
Proceedings of ICUSI 2024

 - 184 -

Improvement of Software Diagnostics with Advanced
Execution Logging

Andrei-Ionuţ Nicolaev

Transylvania Bank
30-36 Dorobantilor Street
andrei.nicolaev@btrl.ro

Crenguţa-Mădălina Puchianu

Ovidius University
124 Mamaia Blvd.

crenguta.puchianu@365.univ-
ovidius.ro

ABSTRACT
In this paper we present the development process of
the Execution Lens, a software system that solves the
problems of monitoring and re-running the processes
of another application, with the aim of improving its
quality and enhancing bug solving efficiency. The
system consists of two packages intended for
applications developed using C#/.NET and a web
application for viewing and managing data saved for
monitoring. Packages are in use to save the data
needed to be monitored and respectively to be able to
re-execute flows of the host application. The system
was tested from the point of view of usability by a
group of developers with at least one year of
experience in the field. The result of the evaluation
was a good one, the stakeholders being satisfied with
the Execution Lens, finding it useful in the
development of their applications.

Author Keywords
software engineering, software logging
ACM Classification Keywords
H.5.m. Information interfaces and presentation (e.g.,
HCI): Miscellaneous.

DOI: 10.37789/ icusi.2024.27

INTRODUCTION
Due to the increase in the complexity of software
systems, the need to monitor their execution has also
increased. For this reason, log files or execution files
appeared, with the aim of improving their
performance and efficiency.
There are studies ([1] and [2]) that show that code
logging is still in development, a fact reinforced by
the lack of a standard, respectively a guide for logging
practices accepted by the software developer
community. Thus, each developer must rely on
personal experience or intuition to decide what
information is important and where it should be

saved. For example, many developers do not know
how to log information in an application and choose
to do this directly in the source code, which is often
part of the business logic of the application. This
practice must be avoided, because it can lead to
inefficient logging and more difficult debugging of
the application, and instead an independent subsystem
specialized in information logging should be created.

There are cases in software applications where a bug
is hard or even imposible to reproduce, this event
usually happens when logs provide incomplete
information or the system changed its state. Evenmore
in domains like banking where there are applied
penalities on how much time the system went down or
had a semnificative problem, finding the root cause of
the problem and coming with a solution should be
done fast.

This paper proposes the Execution Lens, a software
system for monitoring and re-executing the processes
of another application, which solves those problems
by storing the internal state of the application and re-
executing the process when needed.

The remainder of the paper is organized as follows.
The following section presents some of the models
and software components made during the
development of the system. This section is followed
by Related work that contains a comparison of the
system with two other representative applications in
the field and similar to Execution Lens from the point
of view of the implemented functionalities. Then,
Execution Lens was tested in terms of performance
and validated by a group of developers, and the
results obtained are presented in the Testing and
Validation section. The paper ends with a section of
conclusions and future research.

Development process

Software Analysis
A software actor is a role ''played'' by one or more
individuals (person, team, or organization) or even
another software application in its interactions with
our application. The role is is characterized by a set of
properties and actions which each individual in this
role can exhibit or ''plays'' in the given context [3]. In
the case of the Execution Lens application, we
identified one software actor: developer.

Software Use Case Diagram
The software use case diagram belongs to the
functional model created during the object
analysis activity of a software system. Besides the
software use case diagram, a functional model
contains the description of the software use cases and
their activity diagrams [3].
The software use case diagram is fo
software actors and uses cases and their relations. The
Execution Lens system has the software use case
diagram presented in Figure 1.

Software Design and Implementation
The object-oriented analysis has focused on learning
to ''do the right thing''; that is, the understanding of the
goals for the Execution Lens application, and related
rules and constraints. By contrast, the design work
will stress ''do the thing right'' [3]; that is, skillfully
designing a solution to satisfy the system goals.

The heart of this solution is the creation of the system
software architecture, which contains on high level
the design component and their relations.
Execution Lens contains five software components
(Figure 2) which will be briefly explained below.

Figure 1. The Unified Modeling Language (UML) [4] software

Proceedings of ICUSI 2024

 - 185 -

A software actor is a role ''played'' by one or more
individuals (person, team, or organization) or even
another software application in its interactions with
our application. The role is is characterized by a set of

ach individual in this
role can exhibit or ''plays'' in the given context [3]. In
the case of the Execution Lens application, we
identified one software actor: developer.

