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ABSTRACT 
The detection and management of cognitive load has 
become a priority in today’s technology-based world, where 
mental effort impacts performance and health quality. 
Traditional assessing methods rely on expensive and 
intrusive laboratory equipment, limiting the real-world 
applicability. This paper presents a non-invasive system for 
cognitive load detection using only physiological signals 
from commercial smartwatches. The proposed architecture 
includes a smartwatch application for real-time sensor data 
acquisition, a server for processing and storage and a web 
interface for visualization and control. An experimental 
methodology with alternating cognitive and relaxation 
phrases, inspired by the Pomodoro technique [1], was used 
to induce physiological responses. Key metrics such as 
heart rate (HR), heart rate variability (HRV), skin 
temperature, photoplethysmography (PPG) and task 
performance were analyzed. Results show significant HRV 
and HR variations between cognitive and non-cognitive 
phases, confirming the feasibility of wearable-based 
workload assessment. This work demonstrates that low-
cost, accessible smartwatches can support cognitive 
monitoring, with using in educational, professional or 
health-related contexts. 
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INTRODUCTION 
In the modern digital society, people are increasingly 
exposed to intense cognitive demands across educational, 
professional and personal contexts. Managing constant 
information flow and multitasking under pressure transform 
cognitive effort in an unavoidable routine. Monitoring 
cognitive load, defined as the mental effort required 
performing a given task, has become a focus for improving 
performance, supporting mental health and preventing 
cognitive fatigue or burnout. 

Traditionally, cognitive load is assessed using specialized 
laboratory-based tools like EEG (Electroencephalography) 
or ECG (Electrocardiography). While providing high 
quality data, these methods are often expensive and 
impractical in real-world settings. To address this 
limitation, wearable devices are a promising alternative. 
Modern smartwatches integrate sensors that measure heart 
rate (HR), skin temperature or photoplethysmography 
(PPG) signals in a non-intrusive and comfortable manner. 

This research investigates whether commercial wearables 
can reliably detect cognitive load through physiological 
signals. A complete system was developed using a 
commercially available smartwatch and consists of four 
components: a Kotlin-based Wear OS application for data 
acquisition; a Python server for communication and data 
management; a web interface for experiment control and 
data visualization; and a structured database for storage. 

To validate the approach, an experimental methodology 
alternating between cognitive tasks and relaxation was 
designed. The protocol is modeled following the Pomodoro 
technique guidelines [1]. Participants were exposed to a 
standardized sequence of tasks while their physiological 
responses were recorded. The goal is to analyze whether 
significant and consistent changes are observed in the 
physiological data during different cognitive states. 

The primary objective is to evaluate the feasibility of 
cognitive load detection using only commercial wearable 
sensors. Specific objectives include: designing a fully 
integrated acquisition, monitoring and processing system, 
implementing an experimental protocol, analyzing 
correlations between physiological data and mental effort, 
validating literature-based physiological indicators and 
assessing sensor reliability in cognitive load detection. 

This work aims to support the development of scalable, 
low-cost and user-friendly tools for cognitive monitoring, 
with potential applications in education, workplace safety, 
stress management or adaptive human-computer interfaces. 

RELATED WORK 
Cognitive load detection is a multidisciplinary research 
area, involving neuroscience, computer science, psychology 
and biomedical engineering. The increasing complexity of 
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professional and educational tasks has driven efforts to 
measure mental load objectively and non-invasively. 
Studies explore a variety of methods, such as n-back, 
Stroop and Go/No-Go to pattern recognition or multitasking 
activities. Physiological data is collected using sensors such 
as ECG, EEG, PPG, skin temperature, HR or EDA 
(Electrodermal Activity). Analytical techniques range from 
statistical analysis (e.g., t-tests, ANOVA), time and 
frequency HRV (Heart-Rate Variability) metrics (e.g., 
RMSSD, SDNN, LF/HF), to machine learning (e.g., SVM, 
Random Forest) and deep learning models (e.g., CNN, 
LSTM). 

Laboratory-grade equipment, such as multi-channel EEG, 
eye-tracking systems, EDA sensors and specialized ECG 
devices, offer high quality signals but are often costly and 
uncomfortable. This drives interest in evaluating the 
feasibility of commercial wearable sensors in cognitive load 
monitoring. 

