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ABSTRACT

The detection and management of cognitive load has
become a priority in today’s technology-based world, where
mental effort impacts performance and health quality.
Traditional assessing methods rely on expensive and
intrusive laboratory equipment, limiting the real-world
applicability. This paper presents a non-invasive system for
cognitive load detection using only physiological signals
from commercial smartwatches. The proposed architecture
includes a smartwatch application for real-time sensor data
acquisition, a server for processing and storage and a web
interface for visualization and control. An experimental
methodology with alternating cognitive and relaxation
phrases, inspired by the Pomodoro technique [1], was used
to induce physiological responses. Key metrics such as
heart rate (HR), heart rate variability (HRV), skin
temperature, photoplethysmography (PPG) and task
performance were analyzed. Results show significant HRV
and HR variations between cognitive and non-cognitive
phases, confirming the feasibility of wearable-based
workload assessment. This work demonstrates that low-
cost, accessible smartwatches can support cognitive
monitoring, with using in educational, professional or
health-related contexts.
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INTRODUCTION

In the modern digital society, people are increasingly
exposed to intense cognitive demands across educational,
professional and personal contexts. Managing constant
information flow and multitasking under pressure transform
cognitive effort in an unavoidable routine. Monitoring
cognitive load, defined as the mental effort required
performing a given task, has become a focus for improving
performance, supporting mental health and preventing
cognitive fatigue or burnout.
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Traditionally, cognitive load is assessed using specialized
laboratory-based tools like EEG (Electroencephalography)
or ECG (Electrocardiography). While providing high
quality data, these methods are often expensive and
impractical in real-world settings. To address this
limitation, wearable devices are a promising alternative.
Modern smartwatches integrate sensors that measure heart
rate (HR), skin temperature or photoplethysmography
(PPG) signals in a non-intrusive and comfortable manner.

This research investigates whether commercial wearables
can reliably detect cognitive load through physiological
signals. A complete system was developed using a
commercially available smartwatch and consists of four
components: a Kotlin-based Wear OS application for data
acquisition; a Python server for communication and data
management; a web interface for experiment control and
data visualization; and a structured database for storage.

To validate the approach, an experimental methodology
alternating between cognitive tasks and relaxation was
designed. The protocol is modeled following the Pomodoro
technique guidelines [1]. Participants were exposed to a
standardized sequence of tasks while their physiological
responses were recorded. The goal is to analyze whether
significant and consistent changes are observed in the
physiological data during different cognitive states.

The primary objective is to evaluate the feasibility of
cognitive load detection using only commercial wearable
sensors. Specific objectives include: designing a fully
integrated acquisition, monitoring and processing system,
implementing an  experimental protocol, analyzing
correlations between physiological data and mental effort,
validating literature-based physiological indicators and
assessing sensor reliability in cognitive load detection.

This work aims to support the development of scalable,
low-cost and user-friendly tools for cognitive monitoring,
with potential applications in education, workplace safety,
stress management or adaptive human-computer interfaces.

RELATED WORK

Cognitive load detection is a multidisciplinary research
area, involving neuroscience, computer science, psychology
and biomedical engineering. The increasing complexity of
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professional and educational tasks has driven efforts to
measure mental load objectively and non-invasively.
Studies explore a variety of methods, such as n-back,
Stroop and Go/No-Go to pattern recognition or multitasking
activities. Physiological data is collected using sensors such
as ECG, EEG, PPG, skin temperature, HR or EDA
(Electrodermal Activity). Analytical techniques range from
statistical analysis (e.g., t-tests, ANOVA), time and
frequency HRV (Heart-Rate Variability) metrics (e.g.,
RMSSD, SDNN, LF/HF), to machine learning (e.g., SVM,
Random Forest) and deep learning models (e.g., CNN,
LSTM).

Laboratory-grade equipment, such as multi-channel EEG,
eye-tracking systems, EDA sensors and specialized ECG
devices, offer high quality signals but are often costly and
uncomfortable. This drives interest in evaluating the
feasibility of commercial wearable sensors in cognitive load
monitoring.

Howie et al. [8] investigated wearable devices in clinical
tasks performed by surgeons, using HR, HRV, EDA and
motion data. While correlations with cognitive load were
found, the analysis relied on subjective scales (NASA-
TLX) and lacked methodological accuracy.

