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ABSTRACT

With deep neural networks being steadily adopted in various
sectors such as healthcare, finance or tech, the need for
interpretability of their results becomes paramount. In this
context, not only is it difficult to produce reliable
explanations of such complex models, but even more
importantly, non-expert users - the main beneficiaries of
real-world applications of artificial intelligence (Al) systems
- may not have the capacity to comprehend and make use of
these explanations. The contributions related to this paper are
twofold. Firstly, we extend the work of Zytek et al. [19] by
generating explanations for 3 different explainability
techniques on the IMDB dataset [9], using different prompts.
Secondly, we analyze the explanations produced to draw
insights about the behavior and potential biases of the
underlying sentiment classification model.
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INTRODUCTION

The ability of deep neural networks (DNNs) to match or even
surpass human performance on certain tasks underscores
their transformative potential. However, their widespread
adoption is hindered by a significant challenge: the lack of
transparency in their decision-making processes. For users to
trust these systems, they must not only perform accurately,
but also offer clear explanations of their behavior.
Explainable AI (XAI) seeks to address this need by
developing methods that make machine learning (ML)
models more interpretable and their predictions more
understandable. By demystifying how models operate, XAI
fosters trust, empowers users to evaluate predictions
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critically, and enables system designers to refine their
models effectively.

Widely adopted explanation techniques such as Local
Interpretable Model-Agnostic Explanations (LIME) [12],
SHapley Additive exPlanations (SHAP) [8] or Anchors [13]
display their results in formats that are not intuitive, nor user-
friendly and lack clarity and readability for larger audiences
[6, 11]. A natural question that arises is whether we can make
use of existing systems, like Large Language Models
(LLMs) to further improve the field of XAL

There are many strategies that can be employed to have
LLMs improve XAl frameworks [18]. Kroeger et al. [7]
assessed how GPT-3.5 and GPT-4 can work as post-hoc
explainers, focusing on their ability to extract the most
important features contributing to another model’s decision.
Four different strategies were used, but they all relied on
sampling additional values from the local neighbourhood of
the input being explained, with the variations being in the
prompt given to the LLM. Their results suggest that the
resulting explanations are faithful and can even exceed the
results of SHAP in some cases. Alternatively, Bhattacharjee
et al. [3], while still depending on LLMs’ ability to extract
relevant features, focused on providing causal explanations.
To do so, they relied on the LLMs being able to discover the
latent features and make minimal changes to them in order
to flip the decision of the model, thus obtaining a
counterfactual example.

In a similar direction, Slack et al. [15] defined TalkToModel,
a dialogue-based system via which users are able to ask
natural language questions like “Why was I denied a loan?”
and receive the relevant answers, by having the model apply
XAl techniques under the hood. Their results showed that the
model was able to have an excellent understanding of the
users’ requests and that it was able to provide explanations
for the results of other ML models in a way that would have
increased the users’ trust in the model, while at the same time
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outperforming other existing systems. Similarly, Nguyen et
al. [10] investigated how XAI can be included in a
conversational agent, having natural, human-style
communication as a starting point. Their work built a XAI
question phrase bank, which defined general XAl questions
the model could receive (e.g., “How does a specific feature
impact the result?”, “What is a required feature that would
ensure a specific prediction”) and the explainability
technique (SHAP, LIME, Anchors, etc.) that would be
applied under the hood.

In a somewhat different direction, but still relying on LLMs,
Zytek et al. [19] investigated how LLMs can be employed to
transform the outputs of existing XAl techniques like SHAP
into natural language explanations that could be easily
understood by the general public. Different zero-shot
prompts were used for GPT-3.5 and GPT-4 models and their
results were evaluated against various metrics on the student
performance dataset [4] and the Ames housing dataset [5].
An extensive user analysis was conducted, showing
promising results, as users generally agreed the explanations
contained the sufficient amount of details, while conserving
their usefulness and clarity.