The software use case diagram belongs to the
el created during the object-oriented

analysis activity of a software system. Besides the
software use case diagram, a functional model
contains the description of the software use cases and

The software use case diagram is formed by the
software actors and uses cases and their relations. The
Execution Lens system has the software use case

Software Design and Implementation
oriented analysis has focused on learning

ng''; that is, the understanding of the
goals for the Execution Lens application, and related
rules and constraints. By contrast, the design work
will stress ''do the thing right'' [3]; that is, skillfully
designing a solution to satisfy the system goals.

The heart of this solution is the creation of the system
software architecture, which contains on high level
the design component and their relations.
Execution Lens contains five software components
(Figure 2) which will be briefly explained below.

Figure 1. The Unified Modeling Language (UML) [4] software

use case diagram of the Execution Lens system

Figure 2. The UML component diagram of the Execution Lens
system
Our system provides the LogInterface interface
through which the host application un
development or in production, must connect. To
achieve dynamic and non
logging, LogPackage applies the Dynamic Proxy [5]
design model to create a proxy object of the class to
be logged. In this way, function calls can be
intercepted along with their data and the information
can be logged.

To structure the information from methods, we used a
tree-type structure to keep the order of the method
calls. However, as between the input parameters of
the methods and their results there may
methods calls, we used a stack for the temporary
storage of the methods. Thus, when the result
provided by the method is received, the current
method will be removed from the stack and its result
will be added to the tree.

When the program reaches back to the execution start
method and there will be no more calls or instructions
to execute, the tree will be complete, and each of its
nodes will have a reference to the parent node. The
nodes will then be indexed in Elastic Search [6] using
a recursive method. Since we chose to use Elastic
Search for data storage, the creation of the index was
not necessary, it is being created automatically at the
first call of the indexing method. Within the indexing,
we chose to use a single index to keep the
for each node in the tree we created a new document.
At the end of the indexing, the ID of the root node
will be returned, which will be added to the HTTP
request to be used later in case of an error.

In the object-level design of DebugPackage,
used Dynamic Proxy [5] to create a consistency
interceptor of the inputs and outputs of the methods
and then of the proxy objects. To reproduce an
execution, it is necessary to have the ID of a node,
whether it is the root or not, after which a re
method will be called to retrieve the data and rebuild
the tree.

use case diagram of the Execution Lens system

Figure 2. The UML component diagram of the Execution Lens

Our system provides the LogInterface interface
through which the host application under
development or in production, must connect. To
achieve dynamic and non-intrusive information
logging, LogPackage applies the Dynamic Proxy [5]
design model to create a proxy object of the class to
be logged. In this way, function calls can be

ed along with their data and the information

To structure the information from methods, we used a
type structure to keep the order of the method

calls. However, as between the input parameters of
the methods and their results there may be other
methods calls, we used a stack for the temporary
storage of the methods. Thus, when the result
provided by the method is received, the current
method will be removed from the stack and its result

reaches back to the execution start
method and there will be no more calls or instructions
to execute, the tree will be complete, and each of its
nodes will have a reference to the parent node. The
nodes will then be indexed in Elastic Search [6] using

ecursive method. Since we chose to use Elastic
Search for data storage, the creation of the index was
not necessary, it is being created automatically at the
first call of the indexing method. Within the indexing,
we chose to use a single index to keep the data, and
for each node in the tree we created a new document.
At the end of the indexing, the ID of the root node
will be returned, which will be added to the HTTP
request to be used later in case of an error.

level design of DebugPackage, we also
used Dynamic Proxy [5] to create a consistency
interceptor of the inputs and outputs of the methods
and then of the proxy objects. To reproduce an
execution, it is necessary to have the ID of a node,
whether it is the root or not, after which a recursive
method will be called to retrieve the data and rebuild

Proceedings of ICUSI 2024

 - 186 -

Once we have the complete tree, a recursive method
is called, which based on the input parameters, the
class, the methods, the provided result, will
dynamically create the object and create step by step
from the leaf to the root all the dependencies
necessary for re-execution.

