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ABSTRACT 
In this paper, we propose a flow engineering-based approach 
for improving the generation of solutions for math problems in 
the case of general content generative Natural Language 
Processing (NLP) models such as OpenAI GPT-4 and Google 
Gemini. Flow engineering makes use of a mix of prompt 
engineering techniques and has been recently proposed as a 
solution to improve code generation for transformer models. 
To test the performance of our proposed approach we use a 
subset of one of the most challenging datasets for mathematical 
solving, MATH, for which top transformer models exhibit 
accuracy up to 70%. Additionally, we aim to create a 
framework for generating highly accurate solutions and 
automating the correctness testing process of solutions. 
Advancing AI research by improving GPT models in 
mathematical problem-solving can increase the robustness and 
versatility of AI. This advancement facilitates interdisciplinary 
research and promotes collaboration across different fields 
including the design of efficient chat interfaces, unlocking 
limitless potential applications. 
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INTRODUCTION 
In recent years, Generative Pre-trained Transformer (GPT) 
models have revolutionized natural language processing 
(NLP). Despite their impressive advancements, their 
capabilities in solving mathematical problems remain relatively 
limited. As the popularity and usage of artificial intelligence 
(AI) continues to grow among both specialists and general 
users, improving the mathematical capabilities of GPT models 
holds significant potential. 
 
This study aims to explore various techniques to enhance GPT 
models' performance in solving mathematical problems by 
developing a framework based on existing approaches and 
research in AI interaction. The primary objective of this project 
is to improve GPT transformers by creating a general 
process to enhance the accuracy of 

solving mathematical problems. Considering the attention on 
improving AI models through specialized training, new 
datasets, and innovative techniques, this is an opportune 
moment for delving into new solutions. Another significant 
aspect is the high cost associated with training or retraining 
new and existing GPT models for specific purposes. In 
contrast, significant results can be achieved with much lower 
costs through prompt engineering. 
Improving GPT-powered chat interfaces for mathematical 
solving is an important feature for providing an enhanced 
usability and trust in these systems. Moreover, the proposed 
method using flow engineering has several steps that are 
similar to human solving and thus provide better explainability 
– which is another important attribute for improving usability 
and allowing such solutions to be used by novices as well as 
proficient maths users. 
 
The main goal is to develop an automated process for 
generating solutions to various categories of mathematical 
problems and to measure the accuracy of the provided 
solutions. This involves three key components: 

1. Dataset: Selecting a subset of problems from the 
MATH dataset created by Hendrycks et al. [1], 
ensuring an equal number of problems from each 
category and difficulty level. 

2. Correctness Testing System: Developing a solution 
to verify the correctness of generated answers based 
on metrics and GPT models. 

3. Solution Generation Flow: Combining techniques 
like prompt engineering, chain-of-thought, and 
enhanced reasoning into a single flow to improve 
GPT models' performance and accuracy in solving 
mathematical problems. This method, named Flow 
Engineering for Mathematical Problems (FEMP), has 
been inspired by latest research in code generation 
with pre-trained transformers, and we have adapted it 
for mathematical problems. 

 
RELATED WORK 

In this section, we provide a summary of several major 
prompting methods and concepts on which our study is based. 



 

 

Flow Engineering, introduced by Ridnik et al. [2], is an 
iterative approach to prompt engineering designed to generate 
accurate code solutions. It involves a multi
partially correct solutions are iteratively refined through error 
correction and validation against extensive test sets. Key stages 
include understanding the problem, generating potential 
solutions, ranking them, and creating additi
tests. 
 
This method outlines several prompt design concepts to 
improve the performance of prompt engineering
Engineering process. These include structured semantic 
argumentation, which organizes responses into
clarity; double validation, where models regenerate results
correct errors; avoiding direct questions
hallucinations and promote deep thinking and reasoning. These 
strategies enhance the logical structuring, accuracy, and 
robustness of the generated solutions. 
 