Building on these core contributions, we present a prompting
framework tailored to LLMs, enabling them to translate
complex explainability outputs into concise and accessible
narratives. This is especially valuable for long-form text
inputs, where the raw outputs of explainability techniques
are difficult to interpret, even for technical users. Our
empirical results show that, when guided with appropriate
instructions, LLMs like ChatGPT [1] and LLaMA [17] may
effectively summarise and contextualise explanation data in
a way that supports broader interpretability.

We also highlight the critical need for faithful explanations.
While LLMs improve accessibility, we observed that they
occasionally introduce interpretations not grounded in the
underlying model’s behavior, undermining the purpose of
post-hoc explanation. This calls for further work to ensure
alignment and fidelity between model predictions,
explanation techniques, and LLM-generated summaries.
Lastly, by examining patterns in the explanations across
different inputs, we uncover evidence of bias in the sentiment
analysis model used. Specifically, we note a tendency for
short reviews containing minimally positive language to be
misclassified as positive, suggesting over-sensitivity to
certain features. Moreover, our method surfaced instances of
potentially mislabeled examples in the dataset,
demonstrating that this approach can aid not only in
explainability but also in data validation.

PRELIMINARIES

In this work, we have used the IMDB dataset!, a popular
dataset used for sentiment analysis and Natural Language
Processing (NLP). The dataset contains plain text movie

'https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-
of-50k-movie-reviews
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reviews labeled with “positive” or “negative”, representing
the sentiment that is conveyed by the review. This is a
balanced dataset of 50000 reviews, out of which 25000 are
labeled as “positive” and 25000 are labeled as “negative”.
Furthermore, we use a commonly used heuristic: we split our
dataset into four categories based on the review length:
shorter than 50 words - very short, between 51 and 150 words
- short, between 151 and 300 words - medium, longer than
300 words - long.

Predictions on this dataset consist of “positive” or “negative”
labels, indicating the sentiment of a specific review. To
obtain predictions, we have used the “distilbert-base-
uncased-finetuned-sst-2-english”, a fine-tuned version of
DistilBERT [14] specifically trained on the Stanford
Sentiment Treebank (SST-2) dataset [16] for sentiment
analysis tasks. DistilBERT is simply a smaller, but faster pre-
trained version of BERT that has been optimized to achieve
faster inference and lower computational cost, while still
retaining much of BERT’s capacity. It offers a favorable
trade-off between efficiency and performance, making it
particularly suitable for tasks where computational resources
or response time are limited.

The SST-2 dataset is composed predominantly of short to
very short sentences and phrases derived from user reviews
on Rotten Tomatoes. This contrasts with the IMDB dataset,
which typically features longer, more complex reviews.
Given the relatively simple structure of the SST-2 texts, and
the desire to evaluate the model’s pre-trained capabilities in
a zero-shot setting, no additional training or fine-tuning is
conducted in this work. For simplicity purposes, in the
following, we will use “original BERT model” to refer to the
base “distilbert-base-uncased-finetuned-sst-2-english” for
which no further training has been performed.

To obtain explanations as to how the model has reached a
particular prediction, we relied on three different
explainability techniques. These are all popular choices with
strong open-source libraries and more importantly, model-
agnostic techniques, which can be applied to any type of
black-box model. The first one is LIME [12] and it works by
building a linear explanation model when attempting to
explain a specific input, by evaluating the original model on
additional inputs sampled around the original input. To apply
this technique, we rely on the open-source lime? library,
which besides scores associated with each word, also
provides a straightforward visual explanation, highlighting
the words contributing the most to the model’s decision. We
note that because of the sampling mentioned above, the
scores of each feature can be different even when LIME is
applied to the same input multiple times.

