are the menu state, the game state,

•  menu state represents those moments in the execution 
of which the program has one of the menus
screen. They can be either the title screen,
screen, the lose screen, or the pause
comprising of a backdrop and two buttons that make 
up the menu. 
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would just follow the same 
steps as if there is no existing path stored, but with the extra steps 

of searching the nodes in the list
This can be easily visualized in Figure 
the destination, the red node is the root and the orange path is the 
already existing path 
.

pseudocode 

current path finding 

 been designed as a 
 of routines that can 
 external events. 

or this, several decision trees have been drawn, one for the 
entire application, one for each main state, and two for the 

and one for the non- 

three states it can be 
state, and the exit state. 

state represents those moments in the execution 
menus as the active 

be either the title screen, the win 
pause screen, each 

backdrop and two buttons that make 

• game state is used for when the application has a 
game in progress. In 
used to compute the state of the main character, but it 
can also trigger the pause 
the program back to the 
can progress to the menu
pausing, by losing or by

• exit state is triggered when the corresponding button 
is pressed in the title screen.
processes needed for cleaning the allocated memory 
and destroying the window before the application 
stops its execution. 

Going deeper, each one of them has a set of substates that 
define their progress, that can be visualized in Figure 

Figure 6: The state diagrams
the game (right)

When talking about the chara
with variations depending on
be seen in the flowcharts depicted in Figure 
 

list used for storing the existing path. 
can be easily visualized in Figure 5, where the green node is 

the destination, the red node is the root and the orange path is the 

state is used for when the application has a 
 this case, the input is mostly 

compute the state of the main character, but it 
pause menu, which would send 

the program back to the menu state. Naturally, this 
menu state in three ways, by 
by winning the game. 

triggered when the corresponding button 
is pressed in the title screen. This one starts the 
processes needed for cleaning the allocated memory 
and destroying the window before the application 

Going deeper, each one of them has a set of substates that 
define their progress, that can be visualized in Figure 6. 

diagrams for the title screen (left) and for 
the game (right) 

characters, their states are similar, but 
on their specific actions, which can 

be seen in the flowcharts depicted in Figure 7. 



 

 

Figure 7: The characters’ flowcharts: player (left), enemy 
(right) 

Display and input capture 
For rendering the game elements accordingly
down manner, the engine responsible with
devel- oped using the second iteration of SDL (Simple 
Directmedia Layer) library. SDL offers support
displaying the objects on the screen, but also with the 
communication with the other hardware devices used for 
input or output [10]. 
 
For portraying the various objects on the screen, for each of 
them have been defined sprite sheets that the
can process and then display on the screen.
both have four frames that are defined, one 
direction: up, down, left, right, that can be visualized

8. 

Figure 8: Sprite sheets—player (top), enemy

For the maze cells, there have been drawn 15 frames, for each 
combination of walls, and two additional ones for the 
destination cell, one for when it is locked, and
is unlocked, which can be seen in Figure 9.
So, additionally to the rendering engine the input decoder has 
also been developed with the help of the library for its 
keyboard support. 

 

Figure 9: Destination cell’s frames—left: locked, right: un
locked 

TESTING AND VALIDATION 

Experimental Testing 
The game has been tested on a number of 
playing 5 rounds after the warm-up ones used to understand 
the controls and the pacing of the game. Each
part of the 22-25 age group, with and without
gaming experience. 
 
For each of them we computed the win to lose ratio, the 
average time spent in a game round, and
spent in a winning round. The statistics have shown that for 
inexperienced players the average time spent
than for the ones with previous gaming experience, but the 
difference is relatively small, the longest time being 24.83 
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igure 7: The characters’ flowcharts: player (left), enemy 

accordingly in a 2D top-
with this task has been 

oped using the second iteration of SDL (Simple 
support not only for 

the objects on the screen, but also with the 
communication with the other hardware devices used for 

For portraying the various objects on the screen, for each of 
the rendering engine 

can process and then display on the screen. The characters 
 for each navigation 
visualized in Figure 

enemy (bottom) 

For the maze cells, there have been drawn 15 frames, for each 
combination of walls, and two additional ones for the 

and one for when it 
. 

