
Proceedings of ICUSI 2024

- 114 -

Interactive Physics Experiments using Gesture
Recognition

Constantinescu Mario-Cristian
Ovidius University of Constanța

University alley no. 1, Constanța,
Romania

mario.constantinescu@365.univ-ovidius.ro

Ionescu Anata-Flavia
Ovidius University of Constanța

University alley no. 1, Constanța,
Romania

anata.ionescu@365.univ-ovidius.ro

ABSTRACT
In this paper we propose a web application which provides
virtual and interactive physics experiments for secondary school
students. The application allows users to perform actions such
as creating and manipulating objects in the virtual experiments
using both mouse/keyboard and hand gesture input. Within
each experiment, supported actions are associated with default
gestures, but each user is allowed to customize his/her
interaction with the experiment by permuting the associated
gestures.

Gesture recognition is performed using a deep neural network
classifier with 18 classes of gestures. The classifier is pretrained
on a custom dataset of 368 samples. Each sample is a set of 21
hand landmarks extracted using Google’s MediaPipe Hands
framework. Users are also allowed to fine-tune the weights of
the model by adding samples of their own gestures for the
supported classes.

The application has the potential of enhancing the quality of
experience of students, offering customizable multimodal
interaction and the possibility to create affordances. We
conclude the paper with a discussion of the contributions,
limitations and future research directions.

Author Keywords
virtual learning; gesture recognition; neural network; interactive
simulation; physics; motivation; self-paced learning; MediaPipe.

ACM Classification Keywords
H.5.2 User Interfaces; D.2.2 Design Tools and Techniques;
I.5.4 Applications •Human-centered computing~Human
computer interaction (HCI)~Interaction techniques~Gestural
input
•Applied computing~Education~Computer-assisted instruction
•Applied computing~Education~E-learning.
•Human-centered computing~Accessibility~Accessibility
technologies

General Terms
Human Factors; Design.

DOI: 10.37789/ icusi.2024.17

INTRODUCTION
Keeping students motivated may be a challenge for physics
teachers. This paper reports on the development of a web- based
educational software system which provides interactive virtual
physics experiments to students.

A growing body of research demonstrates that the use of
computers and modern technology motivates students to learn
physics. Active learning methods in general, and the ones based
on Information and Communication Technologies (ICT) in
particular, have been shown to enhance students’ interest in
physics [5]. If properly integrated within the curriculum and used
as a complement for traditional instruction methods, taking into
account their interplay with other pedagogical factors, computer-
based experiments have been proven to benefit students [14].

Multimodality may be a key feature for the efficiency of
interactive learning systems. In particular, gesture control has
been proven to have a positive impact on student intrinsic
motivation and, through it, on cognitive and affective learning
outcomes [16].

Virtual physics simulations can help students understand
physical phenomena better than by simply reading theoretical
explanations and drawings. Students are given the opportunity to
run a virtual experiment as many times as they want and need for
a complete and correct understanding of the phenomenon. The
solution described in the current paper addresses the need for
attractive multimedia content which stimulates active learning
through interactive features.

The remainder of the paper is structured as follows. The Related
Work section provides an overview of existing solutions in the
field. In the Methodology section, we report on the design and
implementation of the proposed software architecture, including
the neural model architecture for gesture recognition. In the
Evaluation section, we present the testing dataset and model
performance. The paper ends with a Conclusions section, which
reviews the main contributions of the research, followed by a
discussion of the limitations of the proposed solution and
potential future research directions.

Proceedings of ICUSI 2024

- 115 -

RELATED WORK
There are several similar applications with virtual simulations
of physical phenomena. Most of these applications support
static file upload of learning materials such as lecture notes, but
also include attractive and intuitive GUIs, supporting user
interaction using the mouse and keyboard. We offer a brief
review of extant solutions in what follows.

Physics at school-HTML5, (https://www.vascak.cz/
physicsanimations.php) [10] is a web application with
numerous simulations of physical phenomena presented briefly
and grouped into categories. The interaction is based on mouse
input. The GUI is intuitive, attractive, colorful, with animations
that support understanding of the phenomenon. However, in
most of the experiments available in this web application,
parameters cannot be changed so as for the user to test the
effects of such changes.