Secondly, SHAP [8] unifies seven other explainability
methods by assigning scores to each feature of an input.
These scores are obtained by computing the Shapley value

Zhttps://github.com/marcotcr/lime
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of each feature, following results from game theory. In our
case, we make use of the open source shap® library, which
assigns positive or negative scores to each word from the
input. The last technique that was used in this work is
Anchors [13]. In its theoretic version, it is based on if-then
rules, with the anchor itself representing a logical predicate.
In practice, we will be using the alibi library and its
AnchorText* explainer. Its output is actually a list of words
from the input, rather than a predicate, and we can interpret
these words as the ones that are sufficient to guarantee, with
a high precision, the same model prediction, even if the rest
of the input is modified. Precision and coverage (recall) are
both important notions when talking about anchors, and the
library does provide access to them.

As stated, one of the objectives of this work is to expand on
the approach of Zytek et al. [19]. In this light, our approach
involves carefully designing a series of prompts that guide
LLMs to take the outputs generated by the explainability
techniques discussed earlier and transform them into
coherent, natural language narratives. The objective is for
these narratives to be crafted in a way that makes the often
complex and technical results of these techniques accessible
and easily comprehensible to a broad audience, including
those without specialized knowledge in the field. We have
used OpenAl’s ChatGPT [1], Anthropics’ Claude [2] and
Meta’s LlaMA [17].

METHODOLOGY

In order to assess the performance of the chosen model, we
evaluated it on the entire dataset and computed several key
evaluation metrics, including accuracy, precision, recall, and
F1 score. To obtain these scores, we have compared the
predicted sentiment of each review (“positive” or
“negative”) with their original label. The computed metrics,
summarized in Table 1, indicate that our original BERT
model achieves sufficient performance, enforcing our
argument that additional training may not be necessary.
Moreover, this evaluation enables us to investigate the
model’s potential biases in its decision-making process,
ensuring that the results are not influenced by unintended
patterns or discrepancies.

Accuracy 0.8896
Precision 0.9154

Recall 0.8586
F1 Score 0.8861

Table 1: Model performance on IMDB dataset

We now proceed to the core experiments of this study. For
each input, we begin by utilizing our pre-trained model to
generate a prediction. Following this, we apply each of the

3 https://pypi.org/project/shap/
4 https://pypi.org/project/alibi/
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three explanation techniques described earlier - each
independently - to gain insights into the model’s decision-
making process. The outputs of these explainability
techniques are then fed into all three of the LLMs, each
accompanied by a carefully crafted prompt. It is important to
note that we focus on using zero-shot prompts, meaning that
the LLMs are provided with the explainability results as
input without any prior fine-tuning specific to the task at
hand. While all the five prompts we use (P1-P5, see Table 2)
share the common goal of generating a clear, human-friendly
narrative that can be easily understood by the general public,
each prompt is subtly distinct to influence the style and tone
of the produced explanations. The specific variations in the
prompts, designed to adjust how the explanation is framed,
are detailed in Table 2.

P1 is our starting point, which clearly states the request for
the LLM, as well as provides some basic general context. P2
expands the previous prompt, by explicitly mentioning the
results should be easily comprehendible by people without
any ML experience or knowledge. Additionally, it instructs
the LLM to focus on succinct explanations.

P3 applies only to outputs from SHAP or LIME and it
explores whether adding specific directives to focus on the
most relevant features, based on their scores, changes the
explanation produced by the LLM. P4 explores whether
specifying the structure of the output of the explainability
technique upfront improves the LLM’s explanation.

Finally, P5 was introduced after conducting multiple
experiments and noticing a recurring pattern in which the
LLMs occasionally provided their own reasoning or
justifications for the scores assigned to certain words, or even
questioned whether these words should have influenced the
decisions of the initial model in the manner they did. This
observation highlighted the need for a more objective and
straightforward explanation. By using this prompt, we aim to
obtain an explanation that is focused solely on the factual
details of the model’s decision-making, without introducing
any unnecessary biases.