He et al. [7] proposed a real-time cognitive load assessment
system using portable EEG and HRV, achieving 97%
accuracy in N-back tasks via Random Forest classifiers.
Although promising, the system uses EEG, fact that
complicates the real-world deployment.

Boffet et al. [3] used HRV and EDA during 2-back and
emotional image tasks applying clustering and signal
processing (e.g., VFCDM, WPT), to identify response
profiles. Although results confirmed HF-HRV (High
Frequency) and EDA as reliable markers, data acquisition
required ECG and advanced, non-trivial processing.

Suzuki et al. [15], in a systematic review of workload
monitoring in AR environments, noticed the utility of
multimodal signals (e.g., EEG, ECG, EDA, eye-tracking,
PPG) and highlighted the need for integrated systems using
wearable sensors.

Barki et al. [2] introduced an ear-mounted PPG device for
stress detection using deep learning (CNN and Wavelet
scalograms), reaching 96% accuracy. While promising, the
device was not wrist-worn and required signal
augmentation and pretraining.

In conclusion, existing studies confirm the relevance of
physiological signals, especially HRV and PPG, in
cognitive states modeling. However, few studies implement
practical systems using only commercial devices. This
paper addresses this gap by developing and testing a system
based entirely on wearable consumer technology, with a
focus on non-invasive, simple and comfortable methods.
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THEORETICAL CONCEPTS

Cognitive Load Theory and Mental Effort

Cognitive Load Theory (CLT), introduced by Sweller [16],
offers a structured perspective on how individuals process
information during task execution, emphasizing the
limitations of working memory. According to CLT,
cognitive load can be categorized into three types. The
intrinsic component is determined by the complexity of the
task, extraneous load is derived from how the information is
presented or delivered and germane load is considered
benefic and refers to the cognitive effort invested in schema
construction and information integration. These types of
load interact continuously during problem-solving and
learning, with a direct influence on mental performance and
fatigue.

Excessive cognitive load has been shown to impair
executive functions such as attention and working memory,
reduce information retention and lead to task errors or
burnout, as mentioned by van der Linden et al. in [17].
Controlled induction of cognitive load in experimental
research typically uses methods such as n-back used in [12],
Stroop, Go/No-Go and dual-task tests used in [5],
arithmetic operations used in [14], text reading mentioned
in [11] and pattern recognition, all designed to increase
mental effort in a structured manner. In this study, a hybrid
protocol inspired by the Pomodoro method was employed.
It alternates focused cognitive activity and relaxation
periods to emulate real-world cognitive fluctuation while
ensuring comparability across participants and conditions.

Wearable Sensor Technologies

Recent advancements in wearable devices have enabled the
collection of physiological data with minimal intrusion and
high user comfort. In this study, Samsung Galaxy Watch 5
Pro was chosen for its advanced sensor suite, developer tool
compatibility and commercial availability. It supports
continuous monitoring in real-world conditions and
provides raw access to essential physiological parameters
relevant for cognitive load assessment.

One of the critical factors in device selection was developer
access to raw data. While many smartwatches offer health
monitoring features, few provide APIs for low-level signals
such as PPG waveforms or raw IBI (Inter-Beat Interval).
This study uses Samsung Privileged Health SDK v1.2
which requires prior authorization due to its access to
personal data and research capabilities.

The smartwatch integrates a variety of sensors for health
tracking. Most relevant is a multi-wavelength optical PPG
array (green, red, infrared) that captures volumetric blood
flow changes by illuminating the skin and capturing
reflected light with a photodetector. Green light is used for
heart rate measurement due to its shallow penetration, while
red and IR channels access deeper tissues and help reduce
motion artifacts [4]. These sensors allow IBI extraction and
HRYV analysis without ECG.
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It also features a skin temperature sensor to detect
peripheral changes linked to cognitive demand. Other
internal modules enable detection of sweat loss, oxygen
saturation or BIA (body composition). However, these
sensors require restrictive positions that limits the natural
movements, so only those that allow participants to perform
the tasks comfortably are used in this study.

The combination of these accessible sensors and structured
API access provides a robust, non-intrusive alternative to
laboratory equipment, suitable for cognitive monitoring in
real world settings.

Signal Processing and Derived Parameters

To ensure accurate interpretation of physiological data,
robust signal preprocessing and feature extraction were
essential. Among the collected signals, HRV was
prioritized as a key indicator of cognitive load due to its
studied link to ANS (Autonomic Nervous System) activity.
Unlike simpler metrics such as HR or skin temperature,
HRYV provides a deeper insight into the balance between
sympathetic and parasympathetic responses to mental
stress.