Physics Applets, by Walter Fendt (https://www.walter-
fendt.de/html5/phro/) [2], is a web application that contains
simulations of 46 physical phenomena through a simple GUI.
These simulations cover the main branches of physics and
tackle elementary topics. In most simulations, users are allowed
to modify parameter values for experimental purposes. The user
is also offered the possibility to check boxes corresponding to
experiment parameters he/she wishes to view. The main focus
of this app is the math behind the experiments, rather than the
attractiveness of the interface.

Physics Education Technology (PHET) Platform
(https://phet.colorado.edu/) [11] is a web application that
contains simulations of several phenomena, including those
related to physics. Each simulation has associated learning
objectives and tips for teachers. The objectives refer to what
students should learn after completing the experiment, and the
teacher tips consist of .pdf files in which teachers are provided
with didactic recommendations. The simulations in this
application are complex. They receive mouse and keyboard
input, through which users are allowed to change the values of
experiment-specific parameters. Similar to the previous work in
this review, the user is allowed to check which parameters
he/she wishes to view. The application allows teachers to create
accounts, through which they can download tips on how the
phenomenon described by a simulation can be explained in
simple terms. The app also has a dedicated section for tips on
how it could be used in teaching physics in school classrooms
or in distance learning. It has a virtual workshop, with 5 mini-
courses in which effective methods for teaching certain learning
contents using the application are explained. Also, the graphical
interface is attractive, offering suggestive animations that
demonstrate physical phenomena.

The Physics Classroom (https://www.physicsclassroom.com/)
[18] is an app that contains theory, interactive simulations,
student and teacher accounts, and PDF files that teachers can
download and print. Theory is grouped by branches of physics
and includes a considerable amount of textual information about

each phenomenon, backed up by explanatory videos presented
by teachers. Students can check their understanding of a
phenomenon by answering questions with hidden answers,
which are displayed on demand. Interactive simulations have
settings through which the parameters of the phenomenon can be
changed, as well as buttons to show or hide vectors, where
appropriate. Each chapter in the app contains a section that
specifies learning objectives. The application supports two types
of accounts: teacher and student. Teachers can create classes to
later associate their students with those classes, set tasks for their
students, and monitor their students' progress. Downloadable
PDF files containing details about each lesson, with learning
objectives and suggestions for further reading are also available
to users. The GUI is attractive and intuitive.

It is also worth mentioning that human interface devices for
touchless 3D interaction have sometimes been used for
educational purposes. Motion controllers such as Microsoft
Kinect [20], discontinued at the time of writing this paper, or the
Leap Motion Controller [8] use gesture input. They can
recognize complex body motion, but major drawbacks include
the fact that they require additional hardware (and inherent costs)
and physical space (especially in the case of whole-body motion
controllers).

To the best of our knowledge, at the time of writing this paper,
there is no platform for virtual physics experiments based on
customizable gesture input without specialized hardware.
Therefore, an important objective of the application proposed in
the present paper is to fill this identified gap. The solution we
describe in this paper allows students to control objects in
simulations using gesture input based on a fine-tunable neural
network classifier. Furthermore, though each simulation has
gesture-action pairs associated with it by default, the student is
allowed to permute the gestures associated with the actions
according to his/her own preferences, through permuting the
gestures.

APPLICATION DEVELOPMENT
In this section, we briefly describe the design and
implementation of the proposed solution.

Technologies Used
The application was developed using Django [6], which is a
Python open source web framework based on the Model-View-
Controller (MVC) design pattern. The technologies used for
front-end development include HTML5 [7], CSS [12],
JavaScript [17], and AJAX [3]. As for the back-end, virtual
simulations were mainly based on OpenCV [1] for basic
computer vision functions, TensorFlow [4] for creating and
training the neural network classifier, and Google’s MediaPipe
Hands [19] framework.
MediaPipe Hands is a framework for detecting and tracking the
user's hands and their landmarks in real time, providing the user
with a natural interface without the need for special equipment.
The MediaPipe Hands solution consists of two models that are
used together to reach the final result:

Proceedings of ICUSI 2024

- 116 -

1. a palm detection model, operating on the entire
image to create a bounding box for the palm.

2. a second model that operates on the bounding box
output by the first model and determines the
positions of the landmarks on the detected palm.
This model returns 3 outputs:

(a) 21 landmarks (key points corresponding to hand-
knuckles) on the palm, each being described by a
triplet of values (x,y,z), where x and y represent
the horizontal and vertical position of the
landmark, respectively, relative to the dimensions
of the bounding box, and z is the distance to the
webcam.