Howie et al. [8] investigated wearable devices in clinical 
tasks performed by surgeons, using HR, HRV, EDA and 
motion data. While correlations with cognitive load were 
found, the analysis relied on subjective scales (NASA-
TLX) and lacked methodological accuracy. 

He et al. [7] proposed a real-time cognitive load assessment 
system using portable EEG and HRV, achieving 97% 
accuracy in N-back tasks via Random Forest classifiers. 
Although promising, the system uses EEG, fact that 
complicates the real-world deployment. 

Boffet et al. [3] used HRV and EDA during 2-back and 
emotional image tasks applying clustering and signal 
processing (e.g., VFCDM, WPT), to identify response 
profiles. Although results confirmed HF-HRV (High 
Frequency) and EDA as reliable markers, data acquisition 
required ECG and advanced, non-trivial processing. 

Suzuki et al. [15], in a systematic review of workload 
monitoring in AR environments, noticed the utility of 
multimodal signals (e.g., EEG, ECG, EDA, eye-tracking, 
PPG) and highlighted the need for integrated systems using 
wearable sensors. 

Barki et al. [2] introduced an ear-mounted PPG device for 
stress detection using deep learning (CNN and Wavelet 
scalograms), reaching 96% accuracy. While promising, the 
device was not wrist-worn and required signal 
augmentation and pretraining. 

In conclusion, existing studies confirm the relevance of 
physiological signals, especially HRV and PPG, in 
cognitive states modeling. However, few studies implement 
practical systems using only commercial devices. This 
paper addresses this gap by developing and testing a system 
based entirely on wearable consumer technology, with a 
focus on non-invasive, simple and comfortable methods. 

THEORETICAL CONCEPTS 

Cognitive Load Theory and Mental Effort 
Cognitive Load Theory (CLT), introduced by Sweller [16], 
offers a structured perspective on how individuals process 
information during task execution, emphasizing the 
limitations of working memory. According to CLT, 
cognitive load can be categorized into three types. The 
intrinsic component is determined by the complexity of the 
task, extraneous load is derived from how the information is 
presented or delivered and germane load is considered 
benefic and refers to the cognitive effort invested in schema 
construction and information integration. These types of 
load interact continuously during problem-solving and 
learning, with a direct influence on mental performance and 
fatigue. 

Excessive cognitive load has been shown to impair 
executive functions such as attention and working memory, 
reduce information retention and lead to task errors or 
burnout, as mentioned by van der Linden et al. in [17]. 
Controlled induction of cognitive load in experimental 
research typically uses methods such as n-back used in [12], 
Stroop, Go/No-Go and dual-task tests used in [5], 
arithmetic operations used in [14], text reading mentioned 
in [11] and pattern recognition, all designed to increase 
mental effort in a structured manner. In this study, a hybrid 
protocol inspired by the Pomodoro method was employed. 
It alternates focused cognitive activity and relaxation 
periods to emulate real-world cognitive fluctuation while 
ensuring comparability across participants and conditions. 

Wearable Sensor Technologies 
Recent advancements in wearable devices have enabled the 
collection of physiological data with minimal intrusion and 
high user comfort. In this study, Samsung Galaxy Watch 5 
Pro was chosen for its advanced sensor suite, developer tool 
compatibility and commercial availability. It supports 
continuous monitoring in real-world conditions and 
provides raw access to essential physiological parameters 
relevant for cognitive load assessment. 

One of the critical factors in device selection was developer 
access to raw data. While many smartwatches offer health 
monitoring features, few provide APIs for low-level signals 
such as PPG waveforms or raw IBI (Inter-Beat Interval). 
This study uses Samsung Privileged Health SDK v1.2 
which requires prior authorization due to its access to 
personal data and research capabilities. 

The smartwatch integrates a variety of sensors for health 
tracking. Most relevant is a multi-wavelength optical PPG 
array (green, red, infrared) that captures volumetric blood 
flow changes by illuminating the skin and capturing 
reflected light with a photodetector. Green light is used for 
heart rate measurement due to its shallow penetration, while 
red and IR channels access deeper tissues and help reduce 
motion artifacts [4]. These sensors allow IBI extraction and 
HRV analysis without ECG. 
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It also features a skin temperature sensor to detect 
peripheral changes linked to cognitive demand. Other 
internal modules enable detection of sweat loss, oxygen 
saturation or BIA (body composition). However, these 
sensors require restrictive positions that limits the natural 
movements, so only those that allow participants to perform 
the tasks comfortably are used in this study. 

