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ABSTRACT 
In this paper we propose a web application which provides 
virtual and interactive physics experiments for secondary school 
students. The application allows users to perform actions such 
as creating and manipulating objects in the virtual experiments 
using both mouse/keyboard and hand gesture input. Within 
each experiment, supported actions are associated with default 
gestures, but each user is allowed to customize his/her 
interaction with the experiment by permuting the associated 
gestures. 
 
Gesture recognition is performed using a deep neural network 
classifier with 18 classes of gestures. The classifier is pretrained 
on a custom dataset of 368 samples. Each sample is a set of 21 
hand landmarks extracted using Google’s MediaPipe Hands 
framework. Users are also allowed to fine-tune the weights of 
the model by adding samples of their own gestures for the 
supported classes. 
 
The application has the potential of enhancing the quality of 
experience of students, offering customizable multimodal 
interaction and the possibility to create affordances. We 
conclude the paper with a discussion of the contributions, 
limitations and future research directions. 
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INTRODUCTION 
Keeping students motivated may be a challenge for physics 
teachers. This paper reports on the development of a web- based 
educational software system which provides interactive virtual 
physics experiments to students. 
 
A growing body of research demonstrates that the use of 
computers and modern technology motivates students to learn 
physics. Active learning methods in general, and the ones based 
on Information and Communication Technologies (ICT) in 
particular, have been shown to enhance students’ interest in 
physics [5]. If properly integrated within the curriculum and used 
as a complement for traditional instruction methods, taking into 
account their interplay with other pedagogical factors, computer-
based experiments have been proven to benefit students [14]. 
 
Multimodality may be a key feature for the efficiency of 
interactive learning systems. In particular, gesture control has 
been proven to have a positive impact on student intrinsic 
motivation and, through it, on cognitive and affective learning 
outcomes [16]. 
 
Virtual physics simulations can help students understand 
physical phenomena better than by simply reading theoretical 
explanations and drawings. Students are given the opportunity to 
run a virtual experiment as many times as they want and need for 
a complete and correct understanding of the phenomenon. The 
solution described in the current paper addresses the need for 
attractive multimedia content which stimulates active learning 
through interactive features. 
 
The remainder of the paper is structured as follows. The Related 
Work section provides an overview of existing solutions in the 
field. In the Methodology section, we report on the design and 
implementation of the proposed software architecture, including 
the neural model architecture for gesture recognition. In the 
Evaluation section, we present the testing dataset and model 
performance. The paper ends with a Conclusions section, which 
reviews the main contributions of the research, followed by a 
discussion of the limitations of the proposed solution and 
potential future research directions. 
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RELATED WORK 
There are several similar applications with virtual simulations 
of physical phenomena. Most of these applications support 
static file upload of learning materials such as lecture notes, but 
also include attractive and intuitive GUIs, supporting user 
interaction using the mouse and keyboard. We offer a brief 
review of extant solutions in what follows. 
 
Physics at school-HTML5, (https://www.vascak.cz/ 
physicsanimations.php) [10] is a web application with 
numerous simulations of physical phenomena presented briefly 
and grouped into categories. The interaction is based on mouse 
input. The GUI is intuitive, attractive, colorful, with animations 
that support understanding of the phenomenon. However, in 
most of the experiments available in this web application, 
parameters cannot be changed so as for the user to test the 
effects of such changes. 
 
Physics Applets, by Walter Fendt (https://www.walter- 
fendt.de/html5/phro/) [2], is a web application that contains 
simulations of 46 physical phenomena through a simple GUI. 
These simulations cover the main branches of physics and 
tackle elementary topics. In most simulations, users are allowed 
to modify parameter values for experimental purposes. The user 
is also offered the possibility to check boxes corresponding to 
experiment parameters he/she wishes to view. The main focus 
of this app is the math behind the experiments, rather than the 
attractiveness of the interface. 
 