So, additionally to the rendering engine the input decoder has 
also been developed with the help of the library for its 

left: locked, right: un- 

 8 participants, each 
up ones used to understand 

Each player chosen is 
without video previous 

For each of them we computed the win to lose ratio, the 
and the average time 

spent in a winning round. The statistics have shown that for 
spent in game is higher 

than for the ones with previous gaming experience, but the 
difference is relatively small, the longest time being 24.83 

seconds, followed in second
fastest time being 12.87 seconds. More
Table 2. 
 

No. Avg. time 
<s> 

Avg.
(Win)

1 24.83 27.46
2 13.44 19.4
3 13.29 14.83
4 17.82 17.82
5 16.07 24.45
6 13.45 18.1
7 12.87 13.17
8 14.19 16.29

Table 2: Players’ statistics after
application

Another aspect that can be observed from this table is the 
difference between the average
and the average time overall.
shorter losing rounds, courtesy of the enemy catching the 
player’s character during the
it has time to navigate through the maze properly.
average longest registered times for winning rounds is 27.46 
seconds and the shortest 13.17 seconds.
esting to see is that, beside the longest time being acquired by 
an inexperienced user, the shortest registered time by an 
inexperienced user is 18.1 seconds, w
the times obtained by the more experienced users.
 
Regarding the win to lose ratio, the
all users, where the majority obtained a 3/2 ratio (3 partici
pants), and four obtaining a 4/1 ratio.
that the game is balanced, as it has a medium to easy diffi
culty, and it’s easy to understand
and newcomers. 
 
In terms of player satisfaction,
asked to rate the game based on seven criteria, ranging fro
the aspect of the menu and of the game, to the menu 
navigation and control of the character, to the maze’s and 
enemy’s dif- ficulty and to the user’s experience overall.
consensus has been that the participants were pleased with the 
aspect of the application and the
of the maze and the enemy,
difficulty. Overall, all players
the gaming experience. Their
improved centered around the player 
integrating the timers in the window so that the player can 
properly see when they can use
increasing the competitiveness
scoring system and a hall of
see who has the highest scores.

Performance testing 
For the purpose of performance testing, the application had 
been tested on a Lenovo laptop with the following 

in second place by 17.82 seconds, and the 
seconds. More details can be seen in 

Avg. time 
(Win) <s> 

W/L 
ratio 

Gaming 
experience 

27.46 3/2 No 
19.4 3/2 Yes 
14.83 4/1 Yes 
17.82 5/0 Yes 
24.45 4/1 No 
18.1 3/2 No 
13.17 4/1 Yes 
16.29 4/1 Yes 

after the experimental testing of the 
application 

Another aspect that can be observed from this table is the 
average time spent in winning rounds 

average time overall. This can be explained by the 
shorter losing rounds, courtesy of the enemy catching the 

the beginning of the rounds, before 
it has time to navigate through the maze properly. Here the 

d times for winning rounds is 27.46 
seconds and the shortest 13.17 seconds. What is also inter- 
esting to see is that, beside the longest time being acquired by 
an inexperienced user, the shortest registered time by an 
inexperienced user is 18.1 seconds, which is comparable to 
the times obtained by the more experienced users. 

ratio, the results are similar among 
all users, where the majority obtained a 3/2 ratio (3 partici- 
pants), and four obtaining a 4/1 ratio. The outcome shows 
that the game is balanced, as it has a medium to easy diffi- 

understand both by seasoned players 

satisfaction, each participant has been 
asked to rate the game based on seven criteria, ranging from 
the aspect of the menu and of the game, to the menu 
navigation and control of the character, to the maze’s and 

ficulty and to the user’s experience overall. The 
consensus has been that the participants were pleased with the 

and the game’s controls. In terms 
enemy, they rated them at a medium 
players claimed they were satisfied by 

Their feedback on what can be 
centered around the player experience, by 

integrating the timers in the window so that the player can 
properly see when they can use an ability again, and 

competitiveness of the game by introducing a 
of fame view in which the users can 

who has the highest scores. 