The Chain-of-Thought (CoT) technique, introduced by Wei et 
al. [3], improves the reasoning capabilities of LLMs by 
breaking down complex problems into manageable 
intermediate steps. This method enhances interpretability
providing insights into the model’s reasoning, facilitates error
correction, and is versatile across various
mathematics and symbolic manipulation. CoT is easily 
implemented by including reasoning step examples in prompts, 
significantly enhancing performance on complex tasks without 
the need for retraining. 
 
Self-Discovering Reasoning [4] is a two-
mirrors human problem-solving by leveraging previously 
accumulated knowledge. The first stage, discovering specific 
problem structures, involves selecting, adapting, and 
implementing modules of logical reasoning. The
uses these structures to address the problem through
prompts. This method aims to utilize 
 

 
 

Figure 1. Flow
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, introduced by Ridnik et al. [2], is an 
iterative approach to prompt engineering designed to generate 

ulti-step process where 
partially correct solutions are iteratively refined through error 
correction and validation against extensive test sets. Key stages 
include understanding the problem, generating potential 
solutions, ranking them, and creating additional AI-generated 

This method outlines several prompt design concepts to 
engineering in the Flow 

Engineering process. These include structured semantic 
organizes responses into bullet points for 

clarity; double validation, where models regenerate results to 
questions to prevent 

hallucinations and promote deep thinking and reasoning. These 
strategies enhance the logical structuring, accuracy, and 

(CoT) technique, introduced by Wei et 
al. [3], improves the reasoning capabilities of LLMs by 
breaking down complex problems into manageable 
intermediate steps. This method enhances interpretability by 

insights into the model’s reasoning, facilitates error 
various tasks such as 

mathematics and symbolic manipulation. CoT is easily 
implemented by including reasoning step examples in prompts, 

ormance on complex tasks without 

-stage approach that 
solving by leveraging previously 

accumulated knowledge. The first stage, discovering specific 
nvolves selecting, adapting, and 

implementing modules of logical reasoning. The second stage 
uses these structures to address the problem through guided 

 

reflective or critical thinking modules to adapt and apply them 
effectively for solving specific tasks.
 
Multi-Agent System for Condition Mining 
by Lei et al. [5] shifts traditional prompt engineering to a 
condition-based problem-solving framework. It employs three 
agents - Thinker, Judge, and Executor 
identify conditions and solve problems. The Thinker generates
and plans the solution, the Judge verifies conditions, and the 
Executor performs calculations. MACM standardizes 
responses and enhances performance, although it increases 
computational calls and operational costs. This approach is 
notable for its ability to generalize prompts across different 
problem types. 
 

PROPOSED SOLUTION 
As mentioned before, the primary goal of this study was to 
develop an adaptive framework for solving 
problems. Based on the presented methods, we aim to
and adapt Flow Engineering to a specialized form to boost the 
maths solving abilities of GPTs such as OpenAI GPT
Google Gemini 1.5 Pro. 
 
The main challenge in implementing Flow 
inspired by the one designed for problem
science, was transitioning from modular code writing and
thinking to approaching mathematical
solution draws from how humans tackle
understanding the problem statement, extracting relevant 
observations, using these to derive new knowledge, and 
formulating a solution once sufficient details are gathered, an 
idea echoed by Lei et al. [5]. 
 
Based on all this information, we devised the interactive 
prompting system presented in Figure 1, which is an adaptation 
of Flow Engineering for Mathematical Problems (FEMP).

 

Flow Engineering steps involved in solving mathematical problems.

reflective or critical thinking modules to adapt and apply them 
effectively for solving specific tasks. 

