
Proceedings of ICUSI 2024

- 192 -

Improved Maths Solving Abilities for Transformers Using
Flow Engineering

Nicolae-Robert Lincă, Traian Rebedea

National University of Science and Technology Politehnica of Bucharest
linca_robert@yahoo.com, traian.rebedea@upb.ro

ABSTRACT
In this paper, we propose a flow engineering-based approach
for improving the generation of solutions for math problems in
the case of general content generative Natural Language
Processing (NLP) models such as OpenAI GPT-4 and Google
Gemini. Flow engineering makes use of a mix of prompt
engineering techniques and has been recently proposed as a
solution to improve code generation for transformer models.
To test the performance of our proposed approach we use a
subset of one of the most challenging datasets for mathematical
solving, MATH, for which top transformer models exhibit
accuracy up to 70%. Additionally, we aim to create a
framework for generating highly accurate solutions and
automating the correctness testing process of solutions.
Advancing AI research by improving GPT models in
mathematical problem-solving can increase the robustness and
versatility of AI. This advancement facilitates interdisciplinary
research and promotes collaboration across different fields
including the design of efficient chat interfaces, unlocking
limitless potential applications.

Author Keywords
Natural Language Processing; Chat Interfaces; Mathematical
Reasoning; Transformers; Flow Engineering.

ACM Classification Keywords
I.2.7 Natural Language Processing: Text analysis.
DOI: 10.37789/ icusi.2024.28

INTRODUCTION
In recent years, Generative Pre-trained Transformer (GPT)
models have revolutionized natural language processing
(NLP). Despite their impressive advancements, their
capabilities in solving mathematical problems remain relatively
limited. As the popularity and usage of artificial intelligence
(AI) continues to grow among both specialists and general
users, improving the mathematical capabilities of GPT models
holds significant potential.

This study aims to explore various techniques to enhance GPT
models' performance in solving mathematical problems by
developing a framework based on existing approaches and
research in AI interaction. The primary objective of this project
is to improve GPT transformers by creating a general
process to enhance the accuracy of

solving mathematical problems. Considering the attention on
improving AI models through specialized training, new
datasets, and innovative techniques, this is an opportune
moment for delving into new solutions. Another significant
aspect is the high cost associated with training or retraining
new and existing GPT models for specific purposes. In
contrast, significant results can be achieved with much lower
costs through prompt engineering.
Improving GPT-powered chat interfaces for mathematical
solving is an important feature for providing an enhanced
usability and trust in these systems. Moreover, the proposed
method using flow engineering has several steps that are
similar to human solving and thus provide better explainability
– which is another important attribute for improving usability
and allowing such solutions to be used by novices as well as
proficient maths users.

The main goal is to develop an automated process for
generating solutions to various categories of mathematical
problems and to measure the accuracy of the provided
solutions. This involves three key components:

1. Dataset: Selecting a subset of problems from the
MATH dataset created by Hendrycks et al. [1],
ensuring an equal number of problems from each
category and difficulty level.

2. Correctness Testing System: Developing a solution
to verify the correctness of generated answers based
on metrics and GPT models.

3. Solution Generation Flow: Combining techniques
like prompt engineering, chain-of-thought, and
enhanced reasoning into a single flow to improve
GPT models' performance and accuracy in solving
mathematical problems. This method, named Flow
Engineering for Mathematical Problems (FEMP), has
been inspired by latest research in code generation
with pre-trained transformers, and we have adapted it
for mathematical problems.

RELATED WORK

In this section, we provide a summary of several major
prompting methods and concepts on which our study is based.

Flow Engineering, introduced by Ridnik et al. [2], is an
iterative approach to prompt engineering designed to generate
accurate code solutions. It involves a multi
partially correct solutions are iteratively refined through error
correction and validation against extensive test sets. Key stages
include understanding the problem, generating potential
solutions, ranking them, and creating additi
tests.