For the purpose of performance testing, the application had 
been tested on a Lenovo laptop with the following 
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specifications: 
• Intel Core i7 2.30 GHz CPU 
• 32GB RAM memory 
• NVIDIA GeForce RTX 3050 GPU. 
• Windows 11 OS 

Maze generator 
For measuring the performance of the implemented maze 
generation algorithm, the process has been called to create a 
100x100 cells maze, similarly to the algorithms included in 
the analysis contained in [3]. 
 

Figure 10: Top 5 performing algorithms for generating a 
100x100 maze 

By analyzing the profiler, after the call of the function at 
8.437, the task was in execution until 8.563, which meant that 
the algorithm’s implementation needed 0.125 seconds to 
generate the result. Comparing this result to the ones in Fig. 1 
(encompassed in Fig. 10), this time places Eller’s algorithm 
in the second place behind Recursive Backtrack—who has a 
time of around 0.1 seconds—and ahead of Prim and Aldous 
Broder—both with times over 0.2 seconds. 

System’s performance 
For measuring system’s performance, the process memory 
needed during the running of the application has been 
followed in the profiler. For covering all bases, the test 
consisted of opening the application, playing a full game 
round, reaching the end title card, starting another game, 
pausing, resuming the game, then pausing again and exiting 
the game from the pause menu, then closing the application 
from the title screen. 
For this analysis, 8 snapshots have been taken in various mo- 
ments of the execution of the program: 

1. Opening the application, in the title screen, the 
process memory reached and stayed at 183 MB. 

2. During the first game round, when in the beginning it 
was observed a spike in the process memory, jumping 
from 183 to 208 MB, then decreasing and staying at 
202 MB. The spike could have been caused by the 
initialization routines of the game, with the 
generation of the game surface and resetting the 
game objects. Once those routines ended, the 
memory evened at 202 MB during the entire game. 

3.  When the game reached the end state and the 
winning title card was initialised, the process memory 
decreased again to 183-184 MB. 

4. When starting the second round another spike in the 
mem- ory could be seen at 208 MB, then followed 
again by the decrease and stabilization at 202 MB. 

5. Opening the pause menu, when a spike to 210 MB 
was registered followed by the return and 
stabilization at 202 MB. 

6. Closing the pause menu and resuming the game, 
when after a hiccup to 205 MB it returned to 202 
MB. 

7. During the second opening of the game menu, when 
nothing changed in terms of process memory. 

8. Going back to the title screen, when after a spike to 
210 MB it immediately decreases to 184 MB. 

When exiting the program it’s captured a constant decrease 
that reaches 173 MB when the profiler stops running. 
This shows that, in terms of performance, the allocations and 
deallocations are done accordingly, with little to no residual 
allocated memory remaining and no leaks registered during 
the execution of the program. 

CONCLUSIONS 
The research and development work presented within this 
paper focused on identifying and implementing time and 
resource-efficient pseudo-random maze generation and path 
finding methods to be used as key components for a game 
engine meant to facilitate the development of maze-chase type 
games. We explored various maze generation and path finding 
methodologies to enhance the gameplay experience for both 
human players and intelligent agents. 
 
We selected Eller’s algorithm for maze generation due to its 
scalability and balanced difficulty. This proved to be highly 
competitive when compared to the traditional methods for 
computing MST, by also generating a result that balances the 
long and winding roads with the larger number of 
intersections, making it more challenging for both human and 
intelligent agents, results that can be seen in the section 
focused on Testing. 
 
While A* is widely regarded as the most efficient path find- 
ing strategy, its high memory usage posed a challenge in our 
dynamic scenario. Therefore, for path finding through the 
resulted maze, we adapted Depth-First Search to leverage pre- 
viously computed paths, reducing the need for re-
computation. 
With these maze generation and path finding components as 
the basis, we described a game engine that can be used for 
maze-chase game development, which we piloted it by devel- 
oping a game and testing it for user and system performance, 
as well as user satisfaction. 
 
As for future improvements, there are two main concerns: the 
algorithmic nature of the project and the potential game engine 
developments. 
 
For the former, these improvements are related to the further 
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optimization of the used algorithms—treating the resource 
efficiency problem in the worst case scenario for the enhanced 
DFS implementation, and reducing the process time for maze 
generation by using multithreading.  
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