Physics Education Technology (PHET) Platform 
(https://phet.colorado.edu/) [11] is a web application that 
contains simulations of several phenomena, including those 
related to physics. Each simulation has associated learning 
objectives and tips for teachers. The objectives refer to what 
students should learn after completing the experiment, and the 
teacher tips consist of .pdf files in which teachers are provided 
with didactic recommendations. The simulations in this 
application are complex. They receive mouse and keyboard 
input, through which users are allowed to change the values of 
experiment-specific parameters. Similar to the previous work in 
this review, the user is allowed to check which parameters 
he/she wishes to view. The application allows teachers to create 
accounts, through which they can download tips on how the 
phenomenon described by a simulation can be explained in 
simple terms. The app also has a dedicated section for tips on 
how it could be used in teaching physics in school classrooms 
or in distance learning. It has a virtual workshop, with 5 mini-
courses in which effective methods for teaching certain learning 
contents using the application are explained. Also, the graphical 
interface is attractive, offering suggestive animations that 
demonstrate physical phenomena. 
 
The Physics Classroom (https://www.physicsclassroom.com/) 
[18] is an app that contains theory, interactive simulations, 
student and teacher accounts, and PDF files that teachers can 
download and print. Theory is grouped by branches of physics 
and includes a considerable amount of textual information about 

each phenomenon, backed up by explanatory videos presented 
by teachers. Students can check their understanding of a 
phenomenon by answering questions with hidden answers, 
which are displayed on demand. Interactive simulations have 
settings through which the parameters of the phenomenon can be 
changed, as well as buttons to show or hide vectors, where 
appropriate. Each chapter in the app contains a section that 
specifies learning objectives. The application supports two types 
of accounts: teacher and student. Teachers can create classes to 
later associate their students with those classes, set tasks for their 
students, and monitor their students' progress. Downloadable 
PDF files containing details about each lesson, with learning 
objectives and suggestions for further reading are also available 
to users. The GUI is attractive and intuitive. 
 
It is also worth mentioning that human interface devices for 
touchless 3D interaction have sometimes been used for 
educational purposes. Motion controllers such as Microsoft 
Kinect [20], discontinued at the time of writing this paper, or the 
Leap Motion Controller [8] use gesture input. They can 
recognize complex body motion, but major drawbacks include 
the fact that they require additional hardware (and inherent costs) 
and physical space (especially in the case of whole-body motion 
controllers). 
 
To the best of our knowledge, at the time of writing this paper, 
there is no platform for virtual physics experiments based on 
customizable gesture input without specialized hardware. 
Therefore, an important objective of the application proposed in 
the present paper is to fill this identified gap. The solution we 
describe in this paper allows students to control objects in 
simulations using gesture input based on a fine-tunable neural 
network classifier. Furthermore, though each simulation has 
gesture-action pairs associated with it by default, the student is 
allowed to permute the gestures associated with the actions 
according to his/her own preferences, through permuting the 
gestures. 
 

APPLICATION DEVELOPMENT 
In this section, we briefly describe the design and 
implementation of the proposed solution. 
 

Technologies Used 
The application was developed using Django [6], which is a 
Python open source web framework based on the Model-View-
Controller (MVC) design pattern. The technologies used for 
front-end development include HTML5 [7], CSS [12], 
JavaScript [17], and AJAX [3]. As for the back-end, virtual 
simulations were mainly based on OpenCV [1] for basic 
computer vision functions, TensorFlow [4] for creating and 
training the neural network classifier, and Google’s MediaPipe 
Hands [19] framework. 
MediaPipe Hands is a framework for detecting and tracking the 
user's hands and their landmarks in real time, providing the user 
with a natural interface without the need for special equipment. 
The MediaPipe Hands solution consists of two models that are 
used together to reach the final result: 
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1. a palm detection model, operating on the entire 
image to create a bounding box for the palm. 

2. a second model that operates on the bounding box 
output by the first model and determines the 
positions of the landmarks on the detected palm. 
This model returns 3 outputs: 

(a) 21 landmarks (key points corresponding to hand- 
knuckles) on the palm, each being described by a 
triplet of values (x,y,z), where x and y represent 
the horizontal and vertical position of the 
landmark, respectively, relative to the dimensions 
of the bounding box, and z is the distance to the 
webcam. 