This method outlines several prompt design concepts to
improve the performance of prompt engineering
Engineering process. These include structured semantic
argumentation, which organizes responses into
clarity; double validation, where models regenerate results
correct errors; avoiding direct questions
hallucinations and promote deep thinking and reasoning. These
strategies enhance the logical structuring, accuracy, and
robustness of the generated solutions.

The Chain-of-Thought (CoT) technique, introduced by Wei et
al. [3], improves the reasoning capabilities of LLMs by
breaking down complex problems into manageable
intermediate steps. This method enhances interpretability
providing insights into the model’s reasoning, facilitates error
correction, and is versatile across various
mathematics and symbolic manipulation. CoT is easily
implemented by including reasoning step examples in prompts,
significantly enhancing performance on complex tasks without
the need for retraining.

Self-Discovering Reasoning [4] is a two-
mirrors human problem-solving by leveraging previously
accumulated knowledge. The first stage, discovering specific
problem structures, involves selecting, adapting, and
implementing modules of logical reasoning. The
uses these structures to address the problem through
prompts. This method aims to utilize

Figure 1. Flow

Proceedings of ICUSI 2024

- 193 -

, introduced by Ridnik et al. [2], is an
iterative approach to prompt engineering designed to generate

ulti-step process where
partially correct solutions are iteratively refined through error
correction and validation against extensive test sets. Key stages
include understanding the problem, generating potential
solutions, ranking them, and creating additional AI-generated

This method outlines several prompt design concepts to
engineering in the Flow

Engineering process. These include structured semantic
organizes responses into bullet points for

clarity; double validation, where models regenerate results to
questions to prevent

hallucinations and promote deep thinking and reasoning. These
strategies enhance the logical structuring, accuracy, and

(CoT) technique, introduced by Wei et
al. [3], improves the reasoning capabilities of LLMs by
breaking down complex problems into manageable
intermediate steps. This method enhances interpretability by

insights into the model’s reasoning, facilitates error
various tasks such as

mathematics and symbolic manipulation. CoT is easily
implemented by including reasoning step examples in prompts,

ormance on complex tasks without

-stage approach that
solving by leveraging previously

accumulated knowledge. The first stage, discovering specific
nvolves selecting, adapting, and

implementing modules of logical reasoning. The second stage
uses these structures to address the problem through guided

reflective or critical thinking modules to adapt and apply them
effectively for solving specific tasks.

Multi-Agent System for Condition Mining
by Lei et al. [5] shifts traditional prompt engineering to a
condition-based problem-solving framework. It employs three
agents - Thinker, Judge, and Executor
identify conditions and solve problems. The Thinker generates
and plans the solution, the Judge verifies conditions, and the
Executor performs calculations. MACM standardizes
responses and enhances performance, although it increases
computational calls and operational costs. This approach is
notable for its ability to generalize prompts across different
problem types.

PROPOSED SOLUTION
As mentioned before, the primary goal of this study was to
develop an adaptive framework for solving
problems. Based on the presented methods, we aim to
and adapt Flow Engineering to a specialized form to boost the
maths solving abilities of GPTs such as OpenAI GPT
Google Gemini 1.5 Pro.

The main challenge in implementing Flow
inspired by the one designed for problem
science, was transitioning from modular code writing and
thinking to approaching mathematical
solution draws from how humans tackle
understanding the problem statement, extracting relevant
observations, using these to derive new knowledge, and
formulating a solution once sufficient details are gathered, an
idea echoed by Lei et al. [5].

Based on all this information, we devised the interactive
prompting system presented in Figure 1, which is an adaptation
of Flow Engineering for Mathematical Problems (FEMP).

Flow Engineering steps involved in solving mathematical problems.

reflective or critical thinking modules to adapt and apply them
effectively for solving specific tasks.

