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ABSTRACT 
While Virtual Reality (VR) sleep applications are not directly 
related to sleep apnea detection, they demonstrate the potential 
for technology to influence sleep behaviors and environments. 
As research in this field progresses, it may be valuable to 
consider how immersive technologies could be integrated with 
sleep monitoring and diagnostic tools, potentially enhancing 
patient comfort and compliance in sleep studies. Obstructive 
Sleep Apnea (OSA) is a prevalent and serious sleep disorder 
affecting an estimated 936 million adults worldwide. By 
leveraging the high prevalence of snoring in OSA patients, this 
approach has the potential to significantly improve early 
diagnosis rates and, consequently, patient outcomes. This study 
proposes an innovative method for OSA detection through 
automatic snoring analysis by fine-tuning Wav2vec 2.0 speech 
model to support VR sleeping therapy, aiming to provide a 
more accessible and cost-effective alternative to traditional 
polysomnography. Additionally, three non-deep learning 
techniques are presented together with an ESP32S-based edge 
system prototype as support for VR sleeping therapy. 
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INTRODUCTION 
Recent trends in virtual reality (VR) technology have sparked 
interest in its potential applications for sleep improvement. 
While not directly related to sleep apnea detection, these 
developments highlight the growing intersection of technology 
and sleep science. 
 
The emergence of virtual communities centered around sleep-
related activities in VR environments has garnered significant 
interest [21]. Two notable examples include a group with over 

15.000 members focused on virtual co-sleeping and social 
bonding, and another community of more than 4.000 
participants dedicated to exploring sleep experiences in virtual 
reality1. These developments highlight the potential for 
technology to address social and psychological aspects of sleep, 
which may be relevant to future sleep research and 
interventions. Individuals are exploring the use of VR headsets 
(as illustrated in Figure 1) as an alternative to traditional sleep 
aids. 
 

 
Figure 1. VR sleeper with VR HMD on2. 

 
Users report entering calming digital environments 
designed for relaxation and sleep, complete with ambient 

 
1 VRCHAT, https://vrchat.com/ 
2 Image generated with OpenArt.AI (https://openart.ai/) 
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sounds and visually soothing elements. This approach bears 
similarities to established sleep aids like white noise machines, 
but with an added immersive visual component. 
 
Evidence suggests that VR sleep environments may benefit 
some individuals with sleep difficulties, including insomnia [5]. 
Users report that the change in perceived environment helps 
alleviate stress associated with bedtime. 
 
It is important to emphasize that while VR applications show 
promise, they should not be considered a replacement for proper 
medical diagnosis and treatment of sleep disorders such as sleep 
apnea. Further research is needed to understand the potential 
benefits and risks of using VR technology in sleep contexts, 
particularly for individuals with diagnosed sleep disorders. 
 
Obstructive Sleep Apnea (OSA) is a sleep disorder 
characterized by repeated episodes of complete or partial upper 
airway obstruction during sleep. The global prevalence of OSA 
is alarmingly high, with an estimated 936 million adults 
worldwide affected by mild to severe forms of the condition. In 
Europe alone, approximately 175 million people (44.0% of the 
population) are believed to have OSA, with about 90 million 
suffering from moderate to severe cases, experiencing at least 
15 breathing events per hour during sleep. 
 
The health implications of untreated OSA are significant and 
wide-ranging. Patients with unmanaged OSA are at increased 
risk for various complications, including 1) Cardiovascular 
issues: Hypertension, heart disease, and stroke, 2) Renal 
dysfunction: Chronic kidney disease and related complications, 
3) Metabolic disorders: Type 2 diabetes and metabolic 
syndrome. Conversely, proper treatment of OSA has been 
shown to improve patients' quality of life and help regulate 
blood pressure, underscoring the importance of early and 
accurate diagnosis. 
 
Currently, the gold standard for OSA diagnosis is 
polysomnography [23], a comprehensive sleep study that 
monitors various physiological parameters overnight. While 
effective, this method is labor-intensive, expensive, and often 
inaccessible to many patients due to limited availability of sleep 
laboratories and specialized personnel. 
 