HRYV was calculated from IBI values acquired at 1 Hz using
mainly the PPG sensors. Calculations were updated every
second using a 120 second sliding window, aligning with
recommendations from [13] for physiological signal
stabilization. Three main types of HRV analysis were used,
according to [10]: time-domain, frequency-domain and
nonlinear metrics.

Time-domain metrics quantify the variability directly and
there are more parameters than can be derived: Mean RR,
SDNN (Standard Deviation of NN Intervals), RMSSD
(Root Mean Square of Successive Differences), pNN50
(Percentage of NN Intervals that Differ by More Than 50
ms) and TINN (Triangular Interpolation of NN Interval
Histogram), where NN (or RR) is the time between two
successive heartbeats.

Frequency-domain metrics offer insight into sympathetic-
parasympathetic balance by spectral decomposition and are
represented by LF (Low Frequency) power, HF (High
Frequency) power and the LF/HF ratio.

Nonlinear metrics are represented by: SDI and SD2
Poincare plots (short and long-term variability), DFA
(Detrended Fluctuation Analysis) al and o2 for fractal
complexity, Sample Entropy (SampEn) and Approximate
Entropy (ApEn).

Additionally, PNS (Parasympathetic Nervous System
Index) and SNS (Sympathetic Nervous System Index)
indices summarize autonomic balance of parasympathetic
and sympathetic components, respectively.

This processing pipeline allow the system to reliably derive
real-time indicators of mental effort, enabling meaningful
analysis of cognitive load using the wearable devices.
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Physiological Correlates of Cognitive Load

Based on insights from literature [9] and the experimental
design, several hypotheses were formulated regarding the
relationship between physiological responses and cognitive
load. These hypotheses guided the selection of relevant
features and signal processing techniques.

For time-domain metrics of HRV, the correlations are the
following:

e Mean RR is used as a general timing reference but is less
sensitive to cognitive state alone.

e SDNN, RMSSD, pNN50 and TINN tend to decrease
under cognitive load and increase during recovery or rest.

Frequency-domain HRV features show distinctive patterns:

e HF power, associated with parasympathetic activity, is
expected to decrease during mental effort.

e LF may remain constant or show slight decrease due to
its mixed sympathetic-parasympathetic origin.

e An elevated LF/HF ratio indicates increased sympathetic
dominance, typical during cognitive stress.

Nonlinear HRV measures provide insight into signal
complexity and autonomic flexibility:

e SD1 and SD2 decrease under cognitive load.

e DFA-al shows a decreasing trend in mental effort, while
DFA-02 remains relatively stable.

e Sample and Approximate Entropy both tend to decrease,
reflecting reduced signal adaptability.

The PNS Index, derived from RMSSD, is lower in high-
load tasks, while the SNS Index and Stress Index increase,
indicating elevated sympathetic arousal.

HR is expected to increase under cognitive stress and
decrease during rest, serving as a direct indicator of
sympathetic activation. Skin Temperature is expected to
show a slight decrease during cognitive effort, reflecting
thermoregulatory responses to mental workload. PPG
signals from green, red and infrared channels are monitored
for amplitude changes and waveform irregularities.
Variations in these signals can reflect changes in peripheral
vasoconstriction, commonly associated with sympathetic
activation.

These physiological markers serve as the foundation for
assessing cognitive states in this experiment, allowing
wearable sensor data to be interpreted in the context of
mental effort.

SYSTEM ARCHITECTURE
METHODOLOGY

AND EXPERIMENTAL

Software Architecture and Development Tools

The conceptual architecture provides a high-level overview
of the main software components and their interaction. It
illustrates the structure and the data flow, without detailing



Proceedings of ICUSI 2025

specific implementation aspects. The proposed model
follows a client-server architecture, where each component
contributes to collect, process and store physiological data
during experimental sessions.

The system includes four components: the smartwatch
application, the server-side application, the web interface
and the database. Each have a well-defined role and their
interaction ensures the system achieves its primary
objective. An overview of the architecture and inter-
component communication is illustrated in Figure 1.