The combination of these accessible sensors and structured 
API access provides a robust, non-intrusive alternative to 
laboratory equipment, suitable for cognitive monitoring in 
real world settings. 

Signal Processing and Derived Parameters 
To ensure accurate interpretation of physiological data, 
robust signal preprocessing and feature extraction were 
essential. Among the collected signals, HRV was 
prioritized as a key indicator of cognitive load due to its 
studied link to ANS (Autonomic Nervous System) activity. 
Unlike simpler metrics such as HR or skin temperature, 
HRV provides a deeper insight into the balance between 
sympathetic and parasympathetic responses to mental 
stress. 

HRV was calculated from IBI values acquired at 1 Hz using 
mainly the PPG sensors. Calculations were updated every 
second using a 120 second sliding window, aligning with 
recommendations from [13] for physiological signal 
stabilization. Three main types of HRV analysis were used, 
according to [10]: time-domain, frequency-domain and 
nonlinear metrics.  

Time-domain metrics quantify the variability directly and 
there are more parameters than can be derived: Mean RR, 
SDNN (Standard Deviation of NN Intervals), RMSSD 
(Root Mean Square of Successive Differences), pNN50 
(Percentage of NN Intervals that Differ by More Than 50 
ms) and TINN (Triangular Interpolation of NN Interval 
Histogram), where NN (or RR) is the time between two 
successive heartbeats. 

Frequency-domain metrics offer insight into sympathetic-
parasympathetic balance by spectral decomposition and are 
represented by LF (Low Frequency) power, HF (High 
Frequency) power and the LF/HF ratio. 

Nonlinear metrics are represented by: SD1 and SD2 
Poincare plots (short and long-term variability), DFA 
(Detrended Fluctuation Analysis) α1 and α2 for fractal 
complexity, Sample Entropy (SampEn) and Approximate 
Entropy (ApEn). 

Additionally, PNS (Parasympathetic Nervous System 
Index) and SNS (Sympathetic Nervous System Index) 
indices summarize autonomic balance of parasympathetic 
and sympathetic components, respectively. 

This processing pipeline allow the system to reliably derive 
real-time indicators of mental effort, enabling meaningful 
analysis of cognitive load using the wearable devices. 

Physiological Correlates of Cognitive Load 
Based on insights from literature [9] and the experimental 
design, several hypotheses were formulated regarding the 
relationship between physiological responses and cognitive 
load. These hypotheses guided the selection of relevant 
features and signal processing techniques. 

For time-domain metrics of HRV, the correlations are the 
following: 

• Mean RR is used as a general timing reference but is less
sensitive to cognitive state alone.

• SDNN, RMSSD, pNN50 and TINN tend to decrease
under cognitive load and increase during recovery or rest.

Frequency-domain HRV features show distinctive patterns: 
• HF power, associated with parasympathetic activity, is

expected to decrease during mental effort.
• LF may remain constant or show slight decrease due to

its mixed sympathetic-parasympathetic origin.
• An elevated LF/HF ratio indicates increased sympathetic

dominance, typical during cognitive stress.
Nonlinear HRV measures provide insight into signal 
complexity and autonomic flexibility: 

• SD1 and SD2 decrease under cognitive load.
• DFA-α1 shows a decreasing trend in mental effort, while

DFA-α2 remains relatively stable.
• Sample and Approximate Entropy both tend to decrease,

reflecting reduced signal adaptability.
The PNS Index, derived from RMSSD, is lower in high-
load tasks, while the SNS Index and Stress Index increase, 
indicating elevated sympathetic arousal. 

HR is expected to increase under cognitive stress and 
decrease during rest, serving as a direct indicator of 
sympathetic activation. Skin Temperature is expected to 
show a slight decrease during cognitive effort, reflecting 
thermoregulatory responses to mental workload. PPG 
signals from green, red and infrared channels are monitored 
for amplitude changes and waveform irregularities. 
Variations in these signals can reflect changes in peripheral 
vasoconstriction, commonly associated with sympathetic 
activation. 

These physiological markers serve as the foundation for 
assessing cognitive states in this experiment, allowing 
wearable sensor data to be interpreted in the context of 
mental effort. 