Agent System for Condition Mining (MACM) proposed 
by Lei et al. [5] shifts traditional prompt engineering to a 

solving framework. It employs three 
Thinker, Judge, and Executor - who collaborate to 

identify conditions and solve problems. The Thinker generates 
the solution, the Judge verifies conditions, and the 

Executor performs calculations. MACM standardizes 
responses and enhances performance, although it increases 

mputational calls and operational costs. This approach is 
notable for its ability to generalize prompts across different 

As mentioned before, the primary goal of this study was to 
develop an adaptive framework for solving mathematical 
problems. Based on the presented methods, we aim to create 
and adapt Flow Engineering to a specialized form to boost the 
maths solving abilities of GPTs such as OpenAI GPT-4o and 

The main challenge in implementing Flow Engineering, 
inspired by the one designed for problem-solving in computer 
science, was transitioning from modular code writing and 
thinking to approaching mathematical problems similarly. The 
solution draws from how humans tackle these problems: 

ing the problem statement, extracting relevant 
observations, using these to derive new knowledge, and 
formulating a solution once sufficient details are gathered, an 

 

Based on all this information, we devised the interactive 
prompting system presented in Figure 1, which is an adaptation 
of Flow Engineering for Mathematical Problems (FEMP). 

problems. 



Proceedings of ICUSI 2024 

- 194 - 

 

 

The flow ensures a systematic, iterative approach to solving 
mathematical problems, leveraging structured observation, 
validation, and incremental knowledge accumulation to 
produce accurate and robust solutions. These are steps of the 
logical structure for the flow, based on which the prompts are 
designed: 
 

1. Extracting Observations and Problem Objective: 
This step involves the SELECT phase from the Self- 
Discovering Reasoning technique, guiding the model 
to focus on mathematical task-solving, functioning as 
a Thinker from MACM. 

2. Deducing a New Observation: This step involves 
ADAPT phase from Self-Discovering Reasoning, the 
model formulates a single observation based on 
previous knowledge and observations, aligning with 
suggestion of Ridnik et al. [2] for gradual information 
accumulation. 

3. Validating the Observation: This step includes two 
stages: testing an observation's correctness and 
attempting its correction. The first stage involves 
double validation of the model's decisions through an 
AI quorum to limit bias. If deemed relevant, the 
observation is added to a list of valid observations. If 
irrelevant, it proceeds to correction attempts. The 
quorum functions similarly to a Judge in MACM. 

4. Testing Sufficiency of Observations for Objective 
Achievement: To stop the loop from generating 
observations, the AI quorum checks if the 
observations are sufficient to formulate a solution after 
generating a new one, akin to the Judge's role in 
MACM. 

5. Generating a Solution: Once enough observations are 
collected, the model formulates a detailed step-by-step 
solution, performs necessary calculations, and 
provides a final answer tagged \boxed{answer}. 
Unlike MACM, here the Executor's role combines 
with the Thinker to reduce inference calls and 
operational costs. 

6. Reverifying the Solution: Based on the double- 
checking principle introduced by Ridnik et al. [2], this 
step involves correcting any potential errors in the 
final solution by rechecking it against the overall 
problem, observations, and objective. 

To design effective prompts for Flow Engineering, each step 
of the process was assigned a specialized prompt, tailored to 
the specific needs of that phase. These prompts were 
categorized into two main types: generation prompts and 
verification prompts. 
 
Generation prompts guide the model to produce a response by 
specifying the task, formatting and reasoning constraints, and 
including optional examples to demonstrate the expected 
format. The structure of such prompts is shown in Figure 2. 

 

Figure 2. Generation prompt structure 
Verification prompts, outlined in Figure 3, focus on validating 
the responses by prompting the model to analyse truth values, 
guiding it to answer with YES/NO or true/false. Both types of 
prompts are formatted using Python's triple-quotes to allow for 
the dynamic insertion of relevant problem details, ensuring 
clarity and consistency throughout the Flow Engineering 
process. 
 

Figure 3. Verification prompt structure 
Both types of prompts are formatted using Python's triple- 
quotes to allow for the dynamic insertion of relevant problem 
details, ensuring clarity and consistency throughout the Flow 
Engineering process. 
 