Snoring, a common symptom present in up to 94% of OSA 
patients, has emerged as a promising diagnostic indicator. 
Previous research has demonstrated the effectiveness of snoring 
analysis in OSA diagnosis, suggesting its potential to replace 
traditional polysomnography. This approach leverages a highly 
prevalent symptom to create a more accessible and cost-
effective diagnostic tool. 
 
In this paper, we propose a novel method for OSA detection 
through automatic snoring detection. Next to training three non 
deep learning models for classification, we propose fine-tuning 
the Wav2vec 2.0 speech model as a classifier to detect sleep 
snoring patterns. Also, we present the design and 
implementation of an affordable hardware platform to 

sense, process and classify the audio signal into snoring vs. non 
snoring patterns. 
 
By utilizing advanced signal processing and machine learning 
techniques, our approach aims to: 
 

1. Identify specific acoustic features of snoring 
that correlate with OSA presence and 
severity, 

2. Develop an algorithm for automatic 
classification of snoring patterns, 

3. Validate the accuracy and reliability of this 
method against polysomnography results. 

 
The rest of the paper is structured as follows: the next section 
highlights relevant related research on apnea detection. The 
following section describes the architecture of our apnea 
prototype system, including the hardware components, the data 
preparation and the modeling of three non deep-learning 
techniques as well as the more modern fine-tuning of the 
Wav2vec 2.0 speech model. In the next section we present and 
discuss the results of our research. The final section of the paper 
presents the conclusions and the future work for our research. 
 

RELATED WORK 
Due to the relatively high prevalence and to the even higher 
societal awareness lately, studying apnea has gotten 
considerable attention from the research community. The 
following are some relevant scientific publications highlighting 
notable research milestones on the detection and classification 
of apnea by using at least acoustic-related analysis. 
 
Ben-Israel el al. [2] implemented a Bayes classifier running on 
acoustic features correlated with the severity of the syndrome 
such as inter event silence, mel cepstability, energy running 
variance, Apneic phase ratio and pitch density, to achieve 80% 
correct classification for 5-fold cross validation. 
 
The work of Kang et al. [12] used linear predictive coding 
(LPC) and Mel-Frequency Cepstral Coefficients (MFCC) 
features to classify different events such as snoring, apnea and 
silence from the sleep sound recordings. Their technique 
achieved an accuracy of 90.65% for detecting snoring events, 
90.99% for Apnea, and 90.30% for silence. 
 
Hayashi et al. [6] detected the severity of OSA by snoring sound 
and cluster analysis for which they used the MFCC, formant 
frequencies, and volume information. 
 
Tuncer et al. [19] proposed a feature extractor named Local 
Dual Octal Pattern (LDOP) to solve the low success rate 
problems for the Munich-Passau Snore Sound Corpus (MPSSC) 
dataset. The authors emphasized that multilevel discrete wavelet 
transform (DWT) decomposition and the LDOP based feature 
generation, informative features selection with ReliefF and 
iterative neighborhood component analysis (RFINCA) and 
classification using k nearest neighbors (kNN) are fundamental 
phases of the proposed SSC method. In their study, they 
applied a seven-leveled DWT transform and LDOP together to 
generate low, medium, and high levels 4096 features out of 



 

 

which they selected 95 the most discriminative and informative 
ones to get 95.53% classification accuracy. 
 
Luo et al. [15] presented five machine learning
OSA diagnostic schemes are used to classify night audio as non
snoring, snoring, or OSA-related snoring. Their systems 
achieved a diagnosis rate for OSA of about 97%.
 
Cheng et al. [3] proposed a classifier based
Term Memory (LSTM) to identify the respiratory event
snoring from simple snoring. The classification
on features related to Mel-frequency cepstrum coefficients 
(MFCC), Mel Filter Banks (Fbanks), Short
Linear Prediction Coefficient(LPC), representing the different 
characteristics of snoring. 
 