Agent System for Condition Mining (MACM) proposed
by Lei et al. [5] shifts traditional prompt engineering to a

solving framework. It employs three
Thinker, Judge, and Executor - who collaborate to

identify conditions and solve problems. The Thinker generates
the solution, the Judge verifies conditions, and the

Executor performs calculations. MACM standardizes
responses and enhances performance, although it increases

mputational calls and operational costs. This approach is
notable for its ability to generalize prompts across different

As mentioned before, the primary goal of this study was to
develop an adaptive framework for solving mathematical
problems. Based on the presented methods, we aim to create
and adapt Flow Engineering to a specialized form to boost the
maths solving abilities of GPTs such as OpenAI GPT-4o and

The main challenge in implementing Flow Engineering,
inspired by the one designed for problem-solving in computer
science, was transitioning from modular code writing and
thinking to approaching mathematical problems similarly. The
solution draws from how humans tackle these problems:

ing the problem statement, extracting relevant
observations, using these to derive new knowledge, and
formulating a solution once sufficient details are gathered, an

Based on all this information, we devised the interactive
prompting system presented in Figure 1, which is an adaptation
of Flow Engineering for Mathematical Problems (FEMP).

problems.

Proceedings of ICUSI 2024

- 194 -

The flow ensures a systematic, iterative approach to solving
mathematical problems, leveraging structured observation,
validation, and incremental knowledge accumulation to
produce accurate and robust solutions. These are steps of the
logical structure for the flow, based on which the prompts are
designed:

1. Extracting Observations and Problem Objective:
This step involves the SELECT phase from the Self-
Discovering Reasoning technique, guiding the model
to focus on mathematical task-solving, functioning as
a Thinker from MACM.

2. Deducing a New Observation: This step involves
ADAPT phase from Self-Discovering Reasoning, the
model formulates a single observation based on
previous knowledge and observations, aligning with
suggestion of Ridnik et al. [2] for gradual information
accumulation.

3. Validating the Observation: This step includes two
stages: testing an observation's correctness and
attempting its correction. The first stage involves
double validation of the model's decisions through an
AI quorum to limit bias. If deemed relevant, the
observation is added to a list of valid observations. If
irrelevant, it proceeds to correction attempts. The
quorum functions similarly to a Judge in MACM.

4. Testing Sufficiency of Observations for Objective
Achievement: To stop the loop from generating
observations, the AI quorum checks if the
observations are sufficient to formulate a solution after
generating a new one, akin to the Judge's role in
MACM.

5. Generating a Solution: Once enough observations are
collected, the model formulates a detailed step-by-step
solution, performs necessary calculations, and
provides a final answer tagged \boxed{answer}.
Unlike MACM, here the Executor's role combines
with the Thinker to reduce inference calls and
operational costs.

6. Reverifying the Solution: Based on the double-
checking principle introduced by Ridnik et al. [2], this
step involves correcting any potential errors in the
final solution by rechecking it against the overall
problem, observations, and objective.

To design effective prompts for Flow Engineering, each step
of the process was assigned a specialized prompt, tailored to
the specific needs of that phase. These prompts were
categorized into two main types: generation prompts and
verification prompts.

Generation prompts guide the model to produce a response by
specifying the task, formatting and reasoning constraints, and
including optional examples to demonstrate the expected
format. The structure of such prompts is shown in Figure 2.

Figure 2. Generation prompt structure
Verification prompts, outlined in Figure 3, focus on validating
the responses by prompting the model to analyse truth values,
guiding it to answer with YES/NO or true/false. Both types of
prompts are formatted using Python's triple-quotes to allow for
the dynamic insertion of relevant problem details, ensuring
clarity and consistency throughout the Flow Engineering
process.

Figure 3. Verification prompt structure
Both types of prompts are formatted using Python's triple-
quotes to allow for the dynamic insertion of relevant problem
details, ensuring clarity and consistency throughout the Flow
Engineering process.

DIRECT PROMPTING
To establish a baseline for comparison, each model was also
run using Direct Prompting, where the model is directly asked
to provide a solution for each problem in the dataset. For this
implementation, a simple prompt was used, containing
minimal context specifying the problem, its category, and
difficulty level. The prompt also instructed the model to
explain the solution step-by-step, ensuring that intermediate
operations were performed in a logical sequence.

The prompt is composed of two parts: role and question. The
role prompt provides context for the conversation, specifying
the problem category and difficulty, and explaining how the
problem should be approached, followed by the actual request
for the solution.