SYSTEM ARCHITECTURE AND EXPERIMENTAL 
METHODOLOGY 

Software Architecture and Development Tools 
The conceptual architecture provides a high-level overview 
of the main software components and their interaction. It 
illustrates the structure and the data flow, without detailing 
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specific implementation aspects. The proposed model 
follows a client-server architecture, where each component 
contributes to collect, process and store physiological data 
during experimental sessions. 

The system includes four components: the smartwatch 
application, the server-side application, the web interface 
and the database. Each have a well-defined role and their 
interaction ensures the system achieves its primary 
objective. An overview of the architecture and inter-
component communication is illustrated in Figure 1. 

The smartwatch application handles the real-rime 
acquisition of raw physiological data from built-in sensors, 
including HR, IBIs, PPG (green, red, and infrared) and skin 
temperature. The application is implemented in Kotlin, 
using Android Studio, it communicates with Samsung 
Privileged Health SDK v1.2 and transmits the data, in real-
time, to the REST API server, using the Retrofit library. 
Core features of the smartwatch application include user 
authentication and session management, connection to the 
Health Tracking service, periodic data acquisition, 
preprocessing and packaging of data, communication with 
the API and minimal interaction with the user through the 
watch interface. It uses the Observer design pattern for 
efficient event-driven updates when new data is available or 
service connectivity changes. 

The server application coordinates the components of the 
system. It receives data from the smartwatch, validates and 
stores it in a structured database and facilitates data 
retrieval by the web interface. The server is built using 
Python and the Django framework, following a RESTful 
API architecture for standardized and scalable 
communication. For real-time interaction with the web 
interface, the server supports WebSocket communication 
using the ASGI (Asynchronous Server Gateway Interface) 
protocol. Given that the system processes personal 
physiological data, secure communication is enforced using 
JWT (JSON Web Token) authentication, embedded in the 
header of each API request. 

The web interface serves as the primary interaction point 
for both researchers and participants. It guides users 
through the experimental protocol, displaying tasks while 
the smartwatch collects data in parallel. It is built using the 
Angular framework with TypeScript and styled with 
Tailwind CSS. Participants are shown their current stage in 
the experiment and experiment metadata is continuously 
sent to the backend for storage. 

Figure 1. Conceptual architecture of the system 

Beyond experiment participation, the interface also enables 
real-time visualization of sensor data, statistical summaries 
and graph-based insights. 

The database ensures the persistent and organized storage 
of all collected data, including participant sessions, sensor 
measurements, task responses and timestamped events. The 
system uses PostgreSQL as the database engine, with a 
schema designed to reflect the logical flow of the 
experiment. The structure minimizes redundancy and 
supports efficient querying for downstream analysis. 

Together, these components form an integrated platform for 
non-invasive, real-time monitoring of cognitive load using 
consumer-grade wearable devices, enabling both data 
collection and visualization in a seamless experimental 
workflow. 

Participants and Setup 
Characterizing the participant pool is essential for creating a 
context of the experimental results and for ensuring 
accurate interpretation of physiological data variations. 
Although the primary aim of this study was not to compare 
demographic groups, documenting participant profiles 
contributes to the transparency and reproducibility of the 
research. 

The experiment consisted of 9 distinct data collection 
sessions, corresponding to a total of 8 individual 
participants. The distribution by gender and age category is 
as follows: 3 females (all within the 20-30 years age range), 
5 males (4 in 30-50 years range and 1 in 20-30 years range). 
The age groups covered are 20-30 years (both genders) and 
30-50 years (only male). To ensure participant anonymity, a
simple alphanumeric identifier was used. Each subject was
assigned a code consisting of the initial of their gender
followed by a unique number (e.g., F1, M3). This coding
system was consistently applied for linking collected data
sessions with demographic attributes without disclosing
personal identity.
This demographic spread, although limited in sample size, 
provides a reasonable basis for initial observations 
regarding the physiological response patterns to cognitive 
load within the experiment. 

Experiment Structure and Protocol 
To evaluate the capability of the developed system to detect 
changes in cognitive state based on physiological data 
acquired from the wearable device, an experiment was 
designed and implemented. The primary objective was to 
examine whether measurable correlations exist between 
physiological parameters and the mental state of the 
participants, categorized as either relaxation or cognitive 
load. 