Huang et al. [8] proposed a segmentation model based on 
Transformer and multi-scale feature fusion, to effectively 
combine global information and multi-scale featu
localization of event start and end times for detecting apnea and 
hypopnea events using only audio signals. 
 
Fang et a. [4] advanced a novel Snore Detection Cepstral 
Coefficient (SDCC) is proposed, based on Mel Frequency 
Cepstral Coefficients (MFCCs) and snore detection frequency 
division. Relief-F feature screening is then applied to SDCC and 
MFCC. The authors applied Canonical Correlation Analysis 
(CCA) on the fusion features obtained as a result and got an 
accuracy of 97.8% with Subspace KNN to effectively recognize 
and assess OSAHS as well as the severity of disease.
 
Li et al. [13] proposed a hybrid convolutional neural network 
(CNN) model for the automatic snore detection. The
a one-dimensional (1D) CNN processing the original 
a two-dimensional (2D) CNN representing images mapped
the visibility graph method. The algorithm achieved an average 
classification accuracy of 89.3% for the proposed snoring 
detection algorithm. 
 
In a different approach, a sleep apnea classification model based
on Bi-LSTM with attention mechanism [14]
Fbank features extracted from snore signals. The model focused 
on four types of snore signals namely hypopnea, normal 
condition, obstructive sleep apnea, and central
and obtained about 62.31% subject-independent accuracy.
Singtothong and Siriborvornratanakul [18] introduced a 
multimodal deep learning-based sleep apnea detection model 
which uses sleep sounds, oxygen saturation (SpO2), and pulse 
rate. Their combined model achieved 96% accuracy in inferring 
apnea severity, outperforming individual models using SpO2 
and pulse rate (79%) and sleep sound (83%).
T 
he work [22] proposed a snoring sound detection
using a multi-channel spectrogram and convolutional neu
network (CNN). The authors derived four
maps including spectrogram, Mel-spectrogram, continuous 
wavelet transform (CWT), and multi-channel spectrogram 
composed of the three single-channel maps.
explored the superior 
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Term Memory (LSTM) to identify the respiratory event-related 
snoring from simple snoring. The classification  model runs 
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Singtothong and Siriborvornratanakul [18] introduced a 

based sleep apnea detection model 
which uses sleep sounds, oxygen saturation (SpO2), and pulse 

el achieved 96% accuracy in inferring 
apnea severity, outperforming individual models using SpO2 
and pulse rate (79%) and sleep sound (83%). 

he work [22] proposed a snoring sound detection algorithm 
channel spectrogram and convolutional neural 

network (CNN). The authors derived four different feature 
spectrogram, continuous 

channel spectrogram 
maps. The study 

feature learning capability of the deep learning model, providing 
a more effective feature map for snoring detection.
 
Serrano et al. [17] proposed a stacked model which uses a 
combination of a pretrained VGG
network and a bidirectional
LSTM) network to facilitate OSAHS diagnoses by means of 
low-cost devices such as smartphones.
 
Xiu et al. [20] presented a wearable sleep monitoring
using eight frequency-domain features, with 59% average 
accuracy in identifying the severity of the four
categories. 
 
The more recent work of Hu et al. [7] made use of novel sound 
features to differentiate OSA and hypopnea
snores. Such features account for percussive enhancing and 
positional encoding as the snores exhibit different percussive 
properties and temporal characteristics due to the disease 
generation mechanisms. The authors advance a multi
learning framework to aid the main classification task by 
simultaneously learning two related s
 

 
Figure 2. ESP32S NodeMCU
development board equipped
2.4GHz dual-mode. 

 
Another modern snoring detection approach
[23] which proposed a technique
memory based spiking neural
appropriate for large-scale home detection for snoring. The 
LSTM-SNN model classified automatically the non
snoring sounds by checking on the Mel frequency cepstral 
coefficients (MFCCs) extracted 
into spike trains by a threshold encoding approach.
 