(b) A value indicating the probability that a hand is
present in the input picture

(c) A binary classification indicating whether the
present hand is left or right

The models were trained on datasets that tackle different
aspects of the problem:

 A dataset containing 6,000 pictures covering a
wide range of conditions such as geographical
diversity and different light conditions

 An in-house dataset containing 10,000 images
covering angles of a wide range of physically
possible hand gestures

 A synthetic dataset with 100,000 pictures created
based on a synthetic hand model

Custom Dataset Creation

For the proposed application, we created a small custom dataset
consisting of 548 samples collected from the first author and
two volunteers. The dataset was made publicly available at
https://github.com/corsimar/dataset. The samples were split
randomly into 368 training samples and 180 testing samples.

The dataset was created using a GUI which allowed the user to
choose the hand and gesture for which he/she wished to add a
sample to the dataset. The user was then given a preset number
of seconds to perform the gesture in front of the webcam, while
the application displayed the webcam input with the 21 key
points calculated by MediaPipe marked on it. Upon timeout, if a
hand was detected in the last video frame (see Figure 1), then
the user was allowed to either save or retry the gesture. Saving
the gesture involved saving a record consisting of the 3D
coordinates of the 21 key points and the class index for the
gesture in a CSV file.

The application supports 18 different classes of gestures that
can be made to perform actions in the simulations, 9 for each
hand (left and right). These are shown in Table 1.

Figure 1. A video frame extracted from the webcam, with hand
landmarks obtained with MediaPipe Hands framework

Index Hand Gesture

0 Left Closed fist

1 Left Index down

2 Left Index and middle up

3 Left Index pointing to the right

4 Left Index up

5 Left Thumb and index forming a circle
and the other fingers up (OK)

6 Left Open palm

7 Left Thumb down

8 Left Thumb up

9 Right Closed palm

10 Right Index down

11 Right Index pointing to the left

12 Right Index and middle up

13 Right Index up

14 Right Thumb and index forming a circle
and the other fingers up (OK)

15 Right Open palm

16 Right Thumb down

17 Right Thumb up

Table 1: The 18 classes of gestures in the dataset

The Neural Network Classifier
To choose the best neural model architecture we used
KerasTuner [13], a hyperparameter optimization
which allows the user to define search spaces for
hyperparameter values and automatically explore possible
combinations to find the best values for the model to be
optimized. We defined search spaces for the following
hyperparameters:

 The number of fully-connected hidden layers
between 3 and 7

 The number of neurons on each fully
layer - between 32 and 512, with a step of 32

 The activation function for each fully
layer: ReLU, Leaky ReLU, or tanh

 The optimizer: Adam or SGD

 The presence of a batch normalization layer [15]
after each fully-connected hidden layer.

Due to the very large number of possible combinations of
hyperparameter values, exhausting the search space would have
required a lot of time and computational resources. Therefore,
KerasTuner was set to run only 100 trials and used only to
confirm assumptions based on theory or isolated empirical
results, as well as to suggest suboptimal values for certain
hyperparameters, and the model will be refined also based on
known results.

The results of the experiments with KerasTuner clearly
indicated the tanh activation function for
hidden layers and the Adam optimizer as generating superior
performances compared to the competing
and optimizers, respectively. Also, the results suggested that
models with a smaller number of fully-connected hidden layers
(4 or even 3 pairs of fully- connected layers, each followed by a
batch normalization layer) tended to achieve higher
performances. Furthermore, using more parsimonious models
with fewer parameters is expected to reduce the risk of
overfitting and lead to better performance in terms of average
inference time, which is important for the user experience.

Regarding the number of neurons on each layer, the results
were less conclusive, varying substantially betwe
models obtained with KerasTuner. As such, for the number of
neurons on each layer, a common scheme of halving them from
one layer to another (256 - 128 - 64) was adopted, assuming
that the shallower layers extract many simpler features, and the
deeper layers combine them into a progressively smaller
number of complex, implicit features.

The learning rate was set to the default of 0.001.