(b) A value indicating the probability that a hand is 
present in the input picture 

(c) A binary classification indicating whether the 
present hand is left or right 

 
The models were trained on datasets that tackle different 
aspects of the problem: 

 A dataset containing 6,000 pictures covering a 
wide range of conditions such as geographical 
diversity and different light conditions 

 An in-house dataset containing 10,000 images 
covering angles of a wide range of physically 
possible hand gestures 

 A synthetic dataset with 100,000 pictures created 
based on a synthetic hand model 

 
Custom Dataset Creation 

For the proposed application, we created a small custom dataset 
consisting of 548 samples collected from the first author and 
two volunteers. The dataset was made publicly available at 
https://github.com/corsimar/dataset. The samples were split 
randomly into 368 training samples and 180 testing samples. 
 
The dataset was created using a GUI which allowed the user to 
choose the hand and gesture for which he/she wished to add a 
sample to the dataset. The user was then given a preset number 
of seconds to perform the gesture in front of the webcam, while 
the application displayed the webcam input with the 21 key 
points calculated by MediaPipe marked on it. Upon timeout, if a 
hand was detected in the last video frame (see Figure 1), then 
the user was allowed to either save or retry the gesture. Saving 
the gesture involved saving a record consisting of the 3D 
coordinates of the 21 key points and the class index for the 
gesture in a CSV file. 
 
The application supports 18 different classes of gestures that 
can be made to perform actions in the simulations, 9 for each 
hand (left and right). These are shown in Table 1. 
 

 

Figure 1. A video frame extracted from the webcam, with hand 
landmarks obtained with MediaPipe Hands framework 

 
Index Hand Gesture 

0 Left Closed fist 

1 Left Index down 

2 Left Index and middle up 

3 Left Index pointing to the right 

4 Left Index up 

5 Left Thumb and index forming a circle 
and the other fingers up (OK) 

6 Left Open palm 

7 Left Thumb down 

8 Left Thumb up 

9 Right Closed palm 

10 Right Index down 

11 Right Index pointing to the left 

12 Right Index and middle up 

13 Right Index up 

14 Right Thumb and index forming a circle 
and the other fingers up (OK) 

15 Right Open palm 

16 Right Thumb down 

17 Right Thumb up 

Table 1: The 18 classes of gestures in the dataset 



 

 

The Neural Network Classifier 
To choose the best neural model architecture we used 
KerasTuner [13], a hyperparameter optimization
which allows the user to define search spaces for 
hyperparameter values and automatically explore possible 
combinations to find the best values for the model to be 
optimized. We defined search spaces for the following 
hyperparameters: 

 The number of fully-connected hidden layers 
between 3 and 7 

 The number of neurons on each fully
layer - between 32 and 512, with a step of 32

 The activation function for each fully
layer: ReLU, Leaky ReLU, or tanh

 The optimizer: Adam or SGD 

 The presence of a batch normalization layer [15] 
after each fully-connected hidden layer.

 
Due to the very large number of possible combinations of 
hyperparameter values, exhausting the search space would have 
required a lot of time and computational resources. Therefore, 
KerasTuner was set to run only 100 trials and used only to
confirm assumptions based on theory or isolated empirical 
results, as well as to suggest suboptimal values for certain 
hyperparameters, and the model will be refined also based on 
known results. 
 
The results of the experiments with KerasTuner clearly 
indicated the tanh activation function for
hidden layers and the Adam optimizer as generating superior 
performances compared to the competing
and optimizers, respectively. Also, the results suggested that 
models with a smaller number of fully-connected hidden layers 
(4 or even 3 pairs of fully- connected layers, each followed by a 
batch normalization layer) tended to achieve higher 
performances. Furthermore, using more parsimonious models 
with fewer parameters is expected to reduce the risk of 
overfitting and lead to better performance in terms of average 
inference time, which is important for the user experience.
 
Regarding the number of neurons on each layer, the results 
were less conclusive, varying substantially betwe
models obtained with KerasTuner. As such, for the number of 
neurons on each layer, a common scheme of halving them from 
one layer to another (256 - 128 - 64) was adopted, assuming 
that the shallower layers extract many simpler features, and the
deeper layers combine them into a progressively smaller 
number of complex, implicit features. 
 
The learning rate was set to the default of 0.001.
 
The final architecture of the model, shown in Figure 2, has 63 
neurons on the input layer because the size o
63 (21 3D landmark coordinates), and the output layer
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The final architecture of the model, shown in Figure 2, has 63 
neurons on the input layer because the size of the input data is 
63 (21 3D landmark coordinates), and the output layer has 18 

neurons, because the model
gestures. The model was trained for trained for 50 epochs, 
because beyond this value the test loss started to 
test accuracy started to decrease, indicating that the model was 
starting to overfit. 
 