Jacob et al. [10] proposed an embedded system running
Arduino nano 33 BLE to capture the audio signal via a 
MP34DT05 sensor, to compute Mel
Mel Frequency Cepstral Coefficients and Spectrogram features
and classify normal, snoring and
 
Qiu et al. [16] presented
Semantic Multi-Modal model for OSAHS severity classification
- ASMM-OSA based on patient
The authors apply an augmentation of the audio features via 
PubMedBERT to enrich their diversity and detail. The 
classification of OSAHS by severity ie. as normal, mild, 
moderate, and severe, was realized by using XGBoost based on 
the number of sleep apnea events.

learning capability of the deep learning model, providing 
a more effective feature map for snoring detection. 

Serrano et al. [17] proposed a stacked model which uses a 
combination of a pretrained VGG-like audio classification 

bidirectional long short-term memory (bi-
LSTM) network to facilitate OSAHS diagnoses by means of 

cost devices such as smartphones. 

Xiu et al. [20] presented a wearable sleep monitoring system 
domain features, with 59% average 

ifying the severity of the four kinds of OSAS 

The more recent work of Hu et al. [7] made use of novel sound 
features to differentiate OSA and hypopnea from the normal 
snores. Such features account for percussive enhancing and 

ng as the snores exhibit different percussive 
properties and temporal characteristics due to the disease 
generation mechanisms. The authors advance a multi-task 
learning framework to aid the main classification task by 
simultaneously learning two related simple tasks. 

NodeMCU Module Dev Kit C 
equipped with CH340 and features 

Another modern snoring detection approach is by Zhang et al. 
technique based on a long short-term 
neural network (LSTM-SNN) that is 

scale home detection for snoring. The 
SNN model classified automatically the non-snoring vs. 

snoring sounds by checking on the Mel frequency cepstral 
coefficients (MFCCs) extracted from sound signals and encoded 
into spike trains by a threshold encoding approach. 

Jacob et al. [10] proposed an embedded system running on 
Arduino nano 33 BLE to capture the audio signal via a 
MP34DT05 sensor, to compute Mel-filter bank energy features, 
Mel Frequency Cepstral Coefficients and Spectrogram features 

and OSA snoring. 

presented a novel data-driven Audio-
Modal model for OSAHS severity classification 

patient snoring sound characteristics. 
The authors apply an augmentation of the audio features via 
PubMedBERT to enrich their diversity and detail. The 
classification of OSAHS by severity ie. as normal, mild, 
moderate, and severe, was realized by using XGBoost based on 
he number of sleep apnea events. 
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Even though older non-deep learning approaches generally scale 
well on edge computing for snore detection, they do not show 
robustness and good performance for generalization. 
Conversely, more modern approaches which make use of deep-
learning modeling commonly have great generalization scores 
but lack on portability towards low-power devices. 
 

ARCHITECTURE 

Hardware platform 
In our research, we have designed a prototype embedded system 
for the audio signal acquisition, storing, processing and 
identifying snore patterns, to be used in VR sleep scenarios. 
The prototype hardware includes an ESP32S NodeMCU (Figure 
2) together with additional sensors and modules such as 
microphone, storage module, clock module and an 
1.3 inch OLED output screen. 
Additionally, we have experimented with the substantially more 
powerful AMB82-MINI module (than ESP32S) which shows 
high potential for robust video processing in a multimodal data 
fusion setup. 

ESP32S NodeMCU 
The ESP32S NodeMCU Module Dev Kit C development 
board (Figure 2) is equipped with CH340 and features 
2.4GHz dual-mode Wi-Fi and Bluetooth chips, as well as 
40nm low-power technology. 
The ESP32S NodeMCU Module Dev Kit C development board 
allows two cores for running code in parallel. 
We have programmed this board to run two tasks, namely 
1) the audio signal acquisition and storage on a microSD 
memory card, and 2) audio feature extraction (by running Fast 
Fourier Transform) and the classification of the snoring 
- no snoring audio patterns. We configured the first task to run 
on the first core of the ESP32S board, while the second task was 
set to run in parallel on the second core. 
With optimization of the code, the two tasks running separately 
at the same time allow for continuous audio signal acquisition, 
processing and snoring pattern analysis ie. for any processing 
session, by the time the first task finishes acquisition and storing 
for the current data chunk running on the first core, the second 
core is finished with the classification of the previous data 
chunk. Then, the new session is ready to start again, beginning 
by copying the newly collected audio data chunk, passing it 
from the first core to the second core and running the snore 
pattern detection. 
The hardware components of our prototype system were 
compatible with Arduino boards. We used EverywhereML3 for 
porting the non deep learning snoring classification models to 
ESP32S. 
The list of hardware components for the prototype is as follows: 
 