The final architecture of the model, shown in Figure 2, has 63
neurons on the input layer because the size o
63 (21 3D landmark coordinates), and the output layer

Proceedings of ICUSI 2024

- 117 -

To choose the best neural model architecture we used
optimization framework

which allows the user to define search spaces for
ter values and automatically explore possible

combinations to find the best values for the model to be
optimized. We defined search spaces for the following

connected hidden layers -

s on each fully-connected
between 32 and 512, with a step of 32

The activation function for each fully-connected
layer: ReLU, Leaky ReLU, or tanh

The presence of a batch normalization layer [15]
hidden layer.

Due to the very large number of possible combinations of
hyperparameter values, exhausting the search space would have
required a lot of time and computational resources. Therefore,
KerasTuner was set to run only 100 trials and used only to
confirm assumptions based on theory or isolated empirical
results, as well as to suggest suboptimal values for certain
hyperparameters, and the model will be refined also based on

The results of the experiments with KerasTuner clearly
for all fully-connected

hidden layers and the Adam optimizer as generating superior
performances compared to the competing activation functions
and optimizers, respectively. Also, the results suggested that

connected hidden layers
connected layers, each followed by a

batch normalization layer) tended to achieve higher
performances. Furthermore, using more parsimonious models

d to reduce the risk of
overfitting and lead to better performance in terms of average
inference time, which is important for the user experience.

Regarding the number of neurons on each layer, the results
substantially between the best

models obtained with KerasTuner. As such, for the number of
neurons on each layer, a common scheme of halving them from

64) was adopted, assuming
that the shallower layers extract many simpler features, and the
deeper layers combine them into a progressively smaller

0.001.

The final architecture of the model, shown in Figure 2, has 63
neurons on the input layer because the size of the input data is
63 (21 3D landmark coordinates), and the output layer has 18

neurons, because the model
gestures. The model was trained for trained for 50 epochs,
because beyond this value the test loss started to
test accuracy started to decrease, indicating that the model was
starting to overfit.

Figure 2: The final architecture
Fine-Tuning by the User

For users who feel dissatisfied with the gesture classifier’s
performance for their own gestures,
designed to offer the possibility
neural network used for gesture recognition through a dedicated

model classifies 18 different classes of
gestures. The model was trained for trained for 50 epochs,
because beyond this value the test loss started to increase and the
test accuracy started to decrease, indicating that the model was

architecture of the gesture classifier

For users who feel dissatisfied with the gesture classifier’s
gestures, the application was also

possibility to adjust the weights of the
neural network used for gesture recognition through a dedicated

Proceedings of ICUSI 2024

- 118 -

fine-tuning module, presented in Figure 3. By accessing this
module, the user should be able to use the webcam to add
samples of his/her own gestures for the classes supported by the
application, and the application fine-tunes the model for gesture
recognition, starting from the weights of the base model,
adjusted by further training for that user’s gestures. This can be
useful for improving the classifier’s accuracy for each
individual user.

Figure 3. Fine-Tuning Flowchart

Simulations
Four physics simulations were implemented:

 Lever (Figure 4.a), an experiment which allows the user
to place objects on a lever, with the goal of keeping the
tray balanced

 Density (Figure 4.b), an experiment in which objects are
created with only 2 known variables out of the following
3: mass, volume and density. The user can find an
object’s mass by placing it on a scale, modify the values
of the variables dynamically, check whether or not an
object is denser than water by throwing it into the water

and checking whether or not it floats. The goal is
comparing the density of objects to that of water and
calculating each quantity depending on the others.

 Windmill (Figure 4.c), an experiment in which a ball is
thrown towards a rotating mill. The goal of the simulation
is to calculate the speed of the ball, the distance from the
ball to the mill and the speed with which the mill rotates
so that the ball enters the mill.

 Sliding down an inclined plane (Figure 4.d), an
experiment in which an object (a block) in an initial rest
state is allowed to slide down a ramp and then on a level
surface. The purpose of the simulation is to find out the
distance that the object travels after leaving the ramp,
when it reaches a target velocity established in the
simulation, and knowing the values of the following
variables:

o angle of the ramp

o height of the ramp

o frictional coefficient for the ramp

o frictional coefficient for the level surface
All the listed simulations can be controlled both with the mouse
and using gesture input for the webcam, which is classified by
the neural network and the application subsequently performs
the action associated with the recognized gesture in the
simulation. Each simulation allows the user to customize the
following settings:

 The weights of the classifier. If the user had previously
fine-tuned the model, he/she may choose between this
fine-tuned model and the base model.