DIRECT PROMPTING 
To establish a baseline for comparison, each model was also 
run using Direct Prompting, where the model is directly asked 
to provide a solution for each problem in the dataset. For this 
implementation, a simple prompt was used, containing 
minimal context specifying the problem, its category, and 
difficulty level. The prompt also instructed the model to 
explain the solution step-by-step, ensuring that intermediate 
operations were performed in a logical sequence. 
 
The prompt is composed of two parts: role and question. The 
role prompt provides context for the conversation, specifying 
the problem category and difficulty, and explaining how the 
problem should be approached, followed by the actual request 
for the solution. 



 

 

TESTING CORECTNESS 
To establish an automated method for testing the
of solutions generated by GPT models, we considered the 
following three strategies. 
 

1. Result Testing 
This strategy leverages the fact that the MATH dataset 
problems  include  the  final  answer
\boxed{answer}. All models were prompted
their final answer in this format. Using regular expressions, the 
final answer can be extracted and verified against the provided 
solution. This verification serves as an accuracy metric for the 
tested model. By ensuring the format consiste
easily compare the expected and generated answers to gauge 
correctness. 

2. Similarity Degree via Levenshtein
The Levenshtein distance was chosen for evaluating the 
correctness of model-generated solutions due to its ability
quantify the similarity between two texts by measuring the 
minimum number of single-character edits (insertions, 
deletions, or substitutions) required to transform one string into 
another. This metric provides an intuitive and comprehensive 
measure of textual similarity, making it well
comparing the accuracy of generated solutions against correct 
ones. Additionally, the Levenshtein distance can be 
normalized to offer standardized and easily interpretable 
scores, and it can be combined with other similarity 
like the Longest Common Subsequence (LCS) for a more 
nuanced evaluation. We decided to test this approach by 
computing and checking the following similarity degrees 
proposed by Zhang, Hu and Bian [6] for two string S and T:

 𝑆𝑖𝑚1(𝑆,𝑇)  =  1  −  ld(S,T)  /  max(
𝑚=𝑙𝑒𝑛(𝑆), 𝑛=𝑙𝑒𝑛(𝑇) and ld(S,T)=Levenshtein distance of S 
and T 
 𝑆𝑖𝑚2(𝑆,𝑇) = 1 − 𝑙𝑑(S,T) / (𝑙𝑑 (S,T) 

where lcs(S,T)=lowest common 
and T 

 

3. Correctness Testing via AI Quorum
Inspired by the approaches of Zhou et al. [4] and Lei Bin in 
MACM [5], this strategy takes advantage of the strong textual 
and contextual analysis capabilities of contemporary AI 
models. To minimize false positives when two solutions 
present the same idea overall, we assembled a quorum 
comprising the following three models: 

 Llama3-70b: With 70 billion parameters, Llama3
70b offers deep understanding and high accuracy, 
reducing the likelihood of false positives due to its 
robust analytical capabilities. 
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To establish an automated method for testing the correctness 
of solutions generated by GPT models, we considered the 

This strategy leverages the fact that the MATH dataset 
answer  marked  with 

boxed{answer}. All models were prompted to encapsulate 
their final answer in this format. Using regular expressions, the 
final answer can be extracted and verified against the provided 
solution. This verification serves as an accuracy metric for the 
tested model. By ensuring the format consistency, we can 
easily compare the expected and generated answers to gauge 

Levenshtein Distance 
The Levenshtein distance was chosen for evaluating the 

generated solutions due to its ability to 
e similarity between two texts by measuring the 

character edits (insertions, 
deletions, or substitutions) required to transform one string into 
another. This metric provides an intuitive and comprehensive 

ity, making it well-suited for 
comparing the accuracy of generated solutions against correct 