The smartwatch application handles the real-rime
acquisition of raw physiological data from built-in sensors,
including HR, IBIs, PPG (green, red, and infrared) and skin
temperature. The application is implemented in Kotlin,
using Android Studio, it communicates with Samsung
Privileged Health SDK v1.2 and transmits the data, in real-
time, to the REST API server, using the Retrofit library.
Core features of the smartwatch application include user
authentication and session management, connection to the
Health Tracking service, periodic data acquisition,
preprocessing and packaging of data, communication with
the API and minimal interaction with the user through the
watch interface. It uses the Observer design pattern for
efficient event-driven updates when new data is available or
service connectivity changes.

The server application coordinates the components of the
system. It receives data from the smartwatch, validates and
stores it in a structured database and facilitates data
retrieval by the web interface. The server is built using
Python and the Django framework, following a RESTful
API  architecture for standardized and scalable
communication. For real-time interaction with the web
interface, the server supports WebSocket communication
using the ASGI (Asynchronous Server Gateway Interface)
protocol. Given that the system processes personal
physiological data, secure communication is enforced using
JWT (JSON Web Token) authentication, embedded in the
header of each API request.

The web interface serves as the primary interaction point
for both researchers and participants. It guides users
through the experimental protocol, displaying tasks while
the smartwatch collects data in parallel. It is built using the
Angular framework with TypeScript and styled with
Tailwind CSS. Participants are shown their current stage in
the experiment and experiment metadata is continuously
sent to the backend for storage.

Server Application Web Interface

Smartwatch Client
Application

PostgreSQL
Database

Figure 1. Conceptual architecture of the system
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Beyond experiment participation, the interface also enables
real-time visualization of sensor data, statistical summaries
and graph-based insights.

The database ensures the persistent and organized storage
of all collected data, including participant sessions, sensor
measurements, task responses and timestamped events. The
system uses PostgreSQL as the database engine, with a
schema designed to reflect the logical flow of the
experiment. The structure minimizes redundancy and
supports efficient querying for downstream analysis.

Together, these components form an integrated platform for
non-invasive, real-time monitoring of cognitive load using
consumer-grade wearable devices, enabling both data
collection and visualization in a seamless experimental
workflow.

Participants and Setup

Characterizing the participant pool is essential for creating a
context of the experimental results and for ensuring
accurate interpretation of physiological data variations.
Although the primary aim of this study was not to compare
demographic groups, documenting participant profiles
contributes to the transparency and reproducibility of the
research.

The experiment consisted of 9 distinct data collection
sessions, corresponding to a total of 8 individual
participants. The distribution by gender and age category is
as follows: 3 females (all within the 20-30 years age range),
S males (4 in 30-50 years range and 1 in 20-30 years range).
The age groups covered are 20-30 years (both genders) and
30-50 years (only male). To ensure participant anonymity, a
simple alphanumeric identifier was used. Each subject was
assigned a code consisting of the initial of their gender
followed by a unique number (e.g., F1, M3). This coding
system was consistently applied for linking collected data
sessions with demographic attributes without disclosing
personal identity.

This demographic spread, although limited in sample size,
provides a reasonable basis for initial observations
regarding the physiological response patterns to cognitive
load within the experiment.

Experiment Structure and Protocol

To evaluate the capability of the developed system to detect
changes in cognitive state based on physiological data
acquired from the wearable device, an experiment was
designed and implemented. The primary objective was to
examine whether measurable correlations exist between
physiological parameters and the mental state of the
participants, categorized as either relaxation or cognitive
load.

The experiment consisted of a sequence of seven
consecutive tasks (alternating resting and cognitive tasks),
each lasting exactly three minutes and structured as follows:
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e Four relaxation tasks, intended to induce a calm
physiological state with minimal cognitive activation
(relax] - video with ambient nature music, relax2 -
Mandala painting video, relax3 - waterfall video and
relax4 - easy puzzle activity).

e Three cognitive load tasks, aimed at engaging mental
resources (cogll - first-sight text reading and questions
answering, cogl2 - Al images classification and cogl3 -
pattern recognition and sequence reproduction).

The task order was deliberately chosen to alternate between
relaxation and stimulation phases, ensuring a clear
physiological contrast and enhancing the visibility of signal
variations between successive task states. Each task was
synchronized with the experiment session and records were
timestamped to ensure accurate alignment between the
collected signals and the corresponding experimental stage.