 

3 https://github.com/eloquentarduino/everywhereml 

● MAX9814 microphone AGC amplifier module, 
● SPI reader micro memory SD TF module 

card memory shield, 
● Real Time Clock RTC compatible with DS3231 

I2C, 
● 1.3 inch OLED SSH1106 (128x64 pixels) 

I2C display. 
The final design of the prototype system is depicted in Figure 3. 
We have designed and built the hardware prototype of the 
snoring detection device with the purpose to support VR sleep 
therapy. However, the device can be used in different scenarios 
as well ie. as a standalone sleep analytics device without the VR 
component. 
 

 
Figure 3. The snoring detection system prototype running 

on ESP32S and MAX9814 microfoon. 
 

AMB82-MINI 
The AMB82-MINI board (Figure 4) can make use of its Realtek 
RTL8735BDM internal NN engine to deploy edge AI devices, 
interesting intelligent equipment, object detection, audio 
recognition, facial recognition, AI models by Yolov4-Tiny, 
Tensorflow-Lite. 
 

 
Figure 4. Realtek AMB82-Mini IoT AI Camera Arduino 

Dev. board4. 
 
4 AMB82-MINI development board 
https://www.amebaiot.com/en/amebapro2-amb82-mini-ardu 
ino-getting-started/ 
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The board is equipped with an ARMv8M (up to 500MHz) and 
an Intelligent Engine NPU (0.4 TOPS). The board has 128MB 
internal DDR2 (on SoC) and 16MB external SPI. Data 
communication with the board is facilitated via its built-in 
support for Wi-Fi and Bluetooth. 

Snore Classification Models 

Dataset preparation 
For the research, we have used the Khan dataset [12]. The 
dataset is organized into two primary folders, each containing 
audio samples of snoring and non-snoring sounds as follows: 

Snoring Sounds Folder (folder 1): 

● This folder comprises a total of 500 audio samples, 
each with a duration of 1 second. 

● Out of these 500 samples, 363 are pure snoring 
sounds, which include recordings from children, 
adult men, and adult women, captured without any 
background noise. 

● The remaining 137 samples feature snoring sounds 
with various background noises. 

 
Non-Snoring Sounds Folder (folder 0): 

● This folder also contains 500 audio samples, each 1 
second in length. 

● The non-snoring samples represent various 
background sounds that might be present near a 
snorer. 

● These samples are categorized into ten distinct types 
of non-snoring sounds, with each category 
containing 50 samples. The categories are: 

○ Baby crying, 
○ Clock ticking, 
○ Door opening and closing, 
○ Silence with minor gadget vibration noise, 
○ Toilet flushing, 
○ Emergency vehicle siren, 
○ Rain and thunderstorm, 
○ Streetcar sounds, 
○ People talking, 
○ Background television news. 

 
This structured dataset is designed to facilitate the analysis and 
classification of snoring versus non-snoring sounds in various 
acoustic environments. 
 

Design of the classification models 
Classification in machine learning is a supervised learning task 
that entails predicting a categorical label for a given input data 
point. The process involves training an algorithm on a labeled 
dataset, where the input features are utilized to learn the 
mapping between these features and their corresponding class 
labels. Once trained, the model can be applied to predict the 
class labels of new, unseen data points. 
 
In our research we have created four models for snoring 
classification. The first three rely on more classical non-
deep learning techniques, namely on KNeighbors 

classifier, on Random Forest classifier and on Logistic 
Regression classifier. 
 