 The time required to perform the action corresponding to a
gesture (default value is 1 second). An action is triggered
only after the user continuously makes a gesture towards
the camera for the number of seconds set by the user for
that particular simulation.

 The threshold value for top-1 probability output of the
softmax layer for the input to be considered a gesture
(default value is 80%).

 The gesture that triggers each action in the simulation.
For each simulation, a default gesture is associated with
each action that can be performed. These preset gestures
can be modified later by the user, with the help of a GUI.
In this GUI (shown in Figure 5), for all actions which can
be performed by the user for that particular simulation, a
dropdown list containing all gestures and a toggle switch
are displayed. The toggle switch allows the user to set
whether the gesture is symmetrical or not (i.e., whether
performing it with either the right or the left hand
triggers the same action). This way, the user may choose
to perform a different action using the same gesture, but
with the other hand.

Proceedings of ICUSI 2024

- 119 -

Figure 4: Implemented simulations
EVALUATION

Table 2 shows the classification report for the 180 test samples,
obtained using the scikit-learn library [9]. The overall
classification accuracy of the model was 98%.

Figure 5: Application Window for Permuting Gestures

Class
Index

Precision Recall F1-
Score

Support

0 1.00 1.00 1.00 10

1 1.00 1.00 1.00 9

2 1.00 0.91 0.95 11

Proceedings of ICUSI 2024

- 120 -

3 1.00 1.00 1.00 10

4 1.00 1.00 1.00 10

5 1.00 1.00 1.00 10

6 1.00 1.00 1.00 12

7 1.00 1.00 1.00 10

8 1.00 1.00 1.00 10

9 1.00 1.00 1.00 10

10 1.00 1.00 1.00 10

11 1.00 1.00 1.00 10

12 0.86 0.67 0.75 9

13 0.77 1.00 0.87 10

14 1.00 1.00 1.00 9

15 1.00 1.00 1.00 10

16 1.00 1.00 1.00 10

17 1.00 1.00 1.00 10

Accuracy 0.98 180

Macro
average

0.98 0.98 0.98 180

Weighted
average

0.98 0.98 0.98 180

Table 2: Classification report for the gesture classifier
The confusion matrix, generated with the Seaborn library, is
presented in Figure 6. Note that the model correctly classifies
most of the gestures except 12 and 13 (right index and middle
fingers up and index up, respectively, which are sometimes
confounded) and gesture 2 (left index and middle fingers up).

Figure 6: Confusion matrix for the gesture classifier

CONCLUSION
The present paper offers a brief description of the development
of an application which serves as a proof of concept for the idea
of customizable multimodal interaction with virtual simulation
environments. The application allows users to create
personalized affordances by associating gestures with actions in
virtual physics experiments. The most important contributions of
the paper include:

 Proposing a multimodal interaction with virtual
experiments, allowing the user to choose between
a classical interaction modality using the mouse
and keyboard and a more natural interaction
modality using gestures in front of the webcam.

 Offering the possibility of customization by
permuting gestures associated with actions in each
Physics experiment simulation. Each simulation
has a default set of gesture-action pairs that can be
modified according to the student's preferences for
that particular simulation. Moreover, users can
also customize both the threshold top-1 probability
given by softmax for a gesture to be output by the
model (set by default to 80%), and the time
required for the gesture input to trigger an action
(set by default to 1 second).

 Allowing the user to fine-tune the parameters of
the neural network used for gesture recognition.
Students may choose to keep the fine-tuned
weights or revert to the base model parameters.

The present work also has several limitations. First, there are the
psycho-pedagogical limitations inherent to the use of
multimedia solutions in education. For example, the interface
may capture students’ attention at the expense of learning
contents. Of course, the aforementioned shortcomings are
starting points for future improvements to the application. For
example, conditional access to simulations may be implemented.
The application may be extended such that it allows
experts/teachers to define prerequisites for each simulation and
track individual students’ completion of the prerequisites. This
way, a student’s access to an experiment may be conditional on
his/her learning outcomes.

Second, from a software perspective, the present application is
only a proof of concept, mainly serving demonstrative purposes,
and can be improved in multiple ways. For example, the dataset
is currently very small, and more samples are clearly needed for
training the classifier. Furthermore, the samples should be
collected from a larger number of contributors, especially
students in the target group. More gestures could be added for
the gesture-based interaction modality. A qualitative study of the
gestures that students deem natural or intuitive for each of the
actions available in the simulations may be a good starting point.
Note that gesture input is currently limited to single-frame

Proceedings of ICUSI 2024

- 121 -

single-handed gestures, but future research should consider the
development of a recurrent neural network model able to
recognize complex user actions based on sequences of frames.