We showcase an example of an input/output pair for
ChatGPT in Figure 1 for which the explainability technique
used was SHAP - its output was truncated for display
purposes. We note this example uses a different prompt than
the ones mentioned in Table 2, as the LLM’s explanation
references the SHAP values, but we deem this example more
easily understandable.

RESULTS

Upon considering the use of Anchors as an explainability
technique, it quickly became apparent that conducting all the
planned experiments was unnecessary, as will be elaborated
in the following paragraph. However, had we included those
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additional experiments, the total number of experiments
would have increased to approximately 500. Without the
inclusion of Anchors, we have carried out a total of 480
experiments - 3 (number of LLMs) x 2 (explainability
techniques used) x 5 (number of prompts) x 2 (true positive
examples) x 2 (true negative examples) x 2 (false positive
examples) x 2 (false negative examples).

Our findings are based on observations made through manual
inspection of the outputs generated by the explainability

technique and the explanations produced by the LLMs.
These patterns are not isolated cases but frequent
occurrences, consistently appearing across multiple
experiments and suggesting a degree of generalizability.

We commence our analysis with the most straight-forward
result. Anchors are not a well-suited technique for this type
of data. As mentioned, the output is a list of words that are
sufficient to guarantee, with a high precision, the same model
prediction, even if the rest of the input is modified.

Code Possible values
[EXP_SHAP] (SHAP base val, [(f 1, f score 1), (f 2, f score 2),...])
[EXP_LIME] [(feature 1, f score 1), (feature 2, f score 2), ...]

[EXP_ANCHORS]
[EXP_FORMAT]

(precision, coverage, [feature 1, feature 2, feature 3, ...])

[EXP_SHAP]/[EXP_LIME]/ [EXP_ANCHORS]

[EXP_TECH] SHAP / LIME / Anchors
Code Repetitive Unit
[INTRO] You will be explaining the output of the following explainability technique [EXP_TECH] applied on a
model that performs sentiment analysis for textual data representing movie reviews from IMDB.
[TASK] You will receive the input to the model and the output of the explainability technique. Turn these

results into a narrative explanation, easy to follow and understand. Do not mention any of the values.

[EXP_RESULT]

This is a placeholder for the results of the explainability technique applied.

Code Prompt
Pl [INTRO][TASK][EXP_RESULT]
P2 [INTRO][TASK] The explanations you will provide will be read by people without machine learning
knowledge or experience. Make the explanations as human-friendly and succinct as possible.
[EXP_RESULT]

P3 [INTRO][TASK] Add details about the most important features and how they contribute to the
model’s decision. [EXP_RESULT]

P4 [INTRO][TASK]. The output of the [EXP TECH] is in the format [EXP_FORMAT] and is the

following: [EXP_RESULT]
P5 [INTRO][TASK]. Interpret the provided data objectively. Do not give personal reasons as to why the

model interpreted a word in a specific way. Do not make any side comments of your opinion of the
review. Focus solely on the provided output. Make the explanation as succinct as possible, without
discarding the most relevant information. [EXP_RESULT]

Table 2: The give prompts provided to LLM
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Input

You will be explaining the output of the following explainability technique, SHAP, applied on a model that
performs sentiment analysis for textual data representing movie reviews from IMDB. You will receive the
input to the model and the output of the explainability technique. Turn these results into a narrative
explanation, easy to follow and understand. Identify the most important features based on their score and add
details how they contribute to the model’s decision

Model input: “This a fantastic movie of three prisoners who become famous. One of the actors is george
clooney and I'm not a fan but this roll is not bad. Another good thing about the movie is the soundtrack (The
man of constant sorrow). I recommand this movie to everybody. Greetings Bart”

SHAP output: base value -2.48816133; [(", 0.07088954205391929), ('This ', 0.1145877672242932), ("a ',
0.10569845483405516), (‘fantastic ', 0.6042013957048766), ...]