The fourth model relies on Wav2vec 2.0 [1], a deep-
learning speech model stemming from a robust framework for 
self-supervised learning of speech representations. 
 
The classification techniques we had employed in our study are 
as follows: 
 

KNeighbors classifier 
The  k-nearest  neighbors algorithm (k-NN) is a non-
parametric supervised learning method utilized in both 
classification and regression tasks. k-NN operates by 
considering the k closest training examples in the dataset for a 
given input. For k-NN classification, the output is determined 
based on class membership. An object is classified by a plurality 
vote among its k nearest neighbors, with the object being 
assigned to the most common class among these neighbors. 
When k equals 1, the object is classified based on the single 
nearest neighbor's class. 

Random Forest classifier 
The Random Forest classifier is an ensemble learning method 
used for classification and regression tasks. It constructs 
multiple decision trees during training and outputs the mode of 
the classes (classification) or the mean prediction (regression) of 
the individual trees. This approach enhances predictive 
accuracy and controls overfitting by combining the results of 
numerous decision trees, each built on a random subset of the 
data and features. 

Logistic Regression 
Logistic Regression is a supervised learning algorithm 
commonly used for binary classification tasks. It models the 
probability of a binary outcome by fitting data to a logistic 
function (sigmoid curve). The algorithm estimates the 
parameters of the logistic function using maximum likelihood 
estimation, enabling the prediction of the probability that a 
given input belongs to a particular class. Logistic Regression is 
effective for problems where the relationship between the input 
features and the class probabilities can be linearly separated. 
 

Wav2vec 2.0 
Wav2vec 2.0 [1] is a model (by Facebook AI research labs) 
relying on learning powerful representations from speech audio 
alone followed by fine-tuning on transcribed speech. 
 
The model consists of a multi-layer convolutional feature 
encoder which takes as input raw audio and outputs latent 
speech representations for specific number of time-steps. These 
are then fed to a Transformer to build representations capturing 
information from the entire sequence. The output of the feature 
encoder is discretized with a quantization module to represent 
the targets (Figure 5) in the self-supervised objective. 
 
According to the benchmarks, Wav2vec 2.0 clearly 
outperforms the best alternative semi-supervised methods for 
speech oriented tasks (ie. speech recognition) while 
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being conceptually simpler. The model masks the speech input 
in the latent space and solves a contrastive task defined over a 
quantization of the latent representations which are jointly 
learned. 

 

 
Figure 5. Wav2vec 2.0 framework [1] which jointly 
learns contextualized speech representations and an 

inventory of discretized speech units. 
 

RESULTS AND DISCUSSION 
First, we trained classifiers running on KNeighbors, random 
forest and logistic regression. For the first two classification 
models (KNeighbors and random forest classifiers) we had 
employed grid search to automatically determine the most 
optimal model parameters. Eventually, the three models were 
trained using features derived from the spectral components of 
the audio signal. 
We run Fast Fourier Transform (FFT) on the audio signal and 
further applied data normalization. The 16kHz audio signal was 
applied to a shifting data processing window of 1024 samples in 
length, with 30% overlapping for consecutive windows. The 
upper cut-off frequency was 2kHz, leading to 131 
features/window and 5240 features/sample. The normalization 
parameters were computed given the training dataset. 
Next, we fine-tuned Wav2vec 2.0 on the Khan snore dataset 
and used the fine-tuned model for inference. The base model 
was pre-trained on 16kHz sampled speech audio and does not 
include a tokenizer, as it was trained exclusively on audio data. 
For utilizing this model in speech recognition tasks, we created 
a tokenizer and further fine-tuned the model using labeled text 
data. 
The results for the three snoring classification are depicted in 
Figure 6-7. Figure 6 displays the ROC (Receiver Operating 
Characteristics) curve of the kNN classifier. 
The Area Under the Receiver Operating Characteristic Curve 
(AUC-ROC) measures the model's ability to distinguish 
between classes. A higher AUC indicates better performance in 
correctly classifying 0s as 0s and 1s as 1s. In a medical context, 
a higher AUC reflects the model's improved capability in 
differentiating between patients with and without the disease. 