Of course, further validation efforts are needed for the
application. Future work should include usability studies on
representative student samples. Additionally, to obtain truly
relevant feedback from both students and their physics
teachers, the simulations of the experiments available through
the application should be tested by students immediately after
the corresponding physics lessons. Besides usability, student
engagement should ideally be surveyed before and after using
the application for each experiment. Finally, direct
comparisons (in terms of usability, performance, and
motivation or engagement) between the proposed application
and similar solutions would be desirable in future research.

We can conclude that the presented application, still in an early
stage of development, serves as a proof of concept for a
customizable natural user interface for physics experiments. It
implements didactic means that can become useful for
increasing the attractiveness of physics as a discipline, being in
agreement with the principles of modern didactics, based on
active, student-centered instruction.

REFERENCES
1. Culjak, I., Abram, D., Pribanic, T., Dzapo, H., & Cifrek,

M. A brief introduction to OpenCV. In 2012 proceedings
of the 35th international convention MIPRO, IEEE
(2012), 1725-1730.

2. Fendt, W. Physics Applets, by Walter Fendt,
https://www.walter-fendt.de/html5/phro/

3. Garrett, J.J. et al. AJAX: A new approach to web
applications, 2005.

4. Goldsborough, P. A tour of Tensorflow. arXiv preprint
arXiv:1610.01178, 2016.

5. Holubova, R. How to Motivate Our Students to Study
Physics?. Universal Journal of Educational Research,
3, 10 (2015), 727-734.

6. Jaiswal, S. and Kumar, R. Learning Django Web
Development (volume 336). Packt Publishing
Birmingham, United Kingdom, 2015.

7. McLaughlin, B. What is HTML5? O’Reilly Media,
Inc., 2011.

8. Păvăloiu, I. B.. Leap motion technology in learning.
In Edu world 7th international conference (2017),
1025-1031.

9. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel,
V., Thirion, B., Grisel, O. Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., ... and Duchesnay, É.
Scikit- learn: Machine learning in Python. The
Journal of Machine Learning Research, 12 (2011),
2825-2830.

10. Physics at school - HTML5,
https://www.vascak.cz/physicsanimations.php

11. Physics Education Technology (PHET) Platform
(https://phet.colorado.edu/)

12. Pierre Geneves, P., Layaïda, N., and Quint, V. On the
analysis of cascading style sheets. In Proceedings of the
21st international conference on World Wide Web
(2012), 809–818.

13. Pon, M. Z. A., & KK, K. P. (2021). Hyperparameter
tuning of deep learning models in Keras.
Sparklinglight Transactions on Artificial Intelligence
and Quantum Computing (STAIQC), 1 (2021), 36-40.

14. Rutten, N., Van Joolingen, W. R., and Van Der Veen, J.
T. The learning effects of computer simulations in science
education. Computers & Education, 58, 1 (2012), 136-
153.

15. Santurkar, S., Tsipras, D., Ilyas, A., and Madry, A.
How does batch normalization help optimization?
Advances in Neural Information Processing Systems,
31, 2018.

16. Shakroum, M., Wong, K. W., and Fung, C. C.. The
influence of Gesture-Based Learning System (GBLS)
on learning outcomes. Computers & Education, 117
(2018), 75–101.
https://doi.org/10.1016/j.compedu.2017.10.002

17. Suehring, S. JavaScript Step by Step. Pearson
Education, 2013.

18. The Physics Classroom,
https://www.physicsclassroom.com/

19. Zhang, F., Bazarevsky, V., Vakunov, A., Tkachenka,
A., Sung, G., Chang, C. L., and Grundmann, M.
Mediapipe Hands: On-device real-time hand tracking.
arXiv preprint arXiv:2006.10214, (2020).

20. Zhang, M., Zhang, Z., Chang, Y., Aziz, E. S., Esche,
S., and Chassapis, C. Recent developments in game-
based virtual reality educational laboratories using the
Microsoft Kinect. International Journal of Emerging
Technologies in Learning (iJET), 13(1) (2018), 138-
159.