Output

What is this about?
The model is predicting whether a movie review is positive or negative. Before reading the review, it starts
with a strong bias toward negative (called the base value, which is -2.49). Each word in the review then
either pushes the prediction toward positive or further negative.
Top Words That Made the Review Seem Positive
These words increased the model’s confidence that the review was positive:

e "fantastic'" (+0.60): This was the most powerful positive word. It told the model the reviewer felt

strongly positive.

e "not bad" (split across "not" +0.42 and "bad" +0.18): Despite the presence of the word "bad", the
model correctly understood "not bad" as praise.
Words That Made the Review Seem More Negative

These pulled the model back toward a negative prediction:

e "but" (—0.74): This was the strongest negative signal. The word "but" often introduces criticism,

and the model picked up on that pattern.

e "not a fan" (made of “a” and “fan”, each —0.08): This phrase expressed mild disapproval, which

the model correctly marked as negative.
Overall Model Decision

While the model began assuming the review would be negative, the strong positive words—especially
“fantastic”, “not bad”, and “famous”—completely flipped the prediction. These outweighed the more
subtle negatives like "but" and "not a fan". So. the model correctly decided the review was positive.

Figure 1: Input/output example for ChatGPT

Because there are no scores, positive weighting and
negative weighting words may both be part of the output.
What we observed was that generally LLMs added their
own interpretation on whether those words had a positive
or negative impact. Moreover, in numerous instances the
word “not” was included in the anchor’s output. While the
word “not” is a key negator in language, it is unclear and
impossible to know whether its impact was positive or
negative, for example in the case of a review containing
both “not bad” - positive sentiment and “would not watch
again” - negative sentiment. Because of this, one cannot
trust that the explanations produced by the LLMs are
faithful, as they are free to interpret such usages in
whichever way they prefer. Ideally, we want our LLMs to
summarize the output, not make their own explanation.
Moreover, the anchor output only contains a short list of
words, and because in our case we are dealing with movie
reviews which are often verbose, the anchor can only
capture a small part of the entire review and that could lead
to a misleading sentiment prediction. As a result, in the
upcoming analysis, we no longer include Anchors.

We continue by focusing on explanations obtained when
the model’s prediction matches the sentiment of the
review. Generally, all three LLMs produced good
explanations. All LLMs, unless instructed, included
references to the provided values. Moreover, both LIME
and SHAP generally provide a score for each word, based
on the tokenizer, and while the LLMs correctly identify
positive or negative sequences of words due to all words in
the sequence having positive or negative values in the
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explanation output, LLMs struggled to add those values
together, instead mentioning only the value of the first
word. However, their explanation, where applicable, did
mention that certain sequences heavily influenced the
model correctly, even if displaying the wrong scores for the
sequence. We find this misleading, as users would see
some values whose meaning they might not understand,
affecting the quality of the explanation. Out of the three
LLMs, LLaMA seemed to address this issue the best.
Nonetheless, this is why we have explicitly mentioned in
our task description that the explanation should not
mention any of the provided values.

Moving on to the case where our model’s prediction did
not match the review’s sentiment, we could draw some
interesting observations. In some cases, the LLMs were
able to detect that the prediction of the model was incorrect
and it became challenging to get them to produce an
explanation that focused only on the provided output of the
explainability technique. Several times, the explanations
would contain side comments, seemingly added by the
LLM. That was the main issue prompt P5 was trying to
address and it did so up to a limit. It was observed using
Claude that its explanations are not always faithful. Claude
was provided with the output of the explanation technique
and because it identified that the model’s prediction was
wrong, its explanation focused around the values that
contributed positively to the correct sentiment. This is
extremely misleading and takes away much of the trust in
its explanations. After being instructed that the prediction
was in fact the opposite, Claude only changed a small part
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of its explanation, where it was mentioning the predicted
value, with the rest of the explanation, about most relevant
features staying the same. To further explore, we took the
restriction of not providing reference values from the
explanation away. We could see that Claude, although
attempting to explain the correct model output, gave
stronger corroborating values for the opposite sentiment.
We did not observe such issues with either ChatGPT or
LLaMA. In Figure 2, we include an example of the final
parts of the output produced by Claude when using the
same input and prompt, with the only difference being that
for the second explanation, we explicitly mentioned what
the prediction of the original model was.

The model analyzed a detailed review of the TV show "Oz” and produced a base
value of -1.15, which indicates a slightly negative sentiment starting point. However,
the overall sentiment prediction was likely positive based on the contribution of key
words and phrases throughout the review.

The model analyzed a detailed review of the TV show "Oz” and produced a base
value of -1.15, which indicates a slightly negative sentiment starting point. The
overall sentiment prediction was negative, despite some positive contributions from
certain phrases. This suggests that the negative elements ultimately outweighed
the positive ones.

Figure 2: Unfaithful explanations provided by Claude

Another interesting result was observed when looking at
apparently incorrect model predictions. Because the
reviews are quite verbose, it is very difficult to manually
inspect each feature and its score in the output of the
explanation technique. Streamlining the whole process of
obtaining an initial prediction, using an explainability
technique and then LLMs to objectively extract the most
relevant information from the output of the explainability
technique allowed us to quickly notice whether there are
any discrepancies between the input, prediction or
explanation. Because of this, we were able to identify what
we believe are incorrect labels in the provided IMDB
dataset. For illustration purposes, we include a few
examples in Table 3.

Original

Review label

Masterpiece. Carrot Top blows the screen
away. Never has one movie captured the
essence of the human spirit quite like
”Chairman of the Board.” 10/10... don’t
miss this instant classic.

negative

Some TV programs continue into
embarrassment (my beloved *X-Files’
comes to mind.) I’ve been a fan of Dennis
Farina since *Crime Story,” another late,
lamented show. ’Buddy Faro’ never had a
chance. The series had a good premise and
great actors. It’s really, really a shame.

positive

Table 3: Mislabeled data in IMDB dataset

Moreover, doing some experiments on synthetic data
provided an insight into our base model. We have observed
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that negative very short reviews have a much higher
tendency to be misclassified by our model as positive. We
hypothesised that the presence of even a slightly positive
word in a short review is able to skew the model’s
prediction to positive, thus uncovering an existing bias of
our base model. Considering “Would never watch again.
Absolutely terrible overall. The ending was decent.” as an
example, we see that the review is certainly negative, with
the only positive part being that the ending was decent -
note the usage of decent, which is rather a neutral- positive
word in this context. Inspecting the values of the features,
we were able to see that the model placed huge emphasis
on “decent”, assigning it a score higher than the sum of all
the scores for negative segments like “never watch again”,
“absolutely terrible”. When allowed to make comments,
the LLMs also correctly identified this issue and the
abnormal weight placed on the positive word.

Another recurring challenge we encountered was the
LLMs’ inability to accurately perform floating-point
addition. This limitation led to frequent errors in score
calculations, with the most significant discrepancies
arising in cases involving multiple segments. However, the
calculations were typically correct when dealing with
individual words, where the associated values were often
extracted accurately. In Figure 3, we present an example
for a “negative” prediction generated by ChatGPT, which
highlights this issue. For negative predictions the smaller
the score of a segment, the higher its contribution towards
a negative sentiment. In the output, ChatGPT claims that
the most influential segment had an impact score of -0.174,
but then proceeds to mention another segment with a score
that is approximately twice the value of the one it
previously identified as the most influential - segment
which should have instead been identified as the most
influential, as it carried the most negative weight. This
discrepancy exposes a notable problem: we specifically
instructed our LLMs not to include any numerical scores in
their explanations. Consequently, a user reviewing this
output would not have been able to identify the underlying
mathematical inconsistency. Instead, they would have been
forced to rely entirely on the LLM’s narrative without any
way to verify the accuracy of the figures presented, which
could potentially undermine trust in the explanation
provided.