The consistency interceptor is a very important
component, because regardless of the values received
by the methods or their results, it will modify them
with the values from the time of the original
execution. In this way, it is ensured that debugging
will be done correctly and the values will be the
correct ones. An important aspect to specify is the fact
that since the data is stored in Elastic Search, in the
form of JSON documents, when the data is retrieved
and deserialized, the object type will be lost. To solve
this problem, we took the types of parameters and
results from the method and converted the values
from JSON into the respective types. When the root
instance is created, the execution start method will be
called and execution debugging will begin.
The Debug Package provides the Debug Interface
through which the tested host application is linked to
the Execution Lens.

Furthermore, the developer can use the front-end of
the Execution Lens system to have access to other
functionalities of the system such as the search
function, viewing the data saved after performing
some searches, viewing the execution times of the
methods, viewing the sequence diagram of a method
execution and viewing the methods that threw
exceptions (Figure 3).
The Execution Lens system offers three ways to
search for data, as can be seen in Figure 4. These will
be briefly presented below.

a) the search in natural language does not
require compliance with a certain format and
performs the search based on the words
written by the user. If no results are obtained,
a message is displayed with the reason for the
failure.

b) search by simple filters such as: the time
period in which the desired classes or
methods were tested or the logs that appeared.
Also, complex filters can be created using the
operators presented in Figure 5. These
operators are applied to the input and output

parameters of the methods and to the searched
logs.

Figure 3. The main menu of the Execution Lens system
c) search by the ID of a log, in case the

developer wants to correlate an action or an
event with the ID of a log. For example, in
the case of a bank transaction, the respective
transaction can have the ID of a log correlated
and thus all the details during the processing
of the transaction can be seen.

Search results can be saved in the database or
exported to files.

Another important aspect is that the system displays
dynamic sequence diagrams of objects that interact
with each other in different scenarios of the tested use
case. For example, Figure 6 shows the sequence
diagram of the objects of the BookReservation use
case, which stops at the ValidateReservation method
because it threw an exception. In this case, the output
of this method will be marked in red and the thrown
exception will also be displayed. More information is
displayed if the user clicks on the marked replay
messages (Figure 7).

The sequence diagrams were implemented using the
mermaid.js [7] and panzoom.js [8] library packages.
The second library was used to allow the user to move
the diagram from one part to another and to enlarge a
part of the diagram.

Another functionality of Execution Lens is the
possibility of re-creating the execution, in order to be

able to troubleshoot any problems that may arise in
the interaction of users with the host application.
When the Replay button is pressed, the execution will
be rebuilt based on the information stored in the
database, after which this execution will be executed,
allowing the developer to debug the code without
having to prepare the environment for reproducing the
error, which often takes time. It's up to each developer
which IDE he/she wants to use for debugging, this not
being a constraint imposed by the system. This feature
is an important one because we get an insight of what
happened on the production environment on a specific
execution use case.

Figure 4. Ways of performing the data search

Figure 5. Graphical interface for creating

Figure 6. Sequence diagram of a scenario in which an exception
occurs

Proceedings of ICUSI 2024

 - 187 -

able to troubleshoot any problems that may arise in
the interaction of users with the host application.
When the Replay button is pressed, the execution will
be rebuilt based on the information stored in the

tion will be executed,
allowing the developer to debug the code without
having to prepare the environment for reproducing the
error, which often takes time. It's up to each developer
which IDE he/she wants to use for debugging, this not

imposed by the system. This feature
is an important one because we get an insight of what
happened on the production environment on a specific

Figure 4. Ways of performing the data search

 search filters

Figure 6. Sequence diagram of a scenario in which an exception

Figure 7. Displaying information about an exception that
occurred in the execution of a scenario

On the backend part of the system for retrieving the
data to be displayed in the graphs, we used Elastic
Search with NEST, a C# client for Elastic Search. We
used filters, aggregation scripts and queries to process
and retrieve the data needed for display. For instance,
Figure 8 shows in pie form the execution times of
each method called during the execution of the
BookReservation method.

Testing and validation

Performance testing
In order to test the performance of Execution Lens,
we used BenchmarkDotNet[9] which is a .NET
library for benchmarking with many features.

With this tool, we designed a benchmark that
measured (in microseconds) the average execution
time, the error and the standard deviation for
scenarios where Execution Lens does not save and
saves logged methods in the database. Having the
error, we calculated the confidence interval according
to the formula [mean-error, mean+error]. We ran
BenchmarkDotNet to provide these values for a
number of 10, 100 and 1000 raw and logged methods.
The raw methods are the basic application methods
that were intercepted by our application.