TESTING CORECTNESS
To establish an automated method for testing the
of solutions generated by GPT models, we considered the
following three strategies.

1. Result Testing
This strategy leverages the fact that the MATH dataset
problems include the final answer
\boxed{answer}. All models were prompted
their final answer in this format. Using regular expressions, the
final answer can be extracted and verified against the provided
solution. This verification serves as an accuracy metric for the
tested model. By ensuring the format consiste
easily compare the expected and generated answers to gauge
correctness.

2. Similarity Degree via Levenshtein
The Levenshtein distance was chosen for evaluating the
correctness of model-generated solutions due to its ability
quantify the similarity between two texts by measuring the
minimum number of single-character edits (insertions,
deletions, or substitutions) required to transform one string into
another. This metric provides an intuitive and comprehensive
measure of textual similarity, making it well
comparing the accuracy of generated solutions against correct
ones. Additionally, the Levenshtein distance can be
normalized to offer standardized and easily interpretable
scores, and it can be combined with other similarity
like the Longest Common Subsequence (LCS) for a more
nuanced evaluation. We decided to test this approach by
computing and checking the following similarity degrees
proposed by Zhang, Hu and Bian [6] for two string S and T:

 𝑆𝑖𝑚1(𝑆,𝑇) = 1 − ld(S,T) / max(
𝑚=𝑙𝑒𝑛(𝑆), 𝑛=𝑙𝑒𝑛(𝑇) and ld(S,T)=Levenshtein distance of S
and T
 𝑆𝑖𝑚2(𝑆,𝑇) = 1 − 𝑙𝑑(S,T) / (𝑙𝑑 (S,T)

where lcs(S,T)=lowest common
and T

3. Correctness Testing via AI Quorum
Inspired by the approaches of Zhou et al. [4] and Lei Bin in
MACM [5], this strategy takes advantage of the strong textual
and contextual analysis capabilities of contemporary AI
models. To minimize false positives when two solutions
present the same idea overall, we assembled a quorum
comprising the following three models:

 Llama3-70b: With 70 billion parameters, Llama3
70b offers deep understanding and high accuracy,
reducing the likelihood of false positives due to its
robust analytical capabilities.

Proceedings of ICUSI 2024

- 195 -

To establish an automated method for testing the correctness
of solutions generated by GPT models, we considered the

This strategy leverages the fact that the MATH dataset
answer marked with

boxed{answer}. All models were prompted to encapsulate
their final answer in this format. Using regular expressions, the
final answer can be extracted and verified against the provided
solution. This verification serves as an accuracy metric for the
tested model. By ensuring the format consistency, we can
easily compare the expected and generated answers to gauge

Levenshtein Distance
The Levenshtein distance was chosen for evaluating the

generated solutions due to its ability to
e similarity between two texts by measuring the

character edits (insertions,
deletions, or substitutions) required to transform one string into
another. This metric provides an intuitive and comprehensive

ity, making it well-suited for
comparing the accuracy of generated solutions against correct

Levenshtein distance can be
normalized to offer standardized and easily interpretable
scores, and it can be combined with other similarity measures
like the Longest Common Subsequence (LCS) for a more
nuanced evaluation. We decided to test this approach by
computing and checking the following similarity degrees
proposed by Zhang, Hu and Bian [6] for two string S and T:

max(𝑚,𝑛); where
) and ld(S,T)=Levenshtein distance of S

(S,T) + 𝑙𝑐𝑠(S,T));
 subsequence of S

Quorum
Inspired by the approaches of Zhou et al. [4] and Lei Bin in
MACM [5], this strategy takes advantage of the strong textual
and contextual analysis capabilities of contemporary AI
models. To minimize false positives when two solutions

overall, we assembled a quorum

70b: With 70 billion parameters, Llama3-
70b offers deep understanding and high accuracy,
reducing the likelihood of false positives due to its

 GPT-3.5-turbo: Known
ability and performance in natural language
processing and superior contextual generation
capabilities, this model ensures consistency and
avoids interpretation errors. It also offers a lower
usage cost compared to m
from OpenAI.

 Gemini 1.5 Pro: Featuring recent innovations and
adaptability in context understanding, this model
excels in handling complex scenarios due to its
specialization in specific tasks.

RESULTS

Dataset
To evaluate the performance of the solution, 105 math
problems from the MATH dataset [1] were selected, covering
seven categories: Geometry, Algebra, Probability, Prealgebra,
Precalculus, Intermediate Algebra, and Number Theory. The
MATH dataset classifies problems into f
To achieve significant results, a greater number
difficulty problems were
problems were selected, distributed according to their difficulty
levels as shown in Figure 4. The main reason for sele
smaller subset of the MATH dataset was both for ensuring a
good coverage and also for
evaluation.

Figure 4. Distribution of
category of the dataset

Evaluation of Correctness

In this section, we will present why we considered the best
metric for verifying model accuracy to be the comparison
the generated solution with
quorum.
First, as observed in Table 1, which presents the average
similarity scores for both formulas based of Levenshtein
Distance, it is evident that regardless of the model or strategy
used (Direct Prompting or Flow Engineering), the average
similarity scores are too low to be relevant. This indicates that
this method is inefficient for verifying the correctness of
solutions.

Known for its demonstrated
ability and performance in natural language
processing and superior contextual generation

this model ensures consistency and
avoids interpretation errors. It also offers a lower
usage cost compared to more advanced models

Gemini 1.5 Pro: Featuring recent innovations and
adaptability in context understanding, this model
excels in handling complex scenarios due to its
specialization in specific tasks.

performance of the solution, 105 math
problems from the MATH dataset [1] were selected, covering
seven categories: Geometry, Algebra, Probability, Prealgebra,
Precalculus, Intermediate Algebra, and Number Theory. The
MATH dataset classifies problems into five difficulty levels.
To achieve significant results, a greater number of higher

 chosen. For each category, 15
problems were selected, distributed according to their difficulty
levels as shown in Figure 4. The main reason for selecting a
smaller subset of the MATH dataset was both for ensuring a
good coverage and also for reducing the costs of the

 problems by difficulty level per
category of the dataset

Correctness Methods Performance
In this section, we will present why we considered the best
metric for verifying model accuracy to be the comparison of

solution with the correct one through an AI

First, as observed in Table 1, which presents the average
similarity scores for both formulas based of Levenshtein
Distance, it is evident that regardless of the model or strategy
used (Direct Prompting or Flow Engineering), the average
similarity scores are too low to be relevant. This indicates that

d is inefficient for verifying the correctness of

Proceedings of ICUSI 2024

- 196 -

Table 1. Average similitude scores based on Levenshtein Distance
by Model per Strategy

Secondly, regarding the final answer verification extracted
through regular expressions from the Flow Engineering
responses executed on each model, Figure 5 shows a strong
correlation between the AI quorum's truth value and the actual
response. This correlation confirms the high performance of
the quorum in identifying whether a solution is indeed correct.
The presence of false positives indicates that GPT models are
not always able to formulate an answer identical to the official
solution due to interpretation or presentation aspects, while the
quorum detects these discrepancies.

Figure 5. Heatmap to highlight correlation between AI
Quorum Correctness and Final Answer for Math

Problems
A good example extracted from the model responses in the
case of false positives is when the solution used the infinity
sign (∞) encoded in UTF-8, while the official solution wrote
"infinity," making it impossible to detect only through regular
expressions. Another commonly encountered example was the
difference between presenting fractions as they are or in
decimal form.
An important aspect is the absence of false negatives, which
reinforces the assertion that the AI quorum is the most capable
of detecting the correctness of a solution.

Solution Performance
In evaluating the performance of the models based on the
chosen strategies, Table 2 presents the accuracy (percentage of
problems solved) of the two models based on the strategy used.
The GPT-4o model has shown a raise of 4,2% which is
considerable when the best obtained on MATH dataset
provided a raise of around 20% in MACM [5]. On the
contrary, the Gemini-1.5 Pro presented a decrease in

performance when using the Flow Engineering, this will be
elaborated further when analysing the distribution of solved
problems for each model.
As shown in Figure 6, when moving from the Direct
Prompting to Flow Engineering, the Gemini-1.5 Pro presents
inconsistency by being unable to maintain the problem solved
with the simpler approach. This is caused by the extensive
number of prompts and elaborate thinking process implied by
the interactive system of FEMP. Another cause may also be
the fact that this study was based on many solutions and
approaches tailored for the GPT-4 from OpenAI.

Table 2. Accuracy (%) comparison by Model per Strategy on the
test dataset

Figure 6. Distribution of solved problems by Gemini-1.5
Pro

In contrast with Gemini, GPT-4o has shown the potential of
FEMP having the increase in accuracy and the consistency
when passing between the two strategies, as presented. The
raise of performance is the result of the increased number of
difficult problems of at least level 3. This is an important
aspect for the Flow Engineering which proves the benefits it
could add to improving the abilities of solving mathematical

Proceedings of ICUSI 2024

- 197 -

problems for GPTs through prompt engineering.

Figure 7: Distribution of solved problems by GPT-4o

CONCLUSION

The implementation of Flow Engineering has demonstrated its
potential to enhance the performance of GPT models in solving
complex mathematical problems. Notably, Flow Engineering
has been particularly effective in addressing problems with
difficulty levels above 3, especially in categories such as
Algebra, Number Theory, and Probability.

Flow Engineering prompts were optimized based on GPT- 4’s
capabilities, which may have contributed to performance
inconsistencies in other models. GPT-4o remained relatively
consistent across both Direct Prompting and Flow Engineering
due to these optimizations. However, the small and
randomly selected dataset introduced variability in results,
indicating a need for a more selective and extensive dataset for
stable and deterministic outcomes.

FUTURE RESEARCH DIRECTIONS
To further enhance the proposed solution, several avenues for
future research and improvements have been identified.
Extending Flow Engineering by exploring new approaches that
leverage the strengths of each model and testing and
integrating new models and techniques, such as Tree-of-
Thought (TOT) [7] and Graph-of-Thought (GOT) [8], could
lead to significant advancements.

Improving the dataset and testing methods is another critical
area. Expanding the dataset to provide a comprehensive
overview of Flow Engineering’s improvements and developing
a more qualitative selection of problem distributions would
result in more reliable outcomes. Optimizing execution
methods by replacing static synchronization with automated
detection to handle rate limits more efficiently is also crucial.

REFERENCES
1. D. Hendrycks et al., ‘Measuring mathematical

problem solving with the math dataset’, arXiv
preprint arXiv:2103.03874, 2021.

2. T. Ridnik, D. Kredo, and I. Friedman, ‘Code
Generation with AlphaCodium: From Prompt
Engineering to Flow Engineering’, arXiv preprint
arXiv:2401.08500, 2024.

3. J. Wei et al., ‘Chain-of-thought prompting elicits
reasoning in large language models’, Adv Neural
Inf Process Syst, vol. 35, pp. 24824–24837, 2022.

4. P. Zhou et al., ‘Self-discover: Large language
models self-compose reasoning structures’, arXiv
preprint arXiv:2402.03620, 2024.

5. B. Lei, ‘MACM: Utilizing a Multi-Agent System
for Condition Mining in Solving Complex
Mathematical Problems’, arXiv preprint
arXiv:2404.04735, 2024.

6. S. Zhang, Y. Hu, and G. Bian, ‘Research on string
similarity algorithm based on Levenshtein Distance’,
in 2017 IEEE 2nd Advanced Information
Technology, Electronic and Automation Control
Conference (IAEAC), IEEE, 2017, pp. 2247–2251.

7. S. Yao et al., ‘Tree of thoughts: Deliberate
problem solving with large language models’, Adv
Neural Inf Process Syst, vol. 36, 2024.

8. B. Lei, C. Liao, and C. Ding, ‘Boosting logical
reasoning in large language models through a
new framework: The graph of thought’, arXiv
preprint arXiv:2308.08614, 2023.

