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ABSTRACT 
With deep neural networks being steadily adopted in various 
sectors such as healthcare, finance or tech, the need for 
interpretability of their results becomes paramount. In this 
context, not only is it difficult to produce reliable 
explanations of such complex models, but even more 
importantly, non-expert users - the main beneficiaries of 
real-world applications of artificial intelligence (AI) systems 
- may not have the capacity to comprehend and make use of
these explanations. The contributions related to this paper are
twofold. Firstly, we extend the work of Zytek et al. [19] by
generating explanations for 3 different explainability
techniques on the IMDB dataset [9], using different prompts.
Secondly, we analyze the explanations produced to draw
insights about the behavior and potential biases of the
underlying sentiment classification model.
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INTRODUCTION 
The ability of deep neural networks (DNNs) to match or even 
surpass human performance on certain tasks underscores 
their transformative potential. However, their widespread 
adoption is hindered by a significant challenge: the lack of 
transparency in their decision-making processes. For users to 
trust these systems, they must not only perform accurately, 
but also offer clear explanations of their behavior. 
Explainable AI (XAI) seeks to address this need by 
developing methods that make machine learning (ML) 
models more interpretable and their predictions more 
understandable. By demystifying how models operate, XAI 
fosters trust, empowers users to evaluate predictions 

critically, and enables system designers to refine their 
models effectively. 

Widely adopted explanation techniques such as Local 
Interpretable Model-Agnostic Explanations (LIME) [12], 
SHapley Additive exPlanations (SHAP) [8] or Anchors [13] 
display their results in formats that are not intuitive, nor user-
friendly and lack clarity and readability for larger audiences 
[6, 11]. A natural question that arises is whether we can make 
use of existing systems, like Large Language Models 
(LLMs) to further improve the field of XAI.  

There are many strategies that can be employed to have 
LLMs improve XAI frameworks [18]. Kroeger et al. [7] 
assessed how GPT-3.5 and GPT-4 can work as post-hoc 
explainers, focusing on their ability to extract the most 
important features contributing to another model’s decision. 
Four different strategies were used, but they all relied on 
sampling additional values from the local neighbourhood of 
the input being explained, with the variations being in the 
prompt given to the LLM. Their results suggest that the 
resulting explanations are faithful and can even exceed the 
results of SHAP in some cases. Alternatively, Bhattacharjee 
et al. [3], while still depending on LLMs’ ability to extract 
relevant features, focused on providing causal explanations. 
To do so, they relied on the LLMs being able to discover the 
latent features and make minimal changes to them in order 
to flip the decision of the model, thus obtaining a 
counterfactual example.  

In a similar direction, Slack et al. [15] defined TalkToModel, 
a dialogue-based system via which users are able to ask 
natural language questions like “Why was I denied a loan?” 
and receive the relevant answers, by having the model apply 
XAI techniques under the hood. Their results showed that the 
model was able to have an excellent understanding of the 
users’ requests and that it was able to provide explanations 
for the results of other ML models in a way that would have 
increased the users’ trust in the model, while at the same time 
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outperforming other existing systems. Similarly, Nguyen et 
al. [10] investigated how XAI can be included in a 
conversational agent, having natural, human-style 
communication as a starting point. Their work built a XAI 
question phrase bank, which defined general XAI questions 
the model could receive (e.g., “How does a specific feature 
impact the result?”, “What is a required feature that would 
ensure a specific prediction”) and the explainability 
technique (SHAP, LIME, Anchors, etc.) that would be 
applied under the hood. 

In a somewhat different direction, but still relying on LLMs, 
Zytek et al. [19] investigated how LLMs can be employed to 
transform the outputs of existing XAI techniques like SHAP 
into natural language explanations that could be easily 
understood by the general public. Different zero-shot 
prompts were used for GPT-3.5 and GPT-4 models and their 
results were evaluated against various metrics on the student 
performance dataset [4] and the Ames housing dataset [5]. 
An extensive user analysis was conducted, showing 
promising results, as users generally agreed the explanations 
contained the sufficient amount of details, while conserving 
their usefulness and clarity.  

Building on these core contributions, we present a prompting 
framework tailored to LLMs, enabling them to translate 
complex explainability outputs into concise and accessible 
narratives. This is especially valuable for long-form text 
inputs, where the raw outputs of explainability techniques 
are difficult to interpret, even for technical users. Our 
empirical results show that, when guided with appropriate 
instructions, LLMs like ChatGPT [1] and LLaMA [17] may 
effectively summarise and contextualise explanation data in 
a way that supports broader interpretability.  

We also highlight the critical need for faithful explanations. 
While LLMs improve accessibility, we observed that they 
occasionally introduce interpretations not grounded in the 
underlying model’s behavior, undermining the purpose of 
post-hoc explanation. This calls for further work to ensure 
alignment and fidelity between model predictions, 
explanation techniques, and LLM-generated summaries. 
Lastly, by examining patterns in the explanations across 
different inputs, we uncover evidence of bias in the sentiment 
analysis model used. Specifically, we note a tendency for 
short reviews containing minimally positive language to be 
misclassified as positive, suggesting over-sensitivity to 
certain features. Moreover, our method surfaced instances of 
potentially mislabeled examples in the dataset, 
demonstrating that this approach can aid not only in 
explainability but also in data validation.  
PRELIMINARIES 
In this work, we have used the IMDB dataset1, a popular 
dataset used for sentiment analysis and Natural Language 
Processing (NLP). The dataset contains plain text movie 

1https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-
of-50k-movie-reviews 

reviews labeled with “positive” or “negative”, representing 
the sentiment that is conveyed by the review. This is a 
balanced dataset of 50000 reviews, out of which 25000 are 
labeled as “positive” and 25000 are labeled as “negative”. 
Furthermore, we use a commonly used heuristic: we split our 
dataset into four categories based on the review length: 
shorter than 50 words - very short, between 51 and 150 words 
- short, between 151 and 300 words - medium, longer than
300 words - long.

Predictions on this dataset consist of “positive” or “negative” 
labels, indicating the sentiment of a specific review. To 
obtain predictions, we have used the “distilbert-base-
uncased-finetuned-sst-2-english”, a fine-tuned version of 
DistilBERT [14] specifically trained on the Stanford 
Sentiment Treebank (SST-2) dataset [16] for sentiment 
analysis tasks. DistilBERT is simply a smaller, but faster pre-
trained version of BERT that has been optimized to achieve 
faster inference and lower computational cost, while still 
retaining much of BERT’s capacity. It offers a favorable 
trade-off between efficiency and performance, making it 
particularly suitable for tasks where computational resources 
or response time are limited.  

The SST-2 dataset is composed predominantly of short to 
very short sentences and phrases derived from user reviews 
on Rotten Tomatoes. This contrasts with the IMDB dataset, 
which typically features longer, more complex reviews. 
Given the relatively simple structure of the SST-2 texts, and 
the desire to evaluate the model’s pre-trained capabilities in 
a zero-shot setting, no additional training or fine-tuning is 
conducted in this work. For simplicity purposes, in the 
following, we will use “original BERT model” to refer to the 
base “distilbert-base-uncased-finetuned-sst-2-english” for 
which no further training has been performed. 

To obtain explanations as to how the model has reached a 
particular prediction, we relied on three different 
explainability techniques. These are all popular choices with 
strong open-source libraries and more importantly, model-
agnostic techniques, which can be applied to any type of 
black-box model. The first one is LIME [12] and it works by 
building a linear explanation model when attempting to 
explain a specific input, by evaluating the original model on 
additional inputs sampled around the original input. To apply 
this technique, we rely on the open-source lime2 library, 
which besides scores associated with each word, also 
provides a straightforward visual explanation, highlighting 
the words contributing the most to the model’s decision. We 
note that because of the sampling mentioned above, the 
scores of each feature can be different even when LIME is 
applied to the same input multiple times.  

Secondly, SHAP [8] unifies seven other explainability 
methods by assigning scores to each feature of an input. 
These scores are obtained by computing the Shapley value 

2https://github.com/marcotcr/lime 
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of each feature, following results from game theory. In our 
case, we make use of the open source shap3 library, which 
assigns positive or negative scores to each word from the 
input. The last technique that was used in this work is 
Anchors [13]. In its theoretic version, it is based on if-then 
rules, with the anchor itself representing a logical predicate. 
In practice, we will be using the alibi library and its 
AnchorText4 explainer. Its output is actually a list of words 
from the input, rather than a predicate, and we can interpret 
these words as the ones that are sufficient to guarantee, with 
a high precision, the same model prediction, even if the rest 
of the input is modified. Precision and coverage (recall) are 
both important notions when talking about anchors, and the 
library does provide access to them. 

As stated, one of the objectives of this work is to expand on 
the approach of Zytek et al. [19]. In this light, our approach 
involves carefully designing a series of prompts that guide 
LLMs to take the outputs generated by the explainability 
techniques discussed earlier and transform them into 
coherent, natural language narratives. The objective is for 
these narratives to be crafted in a way that makes the often 
complex and technical results of these techniques accessible 
and easily comprehensible to a broad audience, including 
those without specialized knowledge in the field. We have 
used OpenAI’s ChatGPT [1], Anthropics’ Claude [2] and 
Meta’s LlaMA [17]. 

METHODOLOGY 
In order to assess the performance of the chosen model, we 
evaluated it on the entire dataset and computed several key 
evaluation metrics, including accuracy, precision, recall, and 
F1 score. To obtain these scores, we have compared the 
predicted sentiment of each review (“positive” or 
“negative”) with their original label. The computed metrics, 
summarized in Table 1, indicate that our original BERT 
model achieves sufficient performance, enforcing our 
argument that additional training may not be necessary. 
Moreover, this evaluation enables us to investigate the 
model’s potential biases in its decision-making process, 
ensuring that the results are not influenced by unintended 
patterns or discrepancies.  

Accuracy 0.8896 

Precision 0.9154 

Recall 0.8586 

F1 Score 0.8861 
Table 1: Model performance on IMDB dataset 

We now proceed to the core experiments of this study. For 
each input, we begin by utilizing our pre-trained model to 
generate a prediction. Following this, we apply each of the 

3 https://pypi.org/project/shap/ 
4 https://pypi.org/project/alibi/  

three explanation techniques described earlier - each 
independently - to gain insights into the model’s decision-
making process. The outputs of these explainability 
techniques are then fed into all three of the LLMs, each 
accompanied by a carefully crafted prompt. It is important to 
note that we focus on using zero-shot prompts, meaning that 
the LLMs are provided with the explainability results as 
input without any prior fine-tuning specific to the task at 
hand. While all the five prompts we use (P1-P5, see Table 2) 
share the common goal of generating a clear, human-friendly 
narrative that can be easily understood by the general public, 
each prompt is subtly distinct to influence the style and tone 
of the produced explanations. The specific variations in the 
prompts, designed to adjust how the explanation is framed, 
are detailed in Table 2.  

P1 is our starting point, which clearly states the request for 
the LLM, as well as provides some basic general context. P2 
expands the previous prompt, by explicitly mentioning the 
results should be easily comprehendible by people without 
any ML experience or knowledge. Additionally, it instructs 
the LLM to focus on succinct explanations.  

P3 applies only to outputs from SHAP or LIME and it 
explores whether adding specific directives to focus on the 
most relevant features, based on their scores, changes the 
explanation produced by the LLM. P4 explores whether 
specifying the structure of the output of the explainability 
technique upfront improves the LLM’s explanation.  

Finally, P5 was introduced after conducting multiple 
experiments and noticing a recurring pattern in which the 
LLMs occasionally provided their own reasoning or 
justifications for the scores assigned to certain words, or even 
questioned whether these words should have influenced the 
decisions of the initial model in the manner they did. This 
observation highlighted the need for a more objective and 
straightforward explanation. By using this prompt, we aim to 
obtain an explanation that is focused solely on the factual 
details of the model’s decision-making, without introducing 
any unnecessary biases.  

We showcase an example of an input/output pair for 
ChatGPT in Figure 1 for which the explainability technique 
used was SHAP - its output was truncated for display 
purposes. We note this example uses a different prompt than 
the ones mentioned in Table 2, as the LLM’s explanation 
references the SHAP values, but we deem this example more 
easily understandable. 

RESULTS 
Upon considering the use of Anchors as an explainability 
technique, it quickly became apparent that conducting all the 
planned experiments was unnecessary, as will be elaborated 
in the following paragraph. However, had we included those 
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additional experiments, the total number of experiments 
would have increased to approximately 500. Without the 
inclusion of Anchors, we have carried out a total of 480 
experiments - 3 (number of LLMs) x 2 (explainability 
techniques used) x 5 (number of prompts) x 2 (true positive 
examples) x 2 (true negative examples) x 2 (false positive 
examples) x 2 (false negative examples). 

Our findings are based on observations made through manual 
inspection of the outputs generated by the explainability 

technique and the explanations produced by the LLMs. 
These patterns are not isolated cases but frequent 
occurrences, consistently appearing across multiple 
experiments and suggesting a degree of generalizability. 

We commence our analysis with the most straight-forward 
result. Anchors are not a well-suited technique for this type 
of data. As mentioned, the output is a list of words that are 
sufficient to guarantee, with a high precision, the same model 
prediction, even if the rest of the input is modified.

Code Possible values 

[EXP_SHAP] (SHAP_base_val, [(f_1, f_score_1), (f_2, f_score_2), ...]) 

[EXP_LIME] [(feature_1, f_score_1), (feature_2, f_score_2), ...] 

[EXP_ANCHORS] (precision, coverage, [feature_1, feature_2, feature_3, ...]) 

[EXP_FORMAT] [EXP_SHAP] / [EXP_LIME] / [EXP_ANCHORS] 

[EXP_TECH] SHAP / LIME / Anchors 

Code Repetitive Unit 

[INTRO] You will be explaining the output of the following explainability technique [EXP_TECH] applied on a 
model that performs sentiment analysis for textual data representing movie reviews from IMDB. 

[TASK] You will receive the input to the model and the output of the explainability technique. Turn these 
results into a narrative explanation, easy to follow and understand. Do not mention any of the values. 

[EXP_RESULT] This is a placeholder for the results of the explainability technique applied. 

Code Prompt 

P1 [INTRO][TASK][EXP_RESULT] 

P2 [INTRO][TASK] The explanations you will provide will be read by people without machine learning 
knowledge or experience. Make the explanations as human-friendly and succinct as possible. 

[EXP_RESULT] 

P3 [INTRO][TASK] Add details about the most important features and how they contribute to the 
model’s decision. [EXP_RESULT] 

P4 [INTRO][TASK]. The output of the [EXP TECH] is in the format [EXP_FORMAT] and is the 
following: [EXP_RESULT] 

P5 [INTRO][TASK]. Interpret the provided data objectively. Do not give personal reasons as to why the 
model interpreted a word in a specific way. Do not make any side comments of your opinion of the 
review. Focus solely on the provided output. Make the explanation as succinct as possible, without 

discarding the most relevant information. [EXP_RESULT] 

Table 2: The give prompts provided to LLM 
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Figure 1: Input/output example for ChatGPT
Because there are no scores, positive weighting and 
negative weighting words may both be part of the output. 
What we observed was that generally LLMs added their 
own interpretation on whether those words had a positive 
or negative impact. Moreover, in numerous instances the 
word “not” was included in the anchor’s output. While the 
word “not” is a key negator in language, it is unclear and 
impossible to know whether its impact was positive or 
negative, for example in the case of a review containing 
both “not bad” - positive sentiment and “would not watch 
again” - negative sentiment. Because of this, one cannot 
trust that the explanations produced by the LLMs are 
faithful, as they are free to interpret such usages in 
whichever way they prefer. Ideally, we want our LLMs to 
summarize the output, not make their own explanation. 
Moreover, the anchor output only contains a short list of 
words, and because in our case we are dealing with movie 
reviews which are often verbose, the anchor can only 
capture a small part of the entire review and that could lead 
to a misleading sentiment prediction. As a result, in the 
upcoming analysis, we no longer include Anchors.  

We continue by focusing on explanations obtained when 
the model’s prediction matches the sentiment of the 
review. Generally, all three LLMs produced good 
explanations. All LLMs, unless instructed, included 
references to the provided values. Moreover, both LIME 
and SHAP generally provide a score for each word, based 
on the tokenizer, and while the LLMs correctly identify 
positive or negative sequences of words due to all words in 
the sequence having positive or negative values in the 

explanation output, LLMs struggled to add those values 
together, instead mentioning only the value of the first 
word. However, their explanation, where applicable, did 
mention that certain sequences heavily influenced the 
model correctly, even if displaying the wrong scores for the 
sequence. We find this misleading, as users would see 
some values whose meaning they might not understand, 
affecting the quality of the explanation. Out of the three 
LLMs, LLaMA seemed to address this issue the best. 
Nonetheless, this is why we have explicitly mentioned in 
our task description that the explanation should not 
mention any of the provided values.  

Moving on to the case where our model’s prediction did 
not match the review’s sentiment, we could draw some 
interesting observations. In some cases, the LLMs were 
able to detect that the prediction of the model was incorrect 
and it became challenging to get them to produce an 
explanation that focused only on the provided output of the 
explainability technique. Several times, the explanations 
would contain side comments, seemingly added by the 
LLM. That was the main issue prompt P5 was trying to 
address and it did so up to a limit. It was observed using 
Claude that its explanations are not always faithful. Claude 
was provided with the output of the explanation technique 
and because it identified that the model’s prediction was 
wrong, its explanation focused around the values that 
contributed positively to the correct sentiment. This is 
extremely misleading and takes away much of the trust in 
its explanations. After being instructed that the prediction 
was in fact the opposite, Claude only changed a small part 
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of its explanation, where it was mentioning the predicted 
value, with the rest of the explanation, about most relevant 
features staying the same. To further explore, we took the 
restriction of not providing reference values from the 
explanation away. We could see that Claude, although 
attempting to explain the correct model output, gave 
stronger corroborating values for the opposite sentiment. 
We did not observe such issues with either ChatGPT or 
LLaMA. In Figure 2, we include an example of the final 
parts of the output produced by Claude when using the 
same input and prompt, with the only difference being that 
for the second explanation, we explicitly mentioned what 
the prediction of the original model was. 

Figure 2: Unfaithful explanations provided by Claude     

Another interesting result was observed when looking at 
apparently incorrect model predictions. Because the 
reviews are quite verbose, it is very difficult to manually 
inspect each feature and its score in the output of the 
explanation technique. Streamlining the whole process of 
obtaining an initial prediction, using an explainability 
technique and then LLMs to objectively extract the most 
relevant information from the output of the explainability 
technique allowed us to quickly notice whether there are 
any discrepancies between the input, prediction or 
explanation. Because of this, we were able to identify what 
we believe are incorrect labels in the provided IMDB 
dataset. For illustration purposes, we include a few 
examples in Table 3.  

Review Original 
label 

Masterpiece. Carrot Top blows the screen 
away. Never has one movie captured the 

essence of the human spirit quite like 
”Chairman of the Board.” 10/10... don’t 

miss this instant classic. 

negative 

Some TV programs continue into 
embarrassment (my beloved ’X-Files’ 

comes to mind.) I’ve been a fan of Dennis 
Farina since ’Crime Story,’ another late, 

lamented show. ’Buddy Faro’ never had a 
chance. The series had a good premise and 

great actors. It’s really, really a shame. 

positive 

Table 3: Mislabeled data in IMDB dataset 

Moreover, doing some experiments on synthetic data 
provided an insight into our base model. We have observed 

that negative very short reviews have a much higher 
tendency to be misclassified by our model as positive. We 
hypothesised that the presence of even a slightly positive 
word in a short review is able to skew the model’s 
prediction to positive, thus uncovering an existing bias of 
our base model. Considering “Would never watch again. 
Absolutely terrible overall. The ending was decent.” as an 
example, we see that the review is certainly negative, with 
the only positive part being that the ending was decent - 
note the usage of decent, which is rather a neutral- positive 
word in this context. Inspecting the values of the features, 
we were able to see that the model placed huge emphasis 
on “decent”, assigning it a score higher than the sum of all 
the scores for negative segments like “never watch again”, 
“absolutely terrible”. When allowed to make comments, 
the LLMs also correctly identified this issue and the 
abnormal weight placed on the positive word.  

Another recurring challenge we encountered was the 
LLMs’ inability to accurately perform floating-point 
addition. This limitation led to frequent errors in score 
calculations, with the most significant discrepancies 
arising in cases involving multiple segments. However, the 
calculations were typically correct when dealing with 
individual words, where the associated values were often 
extracted accurately. In Figure 3, we present an example 
for a “negative” prediction generated by ChatGPT, which 
highlights this issue. For negative predictions the smaller 
the score of a segment, the higher its contribution towards 
a negative sentiment. In the output, ChatGPT claims that 
the most influential segment had an impact score of -0.174, 
but then proceeds to mention another segment with a score 
that is approximately twice the value of the one it 
previously identified as the most influential -  segment 
which should have instead been identified as the most 
influential, as it carried the most negative weight. This 
discrepancy exposes a notable problem: we specifically 
instructed our LLMs not to include any numerical scores in 
their explanations. Consequently, a user reviewing this 
output would not have been able to identify the underlying 
mathematical inconsistency. Instead, they would have been 
forced to rely entirely on the LLM’s narrative without any 
way to verify the accuracy of the figures presented, which 
could potentially undermine trust in the explanation 
provided.  

Figure 3: LLMs do not make sound mathematical 
statements 
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CONCLUSIONS 
In this work, we focused on generating explanations 
understandable to the general public using LLMs. We 
explored the capabilities of a pretrained base BERT model 
specifically trained for sentiment analysis. To guide 
explanation generation, we designed five distinct prompts 
that shared a common objective but introduced subtle 
variations in emphasis. We experimented with different 
LLMs and explainability techniques to assess how 
effectively they could produce these explanations.  

We found that, on their own, the outputs of explainability 
techniques are somewhat limited. While undeniably useful 
- especially for users with technical or ML background -
they can be difficult for the general public to interpret. This
limitation became even more evident in our study, which
focused on movie reviews that often contain substantial
text. For longer reviews, even expert users may struggle to
extract meaningful insights from raw explainability outputs
due to their complexity and length. LLMs, however, are
well-suited to handle large volumes of data, and in this
work, we leveraged their ability to summarize and distill
information into more accessible explanations.

Although the task we focused on - sentiment analysis of 
IMDB movie reviews - is relatively straightforward and 
likely manageable by most adults, our work highlights a 
more nuanced challenge. In the context of NLP, the direct 
use of explainability technique outputs becomes 
significantly more difficult when dealing with long textual 
inputs. Our results show that ChatGPT is particularly well-
equipped to handle this complexity and can generate useful 
explanations, provided it receives appropriately designed 
instructions. Furthermore, by streamlining this process, we 
uncovered what appear to be mislabeled examples in the 
original dataset.  

Another key insight from this work is the critical 
importance of faithful explanations. As we have seen, 
explanations produced by Claude were not always faithful, 
in that the LLM would initially detect the original model 
produced the incorrect prediction and alter its explanation 
towards the correct prediction. Ideally, an LLM should 
avoid subjective additions when generating explanations, 
as this is essential for building user trust in both the model’s 
prediction and its rationale. While introducing an LLM into 
the explanation pipeline adds another layer of complexity - 
on top of an already opaque predictive model and its 
associated explainability technique - it also plays a vital 
role. We observed that the raw outputs of explainability 
techniques do not scale well as the number of features (in 
our case, words) increases, making interpretation 
increasingly difficult. However, for the LLM to be 
genuinely helpful, it must remain grounded in the provided 
explanation output. When an LLM introduces its own 
reasoning, it effectively bypasses both the original model 
and the explainability method, reducing the explanation to 

the LLM’s internal logic - another black-box with no 
applied interpretability.  

Finally, regarding the pretrained sentiment analysis model, 
we identified a potential bias toward short inputs, where 
the presence of even mildly positive words appears to sway 
the prediction toward a “positive” label. Despite this, the 
base model generally performed well on the dataset. 
Notably, it correctly predicted the sentiment for several 
instances we believe were mislabeled in the original data.  

For future work, several directions can be pursued. First, a 
user study could be conducted to evaluate the perceived 
usefulness of the generated explanations, supporting the 
notion that these explanations make XAI more accessible 
to the general public and help build trust in black-box 
models. Second, future efforts could focus on improving 
the faithfulness of explanations, which remains a critical 
challenge in our pipeline. Finally, our observation that long 
reviews are misclassified as “positive” roughly five times 
more often than as “negative” suggests the presence of 
additional biases in the base model, warranting further 
investigation.  
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