The experiment aims to validate the feasibility of using a
consumer-grade wearable device, such as the Samsung
Galaxy Watch 5 Pro, to objectively differentiate cognitive
states based only on real-time recorded physiological
signals. This capability would support non-invasive,
scalable cognitive state assessment in real-world scenarios,
beyond controlled laboratory environments.

ANALYSIS AND RESULTS

Data Preprocessing

Physiological data was collected from the smartwatch
integrated sensors at a frequency of 1 Hz and stored in a
PostgreSQL database. This data was exported into session-
specific Excel files containing user profiles, session and
task metadata, performance metrics and detailed sensor
readings (HR, IBI, PPG for all channels, and skin
temperature). To ensure analytical reliability, a rigorous
preprocessing pipeline was applied. This process began by
validating sensor data using status flags and removing
physiologically implausible values, such as IBI readings of
0 or 2048 ms (commonly resulting from SDK anomalies) or
other values outside the 500-1300 ms range, in conformity
with [6]. Segments with missing timestamps, zero HR
readings, or data affected by noise and motion artifacts
were filtered using custom rules or excluded entirely. Only
complete task intervals with clean, consistent and
timestamp-aligned data were retained for further analysis,
ensuring high-quality inputs and preserving the integrity of
physiological signal interpretation.

Statistical Analysis of Physiological Parameters

Heart rate was analyzed using two complementary methods,
statistical evaluation and visual trend analysis, each offering
insights into how HR responds to cognitive load.

The statistical evaluation involved calculating key metrics
(e.g., mean, min, max, standard deviation) for each task
across all sessions. Results showed a clear and consistent
pattern that HR increased during cognitively demanding
tasks and decreased during relaxation periods. Over 75% of
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task transitions matched this expected response, as seen in
Table 1.

This result confirms HR as a robust physiological indicator
of mental effort. Additionally, testing temporal offsets (15-
60 seconds) to check the delayed physiological response
revealed that HR reacts rapidly to cognitive shifts, with the
strongest alignment at no delay or a maximum of 15
seconds delay.

The visual analysis, presented in Figure 2, based on
interpolated HR signals over time, noticed how HR
fluctuated across task sequences. While occasional artifacts
affected signal clarity, the overall trends aligned with the
statistical findings, highlighting HR elevation during
cognitive load and recovery during rest.

Together, these methods confirm the heart rate sensitivity
and responsiveness as an important physiological marker
for tracking cognitive load using commercial wearable
devices.

HRV is a sensitive physiological marker of autonomic
nervous system activity and a key indicator for detecting
cognitive load. This analysis explored HRV responses
across experimental conditions, combining both manual and
advanced signal processing.

No Delay (s)
0 15 30 45 60
1 2 2 2 3 3
2 4 4 5 5 5
3 6 6 5 5 3
4 5 5 5 5 4
5 4 4 4 4 2
6 2 3 3 3 3
7 4 5 5 5 5
8 2 2 2 3 3

Table 1. Evaluation of aligned HR transitions between tasks

HR trend analysis (delay 0)

90
« R TN
- S |
£ 80
2
~
= 75
70
65
relax] cogll relax2 cogl2 relax3 cogl3 relax4
—=a— Session 1 Session 2 Session 3
Session 4 Session 5 Session 6

Figure 2. HR trend analysis.
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No Delay (s)

0 15 30 45 60
1 5 5 5 4 4
2 3 3 3 3 3
3 5 5 4 3 3
4 5 5 5 4 3
5 3 4 4 4 4
6 4 4 3 4 4
7 3 1 1 0 0
8 5 5 5 4 4

Table 3. Evaluation of aligned HRYV transitions between tasks.

In the manual statistical evaluation, HRV was computed
using the RMSSD formula because of the stability of the
calculus. The HRV values were segmented per task and
compared between relaxation and cognitive load states.
Most transitions followed the theoretical pattern that HRV
decreased during cognitive tasks and increased during
relaxation, confirming its diagnostic relevance. This
consistency was stronger without artificial delay. Applying
offsets of 15-60 seconds reduced alignment, underscoring
the need for time synchronized analysis. These results are
summarized in Table 3.

The advanced analysis is performed using the software tool
Kubios HRV Scientific Lite, version 4.1.2.1 [9]. This
analysis provided a deeper examination using time-domain
(RMSSD, SDNN, pNNS50 and more), frequency-domain
(LF, HF, LF/HF) and nonlinear parameters (SD1, SD2,
ApEn, SampEn, DFA).

The sessions were analyzed in pairs to identify, in a
granular manner, the trends and the behavior of
physiological signals. In the first analysis, the tasks named
relax1 and cogll were included. Subsequently, the analysis
continued with the pairs relax2-cogl2 and relax3-cogl3,
following the same methodological approach.

Notably, the first comparison between relaxl and cogll
offered the strongest physiological contrasts, aligning most
clearly with theoretical expectations. As the sessions
progressed, the magnitude of these differences gradually
decreased. While the second and third task pairs still
reflected expected trends, the correlations were weaker.
This progressive attenuation may reflect participant fatigue,
reduced engagement or habituation to the experimental
stimuli. Such effects are common in paradigms with
repeated task and highlight the importance of session
structure and task ordering in physiological research.

The results form Table 4 represent the mean of the three
separate analyses output on the pairs of tasks:
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Parameter ?/[e:::i C(;\/glzl;tive Acognitiv-relax
Mean HR (bpm) | 78.38 79.99 1.61
RMSSD (ms) 91.49 72.48 -19.01
SDNN (ms) 77.60 62.45 -15.15
Stress Index 8.34 9.70 1.36
PNS Index 0.67 0.18 -0.48
SNS Index 0.28 0.84 0.56
PNNS50 (%) 18.80 17.01 -1.80
TINN (ms) 472.71 403.13 -69.58
LF Power (ms2) | 5443.50 2394.00 -3049.50
HF Power (ms2) | 6952.21 2704.09 -4248.12
LF /HF 1.58 1.33 -0.25
SD1 (ms) 64.83 51.37 -13.46
SD2 (ms) 86.91 69.47 -17.44
SD2/SDI 1.80 1.64 -0.16
ApEn 0.96 1.00 0.05
SampEn 1.40 1.50 0.10
DFA - al 1.00 0.96 -0.04
DFA - a2 0.32 0.37 0.05

Table 4. HRV parameters resulted.

The main conclusions drawn after the analysis of every
HRYV metrics are:

e The mean HR was hgher in cognitive load tasks. Time-
domain metrics (RMSSD, SDNN, TINN, pNN50)
decreased under cognitive load, indicating reduced
cardiac variability.

Stress Index increases during cognitive load, suggesting
elevated cardiac rigidity. PNS Index decreases in
cognitive tasks, indicating reduced parasympathetic
activity and higher mental concentration. SNS Index rises
during cognitive load, confirming the sympathetic
nervous system activation related to sustained attention.

e In the frequency domain, the HF and LF components
decrease during cognitive load. LF/HF ratio show mixed
trends, suggesting individual variability in autonomic
dynamics.

Nonlinear parameters SD1 and SD2 decline during
cognitive tasks, particularly in the first two comparisons,
supporting reduced complexity in heart rate patterns.

e Approximate Entropy and Sample Entropy remain
relatively constant across conditions, offering limited
additional insight into mental state changes.
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The variation of temperature during the

37 experiments
—~
9 —
o 35
-
2 -
i 33 o
g N /
F
29
relax] cogll relax2 cogl2 relax3 cogl3 relax4
Session 1 Session 2 Session 3
Session 4 Session 5 Session 6
Session 7 Session 8 Session 9

Figure 3. The analysis of temperature variations during the
experiments.

e DFA-al and DFA-02 remain stable, but DFA-al values
approach to 1 during relaxation, suggesting balanced
autonomic regulation in those periods [6].

Overall, HRV analysis robustly distinguished between
cognitive and relaxed states, particularly through time-
domain measures. The findings validate HRV as a reliable
physiological marker of cognitive effort, with time-
synchronized data windows yielding the most accurate
results.

Skin temperature data showed a general upward trend
throughout most experimental sessions, regardless of task
type. While literature suggests a decrease under cognitive
stress due to vasoconstriction, the short duration of each
task (3 minutes) limited detection of variations. As seen in
Figure 3, in 89% of sessions, the temperature increases
continuously, reflecting cumulative physiological activation
rather than rapid cognitive state transitions. This suggests
that, while skin temperature may indicate overall stress
exposure, it is less effective for short-term cognitive load
detection without extended task durations or rest intervals.