Levenshtein distance can be 
normalized to offer standardized and easily interpretable 
scores, and it can be combined with other similarity measures 
like the Longest Common Subsequence (LCS) for a more 
nuanced evaluation. We decided to test this approach by 
computing and checking the following similarity degrees 
proposed by Zhang, Hu and Bian [6] for two string S and T: 

max(𝑚,𝑛);  where 
) and ld(S,T)=Levenshtein distance of S 

(S,T) + 𝑙𝑐𝑠(S,T)); 
 subsequence of S 

Quorum 
Inspired by the approaches of Zhou et al. [4] and Lei Bin in 
MACM [5], this strategy takes advantage of the strong textual 
and contextual analysis capabilities of contemporary AI 
models. To minimize false positives when two solutions 

overall, we assembled a quorum 

70b: With 70 billion parameters, Llama3- 
70b offers deep understanding and high accuracy, 
reducing the likelihood of false positives due to its 

 GPT-3.5-turbo: Known
ability and performance in natural language 
processing and superior contextual generation 
capabilities, this model ensures consistency and 
avoids interpretation errors. It also offers a lower 
usage cost compared to m
from OpenAI. 

 Gemini 1.5 Pro: Featuring recent innovations and 
adaptability in context understanding, this model 
excels in handling complex scenarios due to its 
specialization in specific tasks.

 
RESULTS 

Dataset 
To evaluate the performance of the solution, 105 math 
problems from the MATH dataset [1] were selected, covering 
seven categories: Geometry, Algebra, Probability, Prealgebra, 
Precalculus, Intermediate Algebra, and Number Theory. The 
MATH dataset classifies problems into f
To achieve significant results, a greater number
difficulty problems were 
problems were selected, distributed according to their difficulty 
levels as shown in Figure 4. The main reason for sele
smaller subset of the MATH dataset was both for ensuring a 
good coverage and also for
evaluation. 
 

Figure 4. Distribution of 
category of the dataset

 
Evaluation of Correctness

In this section, we will present why we considered the best 
metric for verifying model accuracy to be the comparison
the generated solution with
quorum. 
First, as observed in Table 1, which presents the average
similarity scores for both formulas based of Levenshtein 
Distance, it is evident that regardless of the model or strategy 
used (Direct Prompting or Flow Engineering), the average 
similarity scores are too low to be relevant. This indicates that 
this method is inefficient for verifying the correctness of 
solutions. 

Known for its demonstrated 
ability and performance in natural language 
processing and superior contextual generation 

this model ensures consistency and 
avoids interpretation errors. It also offers a lower 
usage cost compared to more advanced models 

Gemini 1.5 Pro: Featuring recent innovations and 
adaptability in context understanding, this model 
excels in handling complex scenarios due to its 
specialization in specific tasks. 

performance of the solution, 105 math 
problems from the MATH dataset [1] were selected, covering 
seven categories: Geometry, Algebra, Probability, Prealgebra, 
Precalculus, Intermediate Algebra, and Number Theory. The 
MATH dataset classifies problems into five difficulty levels. 
To achieve significant results, a greater number of higher 

 chosen. For each category, 15 
problems were selected, distributed according to their difficulty 
levels as shown in Figure 4. The main reason for selecting a 
smaller subset of the MATH dataset was both for ensuring a 
good coverage and also for reducing the costs of the 

 problems by difficulty level per 
category of the dataset 

Correctness Methods Performance 
In this section, we will present why we considered the best 
metric for verifying model accuracy to be the comparison of 

solution with the correct one through an AI 

First, as observed in Table 1, which presents the average 
similarity scores for both formulas based of Levenshtein 
Distance, it is evident that regardless of the model or strategy 
used (Direct Prompting or Flow Engineering), the average 
similarity scores are too low to be relevant. This indicates that 

d is inefficient for verifying the correctness of 
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Table 1. Average similitude scores based on Levenshtein Distance 
by Model per Strategy 
 
Secondly, regarding the final answer verification extracted 
through regular expressions from the Flow Engineering 
responses executed on each model, Figure 5 shows a strong 
correlation between the AI quorum's truth value and the actual 
response. This correlation confirms the high performance of 
the quorum in identifying whether a solution is indeed correct. 
The presence of false positives indicates that GPT models are 
not always able to formulate an answer identical to the official 
solution due to interpretation or presentation aspects, while the 
quorum detects these discrepancies. 
 