The experiment consisted of a sequence of seven 
consecutive tasks (alternating resting and cognitive tasks), 
each lasting exactly three minutes and structured as follows: 
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• Four relaxation tasks, intended to induce a calm
physiological state with minimal cognitive activation
(relax1 - video with ambient nature music, relax2 -
Mandala painting video, relax3 - waterfall video and
relax4 - easy puzzle activity).

• Three cognitive load tasks, aimed at engaging mental
resources (cogl1 - first-sight text reading and questions
answering, cogl2 - AI images classification and cogl3 -
pattern recognition and sequence reproduction).

The task order was deliberately chosen to alternate between 
relaxation and stimulation phases, ensuring a clear 
physiological contrast and enhancing the visibility of signal 
variations between successive task states. Each task was 
synchronized with the experiment session and records were 
timestamped to ensure accurate alignment between the 
collected signals and the corresponding experimental stage. 

The experiment aims to validate the feasibility of using a 
consumer-grade wearable device, such as the Samsung 
Galaxy Watch 5 Pro, to objectively differentiate cognitive 
states based only on real-time recorded physiological 
signals. This capability would support non-invasive, 
scalable cognitive state assessment in real-world scenarios, 
beyond controlled laboratory environments. 

ANALYSIS AND RESULTS 

Data Preprocessing 
Physiological data was collected from the smartwatch 
integrated sensors at a frequency of 1 Hz and stored in a 
PostgreSQL database. This data was exported into session-
specific Excel files containing user profiles, session and 
task metadata, performance metrics and detailed sensor 
readings (HR, IBI, PPG for all channels, and skin 
temperature). To ensure analytical reliability, a rigorous 
preprocessing pipeline was applied. This process began by 
validating sensor data using status flags and removing 
physiologically implausible values, such as IBI readings of 
0 or 2048 ms (commonly resulting from SDK anomalies) or 
other values outside the 500-1300 ms range, in conformity 
with [6]. Segments with missing timestamps, zero HR 
readings, or data affected by noise and motion artifacts 
were filtered using custom rules or excluded entirely. Only 
complete task intervals with clean, consistent and 
timestamp-aligned data were retained for further analysis, 
ensuring high-quality inputs and preserving the integrity of 
physiological signal interpretation. 

Statistical Analysis of Physiological Parameters 
Heart rate was analyzed using two complementary methods, 
statistical evaluation and visual trend analysis, each offering 
insights into how HR responds to cognitive load.  

The statistical evaluation involved calculating key metrics 
(e.g., mean, min, max, standard deviation) for each task 
across all sessions. Results showed a clear and consistent 
pattern that HR increased during cognitively demanding 
tasks and decreased during relaxation periods. Over 75% of 

task transitions matched this expected response, as seen in 
Table 1. 

This result confirms HR as a robust physiological indicator 
of mental effort. Additionally, testing temporal offsets (15-
60 seconds) to check the delayed physiological response 
revealed that HR reacts rapidly to cognitive shifts, with the 
strongest alignment at no delay or a maximum of 15 
seconds delay. 

The visual analysis, presented in Figure 2, based on 
interpolated HR signals over time, noticed how HR 
fluctuated across task sequences. While occasional artifacts 
affected signal clarity, the overall trends aligned with the 
statistical findings, highlighting HR elevation during 
cognitive load and recovery during rest. 

Together, these methods confirm the heart rate sensitivity 
and responsiveness as an important physiological marker 
for tracking cognitive load using commercial wearable 
devices. 

HRV is a sensitive physiological marker of autonomic 
nervous system activity and a key indicator for detecting 
cognitive load. This analysis explored HRV responses 
across experimental conditions, combining both manual and 
advanced signal processing. 

No 
Delay (s) 

0 15 30 45 60 

1 2 2 2 3 3 

2 4 4 5 5 5 

3 6 6 5 5 3 

4 5 5 5 5 4 

5 4 4 4 4 2 

6 2 3 3 3 3 

7 4 5 5 5 5 

8 2 2 2 3 3 

Table 1. Evaluation of aligned HR transitions between tasks 
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 Figure 2. HR trend analysis. 
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No 
Delay (s) 

0 15 30 45 60 

1 5 5 5 4 4 

2 3 3 3 3 3 

3 5 5 4 3 3 

4 5 5 5 4 3 

5 3 4 4 4 4 

6 4 4 3 4 4 

7 3 1 1 0 0 

8 5 5 5 4 4 

Table 3. Evaluation of aligned HRV transitions between tasks. 

In the manual statistical evaluation, HRV was computed 
using the RMSSD formula because of the stability of the 
calculus. The HRV values were segmented per task and 
compared between relaxation and cognitive load states. 
Most transitions followed the theoretical pattern that HRV 
decreased during cognitive tasks and increased during 
relaxation, confirming its diagnostic relevance. This 
consistency was stronger without artificial delay. Applying 
offsets of 15-60 seconds reduced alignment, underscoring 
the need for time synchronized analysis. These results are 
summarized in Table 3. 

The advanced analysis is performed using the software tool 
Kubios HRV Scientific Lite, version 4.1.2.1 [9]. This 
analysis provided a deeper examination using time-domain 
(RMSSD, SDNN, pNN50 and more), frequency-domain 
(LF, HF, LF/HF) and nonlinear parameters (SD1, SD2, 
ApEn, SampEn, DFA). 

The sessions were analyzed in pairs to identify, in a 
granular manner, the trends and the behavior of 
physiological signals. In the first analysis, the tasks named 
relax1 and cogl1 were included. Subsequently, the analysis 
continued with the pairs relax2-cogl2 and relax3-cogl3, 
following the same methodological approach. 

Notably, the first comparison between relax1 and cogl1 
offered the strongest physiological contrasts, aligning most 
clearly with theoretical expectations. As the sessions 
progressed, the magnitude of these differences gradually 
decreased. While the second and third task pairs still 
reflected expected trends, the correlations were weaker. 
This progressive attenuation may reflect participant fatigue, 
reduced engagement or habituation to the experimental 
stimuli. Such effects are common in paradigms with 
repeated task and highlight the importance of session 
structure and task ordering in physiological research. 

The results form Table 4 represent the mean of the three 
separate analyses output on the pairs of tasks: 

Parameter Relax 
Mean 

Cognitive 
Mean Δcognitiv-relax 

Mean HR (bpm) 78.38 79.99 1.61 

RMSSD (ms) 91.49 72.48 -19.01

SDNN (ms) 77.60 62.45 -15.15

Stress Index 8.34 9.70 1.36 

PNS Index 0.67 0.18 -0.48

SNS Index 0.28 0.84 0.56 

pNN50 (%) 18.80 17.01 -1.80

TINN (ms) 472.71 403.13 -69.58

LF Power (ms2) 5443.50 2394.00 -3049.50

HF Power (ms2) 6952.21 2704.09 -4248.12

LF / HF 1.58 1.33 -0.25

SD1 (ms) 64.83 51.37 -13.46

SD2 (ms) 86.91 69.47 -17.44

SD2 / SD1 1.80 1.64 -0.16

ApEn 0.96 1.00 0.05 

SampEn 1.40 1.50 0.10 

DFA - α1 1.00 0.96 -0.04

DFA - α2 0.32 0.37 0.05 

Table 4. HRV parameters resulted. 

The main conclusions drawn after the analysis of every 
HRV metrics are: 

• The mean HR was hgher in cognitive load tasks. Time-
domain metrics (RMSSD, SDNN, TINN, pNN50)
decreased under cognitive load, indicating reduced
cardiac variability.

• Stress Index increases during cognitive load, suggesting
elevated cardiac rigidity. PNS Index decreases in
cognitive tasks, indicating reduced parasympathetic
activity and higher mental concentration. SNS Index rises
during cognitive load, confirming the sympathetic
nervous system activation related to sustained attention.

• In the frequency domain, the HF and LF components
decrease during cognitive load. LF/HF ratio show mixed
trends, suggesting individual variability in autonomic
dynamics.

• Nonlinear parameters SD1 and SD2 decline during
cognitive tasks, particularly in the first two comparisons,
supporting reduced complexity in heart rate patterns.

• Approximate Entropy and Sample Entropy remain
relatively constant across conditions, offering limited
additional insight into mental state changes.
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experiments. 

• DFA-α1 and DFA-α2 remain stable, but DFA-α1 values
approach to 1 during relaxation, suggesting balanced
autonomic regulation in those periods [6].

Overall, HRV analysis robustly distinguished between 
cognitive and relaxed states, particularly through time-
domain measures. The findings validate HRV as a reliable 
physiological marker of cognitive effort, with time-
synchronized data windows yielding the most accurate 
results. 