PPG signals from green, red, and infrared channels were
analyzed for sensitivity to cognitive load using two
methods: mean amplitude and pulse peak count per task.
The green channel was the most reliable, showing higher
mean values during relaxation in 66.7% of sessions and
more peaks in  55.6%, supporting peripheral
vasoconstriction. The red channel showed increased
amplitude in only 33.3% of sessions and peak analysis was
unreliable. The IR channel matched the green in amplitude
(66.7%) but showed inconsistent peak data. Overall, the
green PPG channel provided the most stable and
interpretable signal for tracking autonomic changes linked
to mental effort.

Correlation Between Performance and Physiological
Data

The analysis explored the relationship between the
performance of participants and the consistency of
physiological  data, particularly HRV  measures.
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Performance was evaluated based on correct responses
from cognitive tasks, while data quality was assessed
through signal continuity and alignment with literature-
based physiological expectations.

The results are summarized in Figure 4. Results suggest a
notable correlation between higher task performance and
more stable physiological signals, especially among
participants aged 30-50. In sessions where participants
achieved high scores, HRV and related physiological
parameters showed consistent patterns indicating a mental
engagement. In contrast, younger participants (20-30 years
old range) demonstrated greater variability in signal quality,
even when task performance was moderate to high, likely
due to reduced sustained attention or engagement.

This correlation reinforces the idea that both cognitive
effort and neurophysiological maturity contribute to the
reliability of physiological monitoring. Such insights
emphasize the importance of participant involvement for
ensuring data integrity and relevance of study.

Summary of Results

The experimental findings confirm that physiological
signals collected using a commercial wearable device can
reliably differentiate between cognitive load and relaxation
states. HR consistently increased during cognitive tasks,
while HRV parameters, particularly RMSSD, SDNN,
pNN50 and TINN decreased, reflecting reduced
parasympathetic activity. Frequency-domain and nonlinear
HRV metrics (e.g., HF power, LF power, SD1 and SD2)
also aligned with expected autonomic responses.

PPG signals showed limited utility due to signal instability
(motion artifacts), with the green channel proving to be the
most consistent. Skin temperature data did not reliably track
short-term cognitive transitions. Performance analysis
further revealed that higher cognitive engagement
correlated with cleaner, more physiologically coherent data,
especially among older participants. Overall, HRV metrics
emerged as the most sensitive and reliable indicators for
cognitive load monitoring in this experimental setup.

Performance - Data consistency correlation
5

4

3

2
nl
o |

Session

Level

® Performance Data consistency

Figure 4. Correlation of performance and data consistency.
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DISCUSSION AND CONCLUSIONS

This study demonstrated the feasibility of using commercial
wearable devices to monitor cognitive load through
physiological signals. By developing an integrated system
consisting of a smartwatch app, a server backend, a web
interface and a structured database, it was possible to
acquire and analyze heart rate, heart rate variability, skin
temperature and PPG signals during alternating periods of
cognitive tasks and relaxation.

The results confirmed the hypotheses of the study and
cognitive load was consistently associated with increased
HR, decreased HRV (e.g., RMSSD, SDNN, pNNS50,
TINN), stress indices were elevated and parasympathetic
activity was reduced. The green PPG channel proved to be
a promising signal for analysis consistency. Frequency-
domain and nonlinear metrics like DFA and Pointcare
further highlighted reduced autonomic complexity under
mental effort.

Despite promising outcomes, the limitations of the study,
such as a small sample size, fixed task order and sensor
artifacts, highlight the need for more extensive and
randomized trials. Future work should focus on expanding
the participant pool, refining preprocessing techniques and
implementing machine learning models for real-time
cognitive state classification.

Ultimately, this research supports the potential of accessible
wearable technologies in real-time mental state monitoring
and opens promising directions for applications in
education, occupational health and cognitive performance
optimization.

ACKNOWLEDGMENTS

The research leading to these results has been funded by the
project ,,.Design and evaluation of technological support
tools to empower stakeholders in digital education”, which
has received funding from the European Union's Horizon
Europe program under grant agreement no. 101060918. The
research was also supported by the ,,Cloud Cercetare
UTCN-CLOUDUT” project, funded by the European
Regional Development Fund through the Operational
Program Competitiveness 2014-2020, under contract No.
235/21.04.2020, which provided computing and storage
resources. Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those of
the European Union. Neither the European Union nor the
granting authority can be held responsible for them.

REFERENCES
1. Arcea, A. Aspecte privind managementul timpului.
Interuniversitