
Proceedings of ICUSI 2024

- 163 -

The Development Process of eLearning Application for
Configurations of the Operating Room

Daria-Elena Melinte

Faculty of Computer Science “Alexandru Ioan Cuza”
University Iasi, Romania

dariamelinte2003@gmail.com

Adrian Iftene

Faculty of Computer Science “Alexandru
Ioan Cuza” University Iasi, Romania

adiftene@gmail.c
om

ABSTRACT
The application of 2D and 3D modeling has expanded across
various domains, encompassing interior and exterior design,
eLearning games and applications, animations, and futuristic
advertisements. This work explores the development of an
eLearning application designed to evaluate bioengineering
students and assist them in preparing an operating room using
3D models. The findings of the exploration have led to the
development of an application characterized by a multi-role
framework. Within this framework, educators are afforded the
capability to manage multiple groups of students, as well as to
design and administer assessments that evaluate students'
knowledge. Concurrently, students have the opportunity to
enroll in multiple groups and complete the assessments
provided by their instructors. Furthermore, both educators and
students are granted access to a "playground" feature, which
serves as a training or learning environment. This feature allows
users to visualize the operational environment they are working
within from various perspectives, thereby enhancing their
understanding and interaction with the content.

Author Keywords
Medical application; 3D Models; eLearning

ACM Classification Keywords
H.5.2. Information interfaces and presentation (e.g., HCI): User
Interfaces. H.3.2. Information Storage and Retrieval:
Information Storage.

General Terms
Human Factors; Design; Measurement.
DOI: 10.37789/ icusi.2024.24

INTRODUCTION
The medical field, vital for saving countless lives daily,
intersects with informatics to enhance the capabilities of
healthcare professionals. Nurses, who play a crucial role in
patient care and operating room preparation, face challenges in
training due to limited access to these busy environments. To
address this, computer science can offer a virtual system for
both students and healthcare professionals to practice room
setup for various procedures [1]. This work proposes the
development of such a platform, enabling users to learn and be
assessed through tests designed by instructors, ultimately
improving their preparedness for real-world scenarios.

MEDICAL OR EDUCATIONAL APPLICATIONS THAT
EMBED 3D SPACE

Incision
Incision1 is a successful application in the medical field,
designed to help hospital staff learn and refresh protocols. It
offers features like human anatomy education and immersive
3D visualization of an operating room (see Figure 1). Widely
used in healthcare centers, it is not available for personal use, as
individual accounts must be linked to a hospital subscribed to
the service.

Figure 1. Incision2.

CoSpaces Edu
CoSpaces Edu3 is an e-learning platform that enables educators
to create and share interactive 3D and VR environments for
immersive learning. It includes tools for managing students,
assigning online tasks, and monitoring their work (see Figure
2). However, creating assignments requires coding experience.
The platform offers both free and paid options.

STATE OF THE ART
After analyzing the existing medical and educational
applications, we can say that no application currently offers
comprehensive training for operating room setup, underscoring
the need for this development. While various tools support
medical training and 3D space interaction, the proposed virtual
system would fill a crucial gap by providing specialized training
for nurses and healthcare professionals in this area. The
proposed application would

1 https://www.incision.care/
2 https://www.incision.care/products/assist
3 https://www.cospaces.io/

allow professors to manage multiple students, create
assignments and tests, and enable students to practice operating
room setups for various scenarios.

Figure 2. CoSpaces Edu
A crucial feature would be a 3D space where users can interact
with objects, utilizing Blender’s visualization format for clarity
and ease of understanding.
In developing a training application for the Bioengineering
Faculty of Iași, key considerations include identifying the target
users and ensuring intuitive engagement. Although AR/VR
technology offers immersive learning, it’s limited by the
overcrowding of operating rooms and the lack of AR/VR
equipment for all students. Instead, a web application was
chosen over a native app because it can be accessed from any
location, effectively addressing the overcrowding issue and
providing a satisfactory user experience with proper UI/UX
design.

APPLICATIONS ACTORS
To better understand the application that was created, it is
necessary to understand who it interacts with and how. We will
describe the entities that the application interacts
with the actions that can be taken in the following sections. The
built application interacts both with human users and with
different software systems. we can therefore define the
following actors with which the application interacts:

● the human user, who can be an
teacher;

● the software system that maintains
(MongoDB);
● the software system in which the 3D models are

stored to be used later in the application (Digital
Ocean).

Depending on the role of each actor, some actions will
defined that they can do within the application. We will
describe below the actions that each actor can do.

The Admin
The administrator manages all aspects
including user support. Admin functions

4 https://www.youtube.com/watch?v=lyWE9CAJwIg
channel=CoSpacesEdu

Proceedings of ICUSI 2024

- 164 -

allow professors to manage multiple students, create
and enable students to practice operating

Edu4.
A crucial feature would be a 3D space where users can interact
with objects, utilizing Blender’s visualization format for clarity

In developing a training application for the Bioengineering
și, key considerations include identifying the target

users and ensuring intuitive engagement. Although AR/VR
technology offers immersive learning, it’s limited by the
overcrowding of operating rooms and the lack of AR/VR
equipment for all students. Instead, a web application was

be accessed from any
location, effectively addressing the overcrowding issue and

ry user experience with proper UI/UX

To better understand the application that was created, it is
necessary to understand who it interacts with and how. We will
describe the entities that the application interacts with, along

th the actions that can be taken in the following sections. The
built application interacts both with human users and with

therefore define the
following actors with which the application interacts:

 admin, student or

maintains the database

the software system in which the 3D models are
to be used later in the application (Digital

Depending on the role of each actor, some actions will be
defined that they can do within the application. We will
describe below the actions that each actor can do.

aspects of the application,
functions include logging

www.youtube.com/watch?v=lyWE9CAJwIg\&ab_

in/out, profile management, and full control
categories and models. Admins can also create, view, and delete
groups and tests, manage test submissions, and configure 3D
environments in the playground.

The Professor
Professors can create and manage their accounts and profiles.
They view and organize 3D
manage groups, and design tests
and solutions, but can only update test solutions before the
submission deadline. They also
3D model configurations.

The Student
Students can manage their accounts and profiles, view 3D
objects and categories, and join or leave groups. They can view
and interact with assigned tests, create and edit solutions within
the allowed times, and access the playground for practice and
exploration.

MongoDB Atlas Cluster
MongoDB [2] Atlas Cluster
a-Service, handling data storage
application, validates requests, and protects database content
from unauthorized access.

DigitalOcean Space
DigitalOcean Space offers scalable object storage for 3
models, with S3 compatibility
Network (CDN) [3]. It securely stores and manages model files,
ensuring that only the application can access and manipulate
them.
In designing a complex application, it is crucial to understand
the needs and roles of each user. The next section will detail the
system architecture and implementation to meet these needs
(see Figure 3).

Figure 3. System

in/out, profile management, and full control over 3D model
categories and models. Admins can also create, view, and delete

ps and tests, manage test submissions, and configure 3D
environments in the playground.

Professors can create and manage their accounts and profiles.
3D objects and categories, create and

manage groups, and design tests. Professors can view their tests
and solutions, but can only update test solutions before the

also interact with the playground for

Students can manage their accounts and profiles, view 3D
objects and categories, and join or leave groups. They can view
and interact with assigned tests, create and edit solutions within
the allowed times, and access the playground for practice and

Cluster provides a NoSQL Database-as-

storage and security. It connects to the
application, validates requests, and protects database content

DigitalOcean Space offers scalable object storage for 3D
compatibility and built-in Content Delivery

Network (CDN) [3]. It securely stores and manages model files,
ensuring that only the application can access and manipulate

In designing a complex application, it is crucial to understand
the needs and roles of each user. The next section will detail the
system architecture and implementation to meet these needs

System Context Diagram.

ARCHITECTURE AND IMPLEMENTATION
The following sections will cover the database,
application architectures, detailing their
decisions, and key features.

Database Architecture
The database architecture is crucial for managing 3D operating
room configurations. A NoSQL database with collections such
as Object Instance, Linkage, Object Model
supports storing and manipulating object coordinates.
Collections like User, Credential, and Group
and group memberships, while Test and
handle test creation and student submissions (see Figure 4).

Figure 4. Database Models Diagram.