Skin temperature data showed a general upward trend 
throughout most experimental sessions, regardless of task 
type. While literature suggests a decrease under cognitive 
stress due to vasoconstriction, the short duration of each 
task (3 minutes) limited detection of variations. As seen in 
Figure 3, in 89% of sessions, the temperature increases 
continuously, reflecting cumulative physiological activation 
rather than rapid cognitive state transitions. This suggests 
that, while skin temperature may indicate overall stress 
exposure, it is less effective for short-term cognitive load 
detection without extended task durations or rest intervals. 

PPG signals from green, red, and infrared channels were 
analyzed for sensitivity to cognitive load using two 
methods: mean amplitude and pulse peak count per task. 
The green channel was the most reliable, showing higher 
mean values during relaxation in 66.7% of sessions and 
more peaks in 55.6%, supporting peripheral 
vasoconstriction. The red channel showed increased 
amplitude in only 33.3% of sessions and peak analysis was 
unreliable. The IR channel matched the green in amplitude 
(66.7%) but showed inconsistent peak data. Overall, the 
green PPG channel provided the most stable and 
interpretable signal for tracking autonomic changes linked 
to mental effort. 

Correlation Between Performance and Physiological 
Data 
The analysis explored the relationship between the 
performance of participants and the consistency of 
physiological data, particularly HRV measures. 

Performance was evaluated based on correct responses 
from cognitive tasks, while data quality was assessed 
through signal continuity and alignment with literature-
based physiological expectations. 

The results are summarized in Figure 4. Results suggest a 
notable correlation between higher task performance and 
more stable physiological signals, especially among 
participants aged 30-50. In sessions where participants 
achieved high scores, HRV and related physiological 
parameters showed consistent patterns indicating a mental 
engagement. In contrast, younger participants (20-30 years 
old range) demonstrated greater variability in signal quality, 
even when task performance was moderate to high, likely 
due to reduced sustained attention or engagement. 

This correlation reinforces the idea that both cognitive 
effort and neurophysiological maturity contribute to the 
reliability of physiological monitoring. Such insights 
emphasize the importance of participant involvement for 
ensuring data integrity and relevance of study. 

Summary of Results 
The experimental findings confirm that physiological 
signals collected using a commercial wearable device can 
reliably differentiate between cognitive load and relaxation 
states. HR consistently increased during cognitive tasks, 
while HRV parameters, particularly RMSSD, SDNN, 
pNN50 and TINN decreased, reflecting reduced 
parasympathetic activity. Frequency-domain and nonlinear 
HRV metrics (e.g., HF power, LF power, SD1 and SD2) 
also aligned with expected autonomic responses. 

PPG signals showed limited utility due to signal instability 
(motion artifacts), with the green channel proving to be the 
most consistent. Skin temperature data did not reliably track 
short-term cognitive transitions. Performance analysis 
further revealed that higher cognitive engagement 
correlated with cleaner, more physiologically coherent data, 
especially among older participants. Overall, HRV metrics 
emerged as the most sensitive and reliable indicators for 
cognitive load monitoring in this experimental setup. 
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 Figure 4. Correlation of performance and data consistency. 
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DISCUSSION AND CONCLUSIONS 
This study demonstrated the feasibility of using commercial 
wearable devices to monitor cognitive load through 
physiological signals. By developing an integrated system 
consisting of a smartwatch app, a server backend, a web 
interface and a structured database, it was possible to 
acquire and analyze heart rate, heart rate variability, skin 
temperature and PPG signals during alternating periods of 
cognitive tasks and relaxation. 

The results confirmed the hypotheses of the study and 
cognitive load was consistently associated with increased 
HR, decreased HRV (e.g., RMSSD, SDNN, pNN50, 
TINN), stress indices were elevated and parasympathetic 
activity was reduced. The green PPG channel proved to be 
a promising signal for analysis consistency. Frequency-
domain and nonlinear metrics like DFA and Pointcare 
further highlighted reduced autonomic complexity under 
mental effort. 

Despite promising outcomes, the limitations of the study, 
such as a small sample size, fixed task order and sensor 
artifacts, highlight the need for more extensive and 
randomized trials. Future work should focus on expanding 
the participant pool, refining preprocessing techniques and 
implementing machine learning models for real-time 
cognitive state classification. 

Ultimately, this research supports the potential of accessible 
wearable technologies in real-time mental state monitoring 
and opens promising directions for applications in 
education, occupational health and cognitive performance 
optimization. 
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