Top Negative Contributors:
These words pushed the prediction more strongly toward negative sentiment:

e "privacy is not”, "high on the agenda”: Combined SHAP impact of approxi-
mately -0.174, making this the most influential segment. It indicates that the
reviewer pointed out a lack of privacy as a significant downside, which the
model interprets as a negative sentiment indicator.

e "not a show for the faint-hearted or timid": These words contribute a total
SHAP value of approximately -0.36. Although this phrase may be descriptive,
the use of “not,” “faint-hearted,” and “timid” likely registers with the model

as a strong negative emotional tone.

Figure 3: LLMs do not make sound mathematical
statements
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CONCLUSIONS

In this work, we focused on generating explanations
understandable to the general public using LLMs. We
explored the capabilities of a pretrained base BERT model
specifically trained for sentiment analysis. To guide
explanation generation, we designed five distinct prompts
that shared a common objective but introduced subtle
variations in emphasis. We experimented with different
LLMs and explainability techniques to assess how
effectively they could produce these explanations.

We found that, on their own, the outputs of explainability
techniques are somewhat limited. While undeniably useful
- especially for users with technical or ML background -
they can be difficult for the general public to interpret. This
limitation became even more evident in our study, which
focused on movie reviews that often contain substantial
text. For longer reviews, even expert users may struggle to
extract meaningful insights from raw explainability outputs
due to their complexity and length. LLMs, however, are
well-suited to handle large volumes of data, and in this
work, we leveraged their ability to summarize and distill
information into more accessible explanations.

Although the task we focused on - sentiment analysis of
IMDB movie reviews - is relatively straightforward and
likely manageable by most adults, our work highlights a
more nuanced challenge. In the context of NLP, the direct
use of explainability technique outputs becomes
significantly more difficult when dealing with long textual
inputs. Our results show that ChatGPT is particularly well-
equipped to handle this complexity and can generate useful
explanations, provided it receives appropriately designed
instructions. Furthermore, by streamlining this process, we
uncovered what appear to be mislabeled examples in the
original dataset.

Another key insight from this work is the critical
importance of faithful explanations. As we have seen,
explanations produced by Claude were not always faithful,
in that the LLM would initially detect the original model
produced the incorrect prediction and alter its explanation
towards the correct prediction. Ideally, an LLM should
avoid subjective additions when generating explanations,
as this is essential for building user trust in both the model’s
prediction and its rationale. While introducing an LLM into
the explanation pipeline adds another layer of complexity -
on top of an already opaque predictive model and its
associated explainability technique - it also plays a vital
role. We observed that the raw outputs of explainability
techniques do not scale well as the number of features (in
our case, words) increases, making interpretation
increasingly difficult. However, for the LLM to be
genuinely helpful, it must remain grounded in the provided
explanation output. When an LLM introduces its own
reasoning, it effectively bypasses both the original model
and the explainability method, reducing the explanation to

121

the LLM’s internal logic - another black-box with no
applied interpretability.

Finally, regarding the pretrained sentiment analysis model,
we identified a potential bias toward short inputs, where
the presence of even mildly positive words appears to sway
the prediction toward a “positive” label. Despite this, the
base model generally performed well on the dataset.
Notably, it correctly predicted the sentiment for several
instances we believe were mislabeled in the original data.

For future work, several directions can be pursued. First, a
user study could be conducted to evaluate the perceived
usefulness of the generated explanations, supporting the
notion that these explanations make XAI more accessible
to the general public and help build trust in black-box
models. Second, future efforts could focus on improving
the faithfulness of explanations, which remains a critical
challenge in our pipeline. Finally, our observation that long
reviews are misclassified as “positive” roughly five times
more often than as “negative” suggests the presence of
additional biases in the base model, warranting further
investigation.
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