Figure 2: The final architecture
Fine-Tuning by the User 

For users who feel dissatisfied with the gesture classifier’s 
performance for their own gestures,
designed to offer the possibility
neural network used for gesture recognition through a dedicated 

model classifies 18 different classes of 
gestures. The model was trained for trained for 50 epochs, 
because beyond this value the test loss started to increase and the 
test accuracy started to decrease, indicating that the model was 

architecture of the gesture classifier 

For users who feel dissatisfied with the gesture classifier’s 
gestures, the application was also 

possibility to adjust the weights of the 
neural network used for gesture recognition through a dedicated 
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fine-tuning module, presented in Figure 3. By accessing this 
module, the user should be able to use the webcam to add 
samples of his/her own gestures for the classes supported by the 
application, and the application fine-tunes the model for gesture 
recognition, starting from the weights of the base model, 
adjusted by further training for that user’s gestures. This can be 
useful for improving the classifier’s accuracy for each 
individual user. 
 

 
Figure 3. Fine-Tuning Flowchart 

Simulations 
Four physics simulations were implemented: 

 Lever (Figure 4.a), an experiment which allows the user 
to place objects on a lever, with the goal of keeping the 
tray balanced 

 Density (Figure 4.b), an experiment in which objects are 
created with only 2 known variables out of the following 
3: mass, volume and density. The user can find an 
object’s mass by placing it on a scale, modify the values 
of the variables dynamically, check whether or not an 
object is denser than water by throwing it into the water 

and checking whether or not it floats. The goal is 
comparing the density of objects to that of water and 
calculating each quantity depending on the others. 

 Windmill (Figure 4.c), an experiment in which a ball is 
thrown towards a rotating mill. The goal of the simulation 
is to calculate the speed of the ball, the distance from the 
ball to the mill and the speed with which the mill rotates 
so that the ball enters the mill. 

 Sliding down an inclined plane (Figure 4.d), an 
experiment in which an object (a block) in an initial rest 
state is allowed to slide down a ramp and then on a level 
surface. The purpose of the simulation is to find out the 
distance that the object travels after leaving the ramp, 
when it reaches a target velocity established in the 
simulation, and knowing the values of the following 
variables: 

o angle of the ramp 

o height of the ramp 

o frictional coefficient for the ramp 

o frictional coefficient for the level surface 
All the listed simulations can be controlled both with the mouse 
and using gesture input for the webcam, which is classified by 
the neural network and the application subsequently performs 
the action associated with the recognized gesture in the 
simulation. Each simulation allows the user to customize the 
following settings: 

 The weights of the classifier. If the user had previously 
fine-tuned the model, he/she may choose between this 
fine-tuned model and the base model. 

 The time required to perform the action corresponding to a 
gesture (default value is 1 second). An action is triggered 
only after the user continuously makes a gesture towards 
the camera for the number of seconds set by the user for 
that particular simulation. 

 The threshold value for top-1 probability output of the 
softmax layer for the input to be considered a gesture 
(default value is 80%). 

 The gesture that triggers each action in the simulation. 
For each simulation, a default gesture is associated with 
each action that can be performed. These preset gestures 
can be modified later by the user, with the help of a GUI. 
In this GUI (shown in Figure 5), for all actions which can 
be performed by the user for that particular simulation, a 
dropdown list containing all gestures and a toggle switch 
are displayed. The toggle switch allows the user to set 
whether the gesture is symmetrical or not (i.e., whether 
performing it with either the right or the left hand 
triggers the same action). This way, the user may choose 
to perform a different action using the same gesture, but 
with the other hand. 
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Figure 4: Implemented simulations 
EVALUATION 

Table 2 shows the classification report for the 180 test samples, 
obtained using the scikit-learn library [9]. The overall 
classification accuracy of the model was 98%. 