The results obtained are presented in Table 1. From
the analysis of these values, we can conclude the
following:
- when Execution Lens does not save logged methods
in the database, the application has approximately the
same average execution time as the base application.
- when Execution Lens uses the database, the
performance of the application decreases compared to
the base application, as the number of methods run
increases. Thus, for 100 tested methods, Execution
Lens executes the logged methods 2 times slower than

Figure 7. Displaying information about an exception that
occurred in the execution of a scenario

On the backend part of the system for retrieving the
played in the graphs, we used Elastic

Search with NEST, a C# client for Elastic Search. We
used filters, aggregation scripts and queries to process
and retrieve the data needed for display. For instance,
Figure 8 shows in pie form the execution times of

ch method called during the execution of the
BookReservation method.

Performance testing
In order to test the performance of Execution Lens,
we used BenchmarkDotNet[9] which is a .NET
library for benchmarking with many features.

With this tool, we designed a benchmark that
measured (in microseconds) the average execution
time, the error and the standard deviation for
scenarios where Execution Lens does not save and
saves logged methods in the database. Having the

ted the confidence interval according
error, mean+error]. We ran

BenchmarkDotNet to provide these values for a
number of 10, 100 and 1000 raw and logged methods.
The raw methods are the basic application methods

y our application.

The results obtained are presented in Table 1. From
the analysis of these values, we can conclude the

when Execution Lens does not save logged methods
in the database, the application has approximately the

ution time as the base application.
when Execution Lens uses the database, the

performance of the application decreases compared to
the base application, as the number of methods run
increases. Thus, for 100 tested methods, Execution

gged methods 2 times slower than

Proceedings of ICUSI 2024

 - 188 -

the base application, the ratio being 0.58. Moreover,
for 1000 methods tested, Execution Lens executes the
logged methods 8 times slower than the base
application, the ratio being 0.12.

Usability evaluation
Measuring the quality attribute of usability is a key
factor for any software product [10], particularly for
Execution Lens.
The evaluation of the system was done on a group of
23 developers which evaluated the system. The
respondents have mainly an experience between 1-3
years, but there were also stakeholders with an
experience of less than one year and more than 7
years of work in programming .NET applications.
They completed a questionnaire consisting of 10
questions, which we list in Table 2.
From the analysis of the respondents' answers, we can
conclude that the system has good usability aspects,
which will allow developers to carry out debugging
and monitoring activities faster and more efficiently.

RELATED WORK
At this moment, there is a limited number of
applications and libraries on the market to satisfy the
requirements of all developers. For this reason, this
gap represents an opportunity for new applications
and libraries to come up with better and more efficient
solutions.

In this subsection, we will present some of the rival
applications and libraries that promise to fulfill the
basic requirements in this field.

Serilog
Serilog is a popular framework for structured logging
in .NET, with over 1.2 billion downloads [11]. It has
gained popularity because it is easy to install and does
not require additional configurations to start saving
information, but it also comes with a wide range of
extensions and configurations such as enriching the
logs with information, and such as the machine on
running application, application environment, threads,
client data and more.

An advantage that the framework offers is that it
offers the possibility to log the information in batches
to reduce the number of operations and to increase the
performance of the application.

UndoDB [12] is a code execution monitoring
application that provides the ability to monitor and
revert to the state of the application during runtime.
This application is used by developers to find and fix

bugs that cannot be consistently reproduced or to
better understand how the application works at
runtime.

Figure 8. Execution time graph of the BookReservation method

Utilizability questionnaire
What functionalities of the system do you prefer?
Does the system have all the expected
functionalities?
How do you rate the overall UI of the system?
How much do you think this system makes your
work as a developer more efficient?
Have you encountered any execution problems
(errors, blockages or delays) of the application?
How much would you use the application in the
projects you are working on?
Do you consider that the application is intuitive and
easy to use?
Would you recommend the application to other
developers?
Please write 3 things you liked about this system.
Please write 3 things you did not like about this
system.

Table 2. The questionnaire used in the usability testing of the
Execution Lens system

UndoDB
The notable benefit that the application brings is the
reduction of the time needed to prepare the system for
reproducing the bug and for finding it. UndoDB
allows memory inspection, conditional breakpoints,
monitoring points, variable inspection, all of which
are available during runtime, both continuing
execution and returning to a previous point. Execution
debugging is available in the application's own
interface, as well as in IDEs such as Visual Studio or

Proceedings of ICUSI 2024

 - 189 -

Eclipse by installing the UndoDB extension.