Figure 5. Heatmap to highlight correlation between AI 
Quorum Correctness and Final Answer for Math 

Problems 
A good example extracted from the model responses in the 
case of false positives is when the solution used the infinity 
sign (∞) encoded in UTF-8, while the official solution wrote 
"infinity," making it impossible to detect only through regular 
expressions. Another commonly encountered example was the 
difference between presenting fractions as they are or in 
decimal form. 
An important aspect is the absence of false negatives, which 
reinforces the assertion that the AI quorum is the most capable 
of detecting the correctness of a solution. 

Solution Performance 
In evaluating the performance of the models based on the 
chosen strategies, Table 2 presents the accuracy (percentage of 
problems solved) of the two models based on the strategy used. 
The GPT-4o model has shown a raise of 4,2% which is 
considerable when the best obtained on MATH dataset 
provided a raise of around 20% in MACM [5]. On the 
contrary, the Gemini-1.5 Pro presented a decrease in 

performance when using the Flow Engineering, this will be 
elaborated further when analysing the distribution of solved 
problems for each model. 
As shown in Figure 6, when moving from the Direct 
Prompting to Flow Engineering, the Gemini-1.5 Pro presents 
inconsistency by being unable to maintain the problem solved 
with the simpler approach. This is caused by the extensive 
number of prompts and elaborate thinking process implied by 
the interactive system of FEMP. Another cause may also be 
the fact that this study was based on many solutions and 
approaches tailored for the GPT-4 from OpenAI. 

Table 2. Accuracy (%) comparison by Model per Strategy on the 
test dataset  

 

Figure 6. Distribution of solved problems by Gemini-1.5 
Pro 

In contrast with Gemini, GPT-4o has shown the potential of 
FEMP having the increase in accuracy and the consistency 
when passing between the two strategies, as presented. The 
raise of performance is the result of the increased number of 
difficult problems of at least level 3. This is an important 
aspect for the Flow Engineering which proves the benefits it 
could add to improving the abilities of solving mathematical 
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problems for GPTs through prompt engineering. 

 
Figure 7: Distribution of solved problems by GPT-4o 

 
CONCLUSION 

The implementation of Flow Engineering has demonstrated its 
potential to enhance the performance of GPT models in solving 
complex mathematical problems. Notably, Flow Engineering 
has been particularly effective in addressing problems with 
difficulty levels above 3, especially in categories such as 
Algebra, Number Theory, and Probability. 
 
Flow Engineering prompts were optimized based on GPT- 4’s 
capabilities, which may have contributed to performance 
inconsistencies in other models. GPT-4o remained relatively 
consistent across both Direct Prompting and Flow Engineering 
due to these optimizations. However, the  small  and  
randomly  selected  dataset  introduced variability in results, 
indicating a need for a more selective and extensive dataset for 
stable and deterministic outcomes. 
 

FUTURE RESEARCH DIRECTIONS 
To further enhance the proposed solution, several avenues for 
future research and improvements have been identified. 
Extending Flow Engineering by exploring new approaches that 
leverage the strengths of each model and testing and 
integrating new models and techniques, such as Tree-of- 
Thought (TOT) [7] and Graph-of-Thought (GOT) [8], could 
lead to significant advancements.

Improving the dataset and testing methods is another critical 
area. Expanding the dataset to provide a comprehensive 
overview of Flow Engineering’s improvements and developing 
a more qualitative selection of problem distributions would 
result in more reliable outcomes. Optimizing execution 
methods by replacing static synchronization with automated 
detection to handle rate limits more efficiently is also crucial. 
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