The Credential collection stores user authentication
including a unique ID or email, password
authentication token. It ensures secure access by
credentials. The User collection contains personal
information about users, identified by ID
Fields include role (admin, student,
phone number, and institution.

The Group collection stores informatio
created by professors, identified by
includes the professor’s credential ID and a
credential IDs, eliminating the need for additional queries.
Each test that a professor creates will be stored as a
document in the Test collection, which holds
tests created by professors, including
description, and reference documents for
groups. It includes fields for minimum and maximum
scores, start and due dates, and test status
Result stores documents representing test solutions,
including correct solutions and student submissions. It
features test ID, user credential, instance list, submission
time, scale, and score. The instances referenced in the
Result collection are stored in the
collection. It manages 3D object instances with unique
and UUIDs, including model references and
stored in JSON format for precise spatial operations.

A model is a 3D object. It can be created in
purpose and is going to be used in the application

Proceedings of ICUSI 2024

- 165 -

IMPLEMENTATION
database, service, and
 usage, architectural

The database architecture is crucial for managing 3D operating
database with collections such

Model, and Category
supports storing and manipulating object coordinates.

Group manage user data
and Result collections

handle test creation and student submissions (see Figure 4).

Diagram.

collection stores user authentication details,
password hash, and

access by validating
collection contains personal

ID or credential ID.
 professor), name,

collection stores information about groups
created by professors, identified by ID and token. It

and a list of student
, eliminating the need for additional queries.

Each test that a professor creates will be stored as a
holds documents for

tests created by professors, including test ID, name,
, and reference documents for credentials and

minimum and maximum
test status. The collection

stores documents representing test solutions,
including correct solutions and student submissions. It

instance list, submission
. The instances referenced in the

collection are stored in the Object Instance
collection. It manages 3D object instances with unique IDs

references and positions
stored in JSON format for precise spatial operations.

in any tool that has this
application in an

exported version of type .fbx
the Object Model collection is going to contain information
about 3D models used in the application, including
name, description, and model size
in DigitalOcean Space. The
model categories with unique

The last collection, Linkage
instances, including connection details such as
references, box points, and
understanding surface connections between object

Back-End Architecture
Model View Controller (MVC) Design Pattern in a REST API
implemented a REST API using the MVC design pattern [4] to
ensure a robust and scalable platform. Leveraging
created an API that is flexible,
growth. The API's structure is organized into key components:

● The app, which is the core initializes the routes and
establishes the database connection.

● The routes, which
accepted parameters, and responses, routes
specific requests and invoke corresponding services.

● The services, that manage the operations and
methods that interact with the models, perform the
core functionality of the API.

● Each model defines the schema for documents stored
in their respective collections, ensuring data is
structured and accessible.

API routes
The API supports various routes for creating, reading, updating,
and deleting documents. To manage
access, we use authentication middleware with encrypted
tokens (HS256). Each token
expiration date. Requests to protected routes are validated via
token decoding; invalid tokens
API is organized into nine categories:
object instances, links, results
authentication. Each category includes routes for document
management and additional functions like uploading models or
joining groups. The authentication category handles
registration, login, logout, and profile management.

API Services
The API services handle interactions with models and
results processed by routes. For example, the group service
includes functions for adding a group
creates a new group instance, a
managing exceptions as needed),
group data based on filters and credentials, dynamically
constructing queries and returning the data or error messages),
updating a group (updates group information ba
identifier and new data, fetching and
updated group while handling

.fbx. This is why each document from
collection is going to contain information

about 3D models used in the application, including category,
model size. Models are stored separately

in DigitalOcean Space. The Category collection defines object
ies with unique IDs and category names.

Linkage, stores links between test
, including connection details such as instance

and coordinates, necessary for
understanding surface connections between objects.

Model View Controller (MVC) Design Pattern in a REST API We
implemented a REST API using the MVC design pattern [4] to
ensure a robust and scalable platform. Leveraging Flask, we

flexible, easy to maintain, and capable of
growth. The API's structure is organized into key components:

, which is the core initializes the routes and
establishes the database connection.

 are defined by their names,
accepted parameters, and responses, routes handle
specific requests and invoke corresponding services.

, that manage the operations and
methods that interact with the models, perform the
core functionality of the API.

defines the schema for documents stored
respective collections, ensuring data is

structured and accessible.

The API supports various routes for creating, reading, updating,
and deleting documents. To manage user-specific content
access, we use authentication middleware with encrypted access
tokens (HS256). Each token contains user information and an
expiration date. Requests to protected routes are validated via
token decoding; invalid tokens halt the request process. The
API is organized into nine categories: categories, object models,

results, tests, groups, users, and
. Each category includes routes for document

management and additional functions like uploading models or
joining groups. The authentication category handles

logout, and profile management.

The API services handle interactions with models and return
results processed by routes. For example, the group service

dding a group (receives input data,
creates a new group instance, and saves it to the database,

needed), receiving groups (retrieves
group data based on filters and credentials, dynamically
constructing queries and returning the data or error messages),

(updates group information based on an
identifier and new data, fetching and returning the

handling

exceptions), deleting a group (finds and deletes a group
identifier, verifying the existence and managing exceptions), or
joining a group (adds a student to a group using a group code,
checks for group existence and student enrollment, updates the
group, and handles exceptions). Each service manages requests,
processes data through model interactions, and returns
appropriate responses based on the operation's success or
failure.

API Models
The API uses nine collections, each defined by a class
inherits from MongoEngine's Document class:
ObjectModel, ObjectInstance, Linkage,
Group, Test, and Result. For instance, the
represents the document structure for the Object Model
collection, managing data validation, integrity,
logic. This aligns with the MVC architecture,
handle data and related operations.

Tests’ Solution Score
A critical aspect of the application is the automatic evaluation
of student-submitted solutions. Formally, a solution is
represented as a graph, where nodes are object instances and
arcs are constraints defining object positioning in 3D space
The evaluation process involves comparing two graphs: the
student’s solution and the correct model.
yields a similarity score between 0 and 1. The algorithm
evaluates the graphs by comparing nodes and arcs and applying
penalties. We will detail the methods used for this comparison
and penalty application (see Figure 5).

Each pair of instances from the two graphs is compared to
obtain a similarity index. This index is based on the alignment
of positions on each axis, with a threshold al
approximate matches. A penalty is applied if the instances do
not match. The resulting score is normalized between
1 by dividing by the maximum possible score. Finally, the
individual similarity indices are aggregated
overall similarity score for the entire set of instances.

The evaluation of linkages follows a similar approach. Linkages
are assessed based on the coordinates of connection points in
3D space and relative to each instance. The comparison
involves checking these coordinates across all three axes and
evaluating the angle differences between the slopes formed by
the connection points. A maximum score of 2 points is given if
the angle difference is less than 10 degrees, with decreasing
scores and penalties for larger differences.
for linkages ranges from -0.17 to 1 and is aggregated into a
single value. Normalization is applied to account for different
scales in coordinates. Additionally, the number of nodes and
arcs is compared, with penalties for discrepancies. The final
similarity score, between -1 and 1, is calculated as a weighted
average of instance and linkage scores, with penalties applied as
needed. The algorithm returns a final score between 0 and 1.

Proceedings of ICUSI 2024

- 166 -

(finds and deletes a group by its
identifier, verifying the existence and managing exceptions), or

(adds a student to a group using a group code,
student enrollment, updates the

group, and handles exceptions). Each service manages requests,
processes data through model interactions, and returns

based on the operation's success or

The API uses nine collections, each defined by a class that
inherits from MongoEngine's Document class: Category,

, User, Credential,
the ObjectModel class

represents the document structure for the Object Model
integrity, and business

architecture, where models

A critical aspect of the application is the automatic evaluation
submitted solutions. Formally, a solution is

represented as a graph, where nodes are object instances and
positioning in 3D space [5].

involves comparing two graphs: the
student’s solution and the correct model. This comparison

score between 0 and 1. The algorithm
evaluates the graphs by comparing nodes and arcs and applying

ll detail the methods used for this comparison

Each pair of instances from the two graphs is compared to
obtain a similarity index. This index is based on the alignment
of positions on each axis, with a threshold allowing for
approximate matches. A penalty is applied if the instances do
not match. The resulting score is normalized between -0.25 and
1 by dividing by the maximum possible score. Finally, the

aggregated to produce an
score for the entire set of instances.

The evaluation of linkages follows a similar approach. Linkages
are assessed based on the coordinates of connection points in

instance. The comparison
across all three axes and

evaluating the angle differences between the slopes formed by
the connection points. A maximum score of 2 points is given if

than 10 degrees, with decreasing
 The similarity score

0.17 to 1 and is aggregated into a
single value. Normalization is applied to account for different
scales in coordinates. Additionally, the number of nodes and

penalties for discrepancies. The final
1 and 1, is calculated as a weighted

average of instance and linkage scores, with penalties applied as
needed. The algorithm returns a final score between 0 and 1.

The similarity score is computed for each submitted result,
including the original solutions. The score for a test is
calculated using the following formula:
𝑠𝑐𝑜𝑟𝑒 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒/
In conclusion, the algorithm
focusing on geometric and spatial relationships using several
design techniques:

● Greedy decisions: it uses Euclidean distance for
positional similarity, making local comparisons
based on proximity and normalizing positions
scale.

● Divide and Conquer: the algorithm breaks down the
problem into smaller tasks
and linkages separately
results for a final similarity score.

● Weighted scoring: different components (model
matching, positional accuracy, angle differences) are
weighted to reflect their importance in the overall
score.

● Penalty-based adjustments
mismatches in the number of instances or linkages,
incur penalties, adding a logical layer to the
assessment.

Figure 5. Comparison

Diagram.

Front-End Architecture
This section describes the key modules and components of the
front end, which encapsulate all the functionalities detailed in
this paper.

Authentication and User’s Profile
Upon first accessing the application, users are greeted
landing screen that offers authentication

omputed for each submitted result,
including the original solutions. The score for a test is
calculated using the following formula:

/𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑆𝑐𝑜𝑟𝑒×100
algorithm effectively compares results by

focusing on geometric and spatial relationships using several

: it uses Euclidean distance for
positional similarity, making local comparisons
based on proximity and normalizing positions by

: the algorithm breaks down the
problem into smaller tasks—comparing instances
and linkages separately—before aggregating the
results for a final similarity score.

: different components (model
positional accuracy, angle differences) are

weighted to reflect their importance in the overall

based adjustments: discrepancies, such as
mismatches in the number of instances or linkages,
incur penalties, adding a logical layer to the

Comparison algorithm
Diagram.

This section describes the key modules and components of the
front end, which encapsulate all the functionalities detailed in

User’s Profile Modules
Upon first accessing the application, users are greeted with a

authentication options. They can

Proceedings of ICUSI 2024

- 167 -

either log in or register. Initially, users cannot access most
features without creating a profile. The profile page allows
users to create or update their profile information, enabling full
interaction with the application's features.

Categories and Object Models Modules
The core concept of the application involves arranging and
evaluating an operating room using 3D objects. Object models
and their categories are managed by an admin role, which
handles their creation, visualization, and modification. The
admin can view, update, and delete both categories and object
models on dedicated pages, where they are listed in tables (see
Figure 6).

Figure 6. Object Models’ Page.
It is also worth mentioning that all the models presented and
used in the application were personally made in Blender, and
are further used in a .fbx format. While designing and creating
them, we did some research to understand what is the most
common form of these objects in the hospital (see Figure 7 for
examples).

Figure 7. Operating Table (on the left), Scrub Sink (on the
right)

Groups Module
The groups' module is displayed almost the same for students
and professors, each of them having some extra features. Both
students and professors can visualize a table. The difference is
that students only view the groups they are in, and can join a
group, whereas professors can create, update, and delete a
group, but they cannot join one. A group’s page consists of two
main components: (1) viewing information about the group, the
access code to the group, and (2) the coordinating teacher, and
viewing the students in a group. The student can also leave the
group from that page, and the professor can remove a student
from the group.

Playground Module
The playground module consists of a place where the user can
play with a board, and interact with it, to see how object

instances would move in 3D space, and what would the links
between the instances look like. The playground can also be a
place where students can practice on different configurations of
an operating room. To create the playground, we created three
main components:

● a menu for visualizing and selecting the models,
● a board for visualizing and manipulating the

instances and linkages,
● and a footer, for scaling the board and changing

the visualization perspective.
Models’ menu is expandable and displays the available object
models (see Figure 8). Each card from the menu displays the
3D model and lets you manipulate the model as you want.
Because of this, you can rotate, scale, and move the object, to
visualize it better. The card also offers information about the
object, such as its name, and a small description. The card also
has a button that lets you add the model to the board. Besides
better visualization, the menu allows you to filter the objects,
based on their category.

Figure 8. Models’ Menu Component.

The Board component displays instances added from the
models’ menu and their connections (see Figure 9). It features a
grid system with a central red point for spatial orientation. A
button allows users to delete all instances and links,
simplifying the process of starting anew. Instances can be
repositioned on the board, with their top-left coordinates
stored to preserve their state. Each instance has a point layer for
creating links between objects. A button on each instance
enables the deletion of both the instance and its links. Links are
created by selecting connection points on different objects; links
between the same objects are not allowed. Each link records the
coordinates of its connection points for accurate evaluation and
display. Links can also be removed by clicking on them.

Proceedings of ICUSI 2024

- 168 -

Figure 9. Board Component.

The Footer has two key components: the scale setting and the
perspective setting. By default, the board’s scale is set to 1, but
it can be adjusted for better visibility and maneuverability as
more components are added. Changing the scale recalculates
the positions of all components and links to fit the new scale.
The perspective component includes three buttons for viewing
the board from different angles: Top (Oz axis), Side (Ox axis),
and Front (Oy axis).

Test Module
We established before that one of this application's scopes is to
enable professors to create tests and let students solve them.
The test module was created around these key functionalities.
When entering the tests page (see Figure 10) both students and
professors can visualize the tests that are assigned to their
group, respectively the tests that were created by them. A core
difference is, though, the fact that students can only solve those
tests, whereas the professors can create, view, update, and
delete tests, as well as see the solutions submitted by students.

Figure 10. A Professor’s Table of
Tests.

If a professor wants to create a test, they are redirected to a
separate page, where they complete the test’s information, as
well as an official solution. The test information and solution
are separate activities, the first being a form displayed through a
modal. Creating a test can be very complex, so the professors
can save the progress, and submit the test to the students later.
This is possible by setting the status of a test in Work in
Progress or Posted.
It is worth mentioning, though, that a test cannot be created only
by submitting the information and having an empty board. The
professor can also visualize a test, and which students submitted
their solution. This is done on a separate page, that presents the
test’s information, and a ranking table, that displays the students
enrolled in the group for which the test was created, and their
scores (see Figure 11).

Figure 11. A test's ranking page.
A professor can also access each solution, to see how the
student solved the test. The board that shows the solution is,
however, disabled, to not let anyone except the actual student
work on their test.

Store Architecture
To maintain and make the application function correctly,
we need to keep track of the state of multiple variables
and display the correct information accordingly. This is
possible by creating a store that takes care of each of the
modules presented in this section. The store was created
using Zustand [6]. Because the size and complexity of the
store are pretty big, we have fragmented it into multiple
store slices: dialog store, category store, object model
store, authentication store, group store, test store, result
store, and a playground store.

Movement and Perspective over the Board Component
The browser consists of a 2D space, in which the (0, 0)
coordinate point is the leftmost up point. The Ox axis is the
width of the browser window, and the Oy axis is the length of
the window. It does not, by itself, support 3D representations,
but multiple libraries have been built to access this part,
including the Three.js library [7], which we used in this
application. With the library, 3D objects can be moved, rotated,
scaled, etc. The problem with using it, however, is that when a
3D space is created, no higher-level layouts, consisting of
elements such as divs, etc., can be inserted into it. This was
problematic, as one of the needs of the application was to draw
links between objects. For this reason, we tried to reproduce the
most important functionality of the library, in the browser space,
leaving the library only to handle the correct display of the
models. We were thus able to create a space in which objects
can be moved, scaled, and viewed from multiple perspectives,
with the bonus of being able to draw connections between the
objects in question. This was difficult, however, as we had to
save the coordinates of an object in the 2D space of the
browser, but also correlate with the view of the same object in
the general 3D space. For this reason, both the instances and the
links between them have saved positions in 3D space, but
relative to the 2D space we are in, the one defined by the
browser. In this way, when the perspective is changed, the
object is repositioned to the point stored for the corresponding
axis. We have thus managed to transform a 3D coordinate,
made up of (x, y, z) points, into an

Proceedings of ICUSI 2024

- 169 -

independent structure. The structure defined as PointType stores
the coordinates of the space defined by the browser. However,
geometric dependencies must be maintained for the location of
an object to be accurate. For this reason, we have analyzed how
the coordinates of an object behave depending on the
perspective from which it is viewed.

BOARD DEVELOPMENT AND DISCOVERIES
Three.js is widely regarded as a premier JavaScript library for
rendering 3D content on the web due to its seamless integration
with WebGL, a powerful API built on the OpenGL standard.
WebGL facilitates the rendering of intricate 3D graphics
directly within web browsers, leveraging the GPU for
demanding tasks without requiring external plugins. Three.js
abstracts the complexities of WebGL, making the development
of interactive 3D applications more accessible to developers,
even those lacking extensive knowledge of WebGL or
OpenGL. The robust features of OpenGL, such as efficient
rendering pipelines and broad support for graphical operations,
underlie WebGL and, by extension, Three.js. However, while
Three.js offers significant advantages in terms of performance
and ease of use, it also presents certain limitations, particularly
when integrating HTML elements within the 3D rendering
environment.

During the development of an application aimed at enabling
users to establish correlations between 3D objects on a board, a
critical limitation of Three.js emerged: the inability to embed
HTML elements, such as <div> tags, within a <canvas>
layer. This restriction necessitated a workaround to maintain the
required interactivity and correlation between objects.
Consequently, the development team had to "rebuild" the
Three.js movement system to achieve functionalities such as
perspective viewing, scaling, and dragging of 3D elements. The
dragging functionality was implemented using the React library
`react-draggable`, which facilitated the creation of a board
where elements could be moved interactively. For scaling and
displaying the objects from various perspectives, the team
applied geometric principles to accurately calculate the
positions and sizes of all components, resulting in a rudimentary
yet functional version of Three.js that primarily utilized the
library for rendering the 3D models from the correct perspective
as indicated on the board. To address the challenges of
integrating 2D and 3D spaces, the development team devised a
method for storing and manipulating object coordinates in a
hybrid structure that accounts for both the 2D browser space
and the 3D environment. A custom coordinate system was
defined, where each position in 3D space is represented by a
PositionType structure, comprising three PointType objects (ox,
oy, oz) that store the x and y coordinates relative to each axis
(X, Y, Z) in the browser's 2D space. This design allowed for
accurate repositioning of objects when the perspective changes,
by referencing the corresponding 2D coordinates for each axis.

The relationship between 3D and 2D coordinates was further
refined by analyzing how object positions behave when viewed
from different perspectives. As illustrated in Figure 12, each
axis (X, Y, Z) has its mapping to the 2D space, where the
browser's x and y coordinates correspond to different
dimensions in the 3D space.

Figure 12. Perspectives of the board relative to the three axes.
For example, when the X axis is the focus, the coordinates from
ox are used, with the 3D space's z-coordinate corresponding to
the browser's y-coordinate, and the 3D y-coordinate
corresponding to the browser's x-coordinate. Similarly, specific
transformations were defined for when the Y or Z axis is the
focus, as detailed in Figure 13.

Figure 13. Equivalence of 3D coordinates in browser’s 2D

space.
We need to further define

∆𝑥 = 𝑛𝑒𝑤𝑋 − 𝑜𝑙𝑑𝑋; ∆𝑦 = 𝑛𝑒𝑤𝑌 − 𝑜𝑙𝑑𝑌
When X is the focused axis and the browser’s 2D coordinates x
and y are updated, then we also need to update the following
2D coordinates:

- 𝑂𝑦: 𝑜𝑦. 𝑦 = 𝑜𝑦. 𝑦 − ∆𝑦
- 𝑂𝑧: 𝑜𝑧. 𝑦 = 𝑜𝑧. 𝑦 − ∆𝑥 Idem, when Y is the focused
axis:

- 𝑂𝑥: 𝑜𝑥. 𝑦 = 𝑜𝑥. 𝑦 − ∆𝑦

- 𝑂𝑧: 𝑜𝑥. 𝑥 = 𝑜𝑥. 𝑥 + ∆𝑥
Likewise, when Z is the focused axis:

- 𝑂𝑥: 𝑜𝑥. 𝑥 = 𝑜𝑥. 𝑥 − ∆𝑦

- 𝑂𝑦: 𝑜𝑦. 𝑥 = 𝑜𝑥. 𝑥 + ∆𝑥
Defining and implementing these relationships, we were able to
create an accurate movement on the board, that updates the
positions of all perspectives when an item is moved. The
custom implementation developed to overcome the limitations
of Three.js in integrating 3D object manipulation within a 2D
browser environment represents a

Proceedings of ICUSI 2024

- 170 -

significant advancement in Human-Computer Interaction. By
creating a hybrid coordinate system that accurately correlates
2D and 3D spaces, and by implementing intuitive interaction
techniques such as drag-and-drop using react-draggable,
the approach enhances the usability and accessibility of 3D
content manipulation for a broader range of users. This system
not only ensures consistent object positioning across different
perspectives but also reduces the cognitive load associated
with 3D interactions, contributing to a more seamless and
intuitive user experience. The improvements brought by this
approach underscore the importance of flexible, user-centered
design in HCI, particularly when standard tools fall short, and
pave the way for future developments that could further refine
and extend these interaction capabilities.

CONCLUSION
The final application created is a comprehensive e-learning
platform with multiple modules and functionalities, including
the management of student groups by teachers, the creation
and evaluation of tests, and the development of a 3D space
where both students and teachers can practice configuring
operating rooms. The application's greatest complexity lies in
managing the elements within the 3D space and evaluating test
solutions, but all modules work together to create a cohesive
educational tool. This platform allows students to learn how to
arrange an operating room without physically being in one,
while also helping teachers manage and evaluate their student
groups more efficiently.

In the current version, the application board can display an
operating room from only three perspectives. Future
improvements include expanding the view to allow users to
explore the board from all possible perspectives and enabling
users to draw links between any two points on an instance
rather than being limited to specific connection points.
Additional functionality, such as rotating instances,
incorporating specific operating rooms, and developing
correlation rules between objects to facilitate linking within
objects, would further enhance the application's educational

capabilities. This would allow for more complex placement
rules, not only between objects within the operating rooms but
also about the operating rooms themselves.

In conclusion, the custom implementation of the 3D
manipulation system represents a significant advancement in
HCI within the e-learning context. By addressing the
limitations of existing tools and developing a user-centered
design, the application enhances the usability and accessibility
of 3D content manipulation, ensuring consistent object
positioning across different perspectives and reducing the
cognitive load for users. This approach underscores the
importance of flexibility and user-focused design in HCI,
setting the foundation for future enhancements that could
further refine these interaction capabilities and contribute to
more effective educational experiences.

REFERENCES
1. E.E. Opait, D. Silion, A. Iftene, A., C. Luca, C.

Corciova. (2024). "Mixed Realities Tools Used in
Biomedical Education and Training", In
Proceedings of the 18th International Conference
on INnovations in Intelligent SysTems and
Applications (INISTA 2024), 4-6 September 2024,
Craiova, Romania

2. MongoDB, Inc. (2024). "What Is MongoDB?",
https://www.mongodb.com/company/what-is-
mongodb

3. DigitalOcean, LLC. (2024). "DigitalOcean.
Spaces"
https://www.digitalocean.com/products/spaces

4. GeeksForGeeks (2024). "MVC Design Pattern",
https://www.geeksforgeeks.org/mvc-design-
pattern/

5. SplashLearn, (2024). "Three Dimensional Shapes
(3D Shapes)- Definition, Examples",
https://www.splashlearn.com/math-
vocabulary/geometry/3-dimensional

6. Zustand, (2024). "Introduction. How to use
Zustand", https://docs.pmnd.rs/zustand/getting-
started/introduction

7. B. Simon. (2024). "Become a Three.js developer",
Three.js Journey (2024) https://threejs-journey.com/