Comparativ table
Each of the applications presented above fulfills
certain functions also present in Execution Lens, but
none of them offers all the desired functionalities. The
Table 3 shows the key features of Execution Lens and
of the two applications described above.
Functionality Executio

n Lens
Serilo
g

UndoD
B

Information
logging

Reproduction of
executions

Data visualization
Detailed view of
exceptions

Viewing the
execution times of
the functions

Detailed view of
the execution

Notifications in
specified cases

Correlation of an
execution with a
log

Writing logs in
batches

Table 3. Comparison of the Execution Lens application with
two other similar applications

Conclusion and future work
Based on the conducted experiments on voluntary
subjects the Execution Lens system presented in this
paper proved that it is a useful tool for developers in
order to make the debugging and monitoring process
of the applications that they develop more efficient.

We will continue to enhance its functionality by
adding other requirements, such as: obfuscation of
personal data, implementation of packages for
asynchronous applications, training of automatic
learning models for determining abnormal executions,

and migration to several types of applications
developed in C#/.NET.

REFERENCES
10. Pecchia, A., Cinque, M., Carrozza, G., and Cotroneo, D.

Industry practices and event logging: Assessment of a
critical software development process. In 2015
IEEE/ACM 37th IEEE International Conference on
Software Engineering, vol. 2, 169–178. IEEE, (2015).

11. Fu, Q., Zhu, J., Hu, W., Lou, J-G, Ding, R, Lin, Q.,
Zhang, D., and Xie, T. Where do developers log? An
empirical study on logging practices in industry.
Proceedings of the 36th International Conference on
Software Engineering, 24–33. ACM, (2014).

12. Pressman, R. S., Software Engineering. A Practitioner's
Approach, McGraw-Hill Publishing Company, (2000).

13. OMG, Unified Modelling Language, version 2.5.1,
https://www.omg.org/spec/UML/, (2017).

14. Freeman, E., Hupfer, S. and Arnold, K. JavaSpaces
Principles, Patterns, and Practice. Addison-Wesley
Professional, (2004).

15. Elastic.co. Elastic search,

https://www.elastic.co/guide/en/elasticsearch/reference/
7.17/index.html.

16. Mermaid diagramming and charting tool,
https://mermaid.js.org/

17. Panning-zooming-any-elements,

https://www.jqueryscript.net/zoom/jQuery-Plugin-For-
Panning-Zooming-Any-Elements-panzoom.html

18. .NET foundation, BenchmarkDotNet,
https://benchmarkdotnet.org/

19. Abran, A., Khelifi, A., Witold, S., Seffah, A. Usability
Meanings and Interpretations in ISO Standards, Journal
of Software Quality, 11(4), 325-338, (2003).

20. Serilog, http://nuget.org/packages/Serilog/4.0.1-dev-
02205

21. UndoDB, Undo,

https://undo.io/resources/undodb-reversible-debugging-
tool-linux-and-android

Proceedings of ICUSI 2024

- 190 -

Number of
intercepted

methods

The
kind of
method

Without
persistence

99% confidence
interval

StdDev
With

persistence
99% confidence

interval
StdDev

10

raw 995.8 ms
983.43

ms
1008.17

ms
10.96

ms 972.1 ms
962.62

ms
981.58

ms
7.91
ms

logged 994.7 ms
977.88

ms
1011.52

ms
15.74

ms 1067.8 ms
1051.1

ms
1084.5

ms
14.8
ms

ratio 1.001105861 0.910376475

100

raw 1008.6 ms
993.53

ms
1023.67

ms
13.36

ms 958.1 ms
949.19

ms
967.01

ms 7.9 ms

logged 991.8 ms
973.04

ms
1010.56

ms
19.27

ms 1640.3 ms
1669.26

ms
1669.26

ms
43.35

ms

ratio 1.016938899 0.584100469

1000

raw 1014.6 ms
998.9

ms
1030.3

ms
14.68

ms 983.3 ms
969.72

ms
996.88

ms
11.34

ms

logged 1111.1 ms
1098.58

ms
1123.62

ms
11.1
ms 7735.8 ms

7625.6
ms

7846
ms

86.04
ms

 ratio 0.913149131 0.127110318
Table 1. The results of testing the performance of the Execution

Lens system in relation to the basic application