Figure 5: Application Window for Permuting Gestures 
 

Class 
Index 

Precision Recall F1- 
Score 

Support 

0 1.00 1.00 1.00 10 

1 1.00 1.00 1.00 9 

2 1.00 0.91 0.95 11 
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3 1.00 1.00 1.00 10 

4 1.00 1.00 1.00 10 

5 1.00 1.00 1.00 10 

6 1.00 1.00 1.00 12 

7 1.00 1.00 1.00 10 

8 1.00 1.00 1.00 10 

9 1.00 1.00 1.00 10 

10 1.00 1.00 1.00 10 

11 1.00 1.00 1.00 10 

12 0.86 0.67 0.75 9 

13 0.77 1.00 0.87 10 

14 1.00 1.00 1.00 9 

15 1.00 1.00 1.00 10 

16 1.00 1.00 1.00 10 

17 1.00 1.00 1.00 10 

Accuracy   0.98 180 

Macro 
average 

0.98 0.98 0.98 180 

Weighted 
average 

0.98 0.98 0.98 180 

Table 2: Classification report for the gesture classifier 
The confusion matrix, generated with the Seaborn library, is 
presented in Figure 6. Note that the model correctly classifies 
most of the gestures except 12 and 13 (right index and middle 
fingers up and index up, respectively, which are sometimes 
confounded) and gesture 2 (left index and middle fingers up). 
 

 
Figure 6: Confusion matrix for the gesture classifier 

CONCLUSION 
The present paper offers a brief description of the development 
of an application which serves as a proof of concept for the idea 
of customizable multimodal interaction with virtual simulation 
environments. The application allows users to create 
personalized affordances by associating gestures with actions in 
virtual physics experiments. The most important contributions of 
the paper include: 

 Proposing a multimodal interaction with virtual 
experiments, allowing the user to choose between 
a classical interaction modality using the mouse 
and keyboard and a more natural interaction 
modality using gestures in front of the webcam. 

 Offering the possibility of customization by 
permuting gestures associated with actions in each 
Physics experiment simulation. Each simulation 
has a default set of gesture-action pairs that can be 
modified according to the student's preferences for 
that particular simulation. Moreover, users can 
also customize both the threshold top-1 probability 
given by softmax for a gesture to be output by the 
model (set by default to 80%), and the time 
required for the gesture input to trigger an action 
(set by default to 1 second). 

 Allowing the user to fine-tune the parameters of 
the neural network used for gesture recognition. 
Students may choose to keep the fine-tuned 
weights or revert to the base model parameters. 

The present work also has several limitations. First, there are the 
psycho-pedagogical limitations inherent to the use of 
multimedia solutions in education. For example, the interface 
may capture students’ attention at the expense of learning 
contents. Of course, the aforementioned shortcomings are 
starting points for future improvements to the application. For 
example, conditional access to simulations may be implemented. 
The application may be extended such that it allows 
experts/teachers to define prerequisites for each simulation and 
track individual students’ completion of the prerequisites. This 
way, a student’s access to an experiment may be conditional on 
his/her learning outcomes. 
 
Second, from a software perspective, the present application is 
only a proof of concept, mainly serving demonstrative purposes, 
and can be improved in multiple ways. For example, the dataset 
is currently very small, and more samples are clearly needed for 
training the classifier. Furthermore, the samples should be 
collected from a larger number of contributors, especially 
students in the target group. More gestures could be added for 
the gesture-based interaction modality. A qualitative study of the 
gestures that students deem natural or intuitive for each of the 
actions available in the simulations may be a good starting point. 
Note that gesture input is currently limited to single-frame 
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single-handed gestures, but future research should consider the 
development of a recurrent neural network model able to 
recognize complex user actions based on sequences of frames. 
 
Of course, further validation efforts are needed for the 
application. Future work should include usability studies on 
representative student samples. Additionally, to obtain truly 
relevant feedback from both students and their physics 
teachers, the simulations of the experiments available through 
the application should be tested by students immediately after 
the corresponding physics lessons. Besides usability, student 
engagement should ideally be surveyed before and after using 
the application for each experiment. Finally, direct 
comparisons (in terms of usability, performance, and 
motivation or engagement) between the proposed application 
and similar solutions would be desirable in future research. 
 
We can conclude that the presented application, still in an early 
stage of development, serves as a proof of concept for a 
customizable natural user interface for physics experiments. It 
implements didactic means that can become useful for 
increasing the attractiveness of physics as a discipline, being in 
agreement with the principles of modern didactics, based on 
active, student-centered instruction. 
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