 

 
 

Figure 6. ROC Curve of kNN Classifier (AUC=0.92). 
 
Figure 7 shows the ROC curve of the Random Forest classifier, 
which has AUC of 0.97. Similarly, Figure 8 highlights the ROC 
curve of the Logistic Regression Classifier (AUC 0.90). 
 
 

 

Figure 7. ROC Curve of Random Forest Classifier 
(AUC=0.97). 

 
 

 

Figure 8. ROC Curve of Logistic Regression 
Classifier (AUC=0.90). 
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Out of the three classifier types, the results indicate the Random 
Forest Classifier has the best performance (AUC 0.97). The 
second best out of the three models is the kNN classifier, with 
0.92 AUC. 
 

Snoring Detection by Wav2vec 2.0 
To fine-tune Wav2vec 2.0 for snoring detection, we used 
Google Colab5 with the T4 GPU hardware accelerator. 
Important to notice that the fine-tuning can be done on a high-
end computer (including laptop) as well, however the fine-
tuning process takes a longer time. 
 

For fine-tuning Wav2vec 2.0, we have used 
hyperparameters warmup_ratio = 0.1, learning_rate = 
3e-5, and accuracy as metric to retain the best model 
(metric_for_best_model). 

Figure 9 illustrates the training and validation loss graphs for 
fine-tuning Wav2vec 2.0. Figure 10 shows the validation 
accuracy for the fine-tuned models, given the training steps. The 
best Wav2vec 2.0 based fine-tuned model shows 99% 
evaluation accuracy (Figure 10). 
 

 
Figure 9. Wav2Vec 2.0 fine-tuning (training for 75 epochs), 

training and validation loss. 
 
The advantage of the classifier models based on kNN, Random 
Forest and Logistic Regression is that they are lightweight and 
are consequently easily portable for edge computing setups. 
Development boards such as ESP32S or AMB82-Mini show 
full potential in supporting the computational load to run audio 
signal acquisition, data storing, feature extraction, and detection 
of snore audio patterns. Such edge computing systems turn out 
to be more accessible and cost-effective alternatives of the 
traditional polysomnography systems and can facilitate therapy 
in VR sleep scenarios. 
On the other hand, the generalization capability of the models 
based on classical non deep-learning approaches is considerably 
reduced, when compared to the more complex snoring 
classification model based on Wav2vec 2.0. Conversely, at the 
moment the more robust Wav2vec model is not easily portable 
for edge computing. 
 
 
5 https://colab.research.google.com/ 

 

 
 

Figure 10. Wav2Vec 2.0 fine-tuning (training for 75 epochs), 
evaluation accuracy. 

 
One considerable limitation of the snoring detection approaches 
presented in this paper relates to the lack of identifying OSA 
severities. The OSA severity estimation represents an extension 
of the current research and is the authors’ next target. 
 

CONCLUSIONS 
The development of an accurate, accessible, and cost-
effective method for OSA detection for VR sleepers through 
automatic snoring analysis has the potential to significantly 
improve diagnosis rates and, consequently, patient outcomes. 
By leveraging a common symptom of OSA, this approach could 
enable wider screening and earlier intervention, potentially 
reducing the global burden of OSA-related health 
complications. 
Further research and clinical validation are necessary to 
establish this method as a reliable alternative or complement to 
traditional polysomnography in OSA diagnosis. 
Our future research will include fine-tuning on much larger 
datasets, also the classification of non-OSA snoring patterns as 
well as patterns of different OSA severities. Additionally, we 
will focus more on optimization techniques such as ablation 
and quantization, to facilitate porting the deep-learning 
models like Wav2vec 2.0 fine-tuned models on more powerful 
boards such as AMB82-Mini. Moreover, we plan to explore 
multimodal approaches by adding video analysis for an 
enhanced OSA event detection. 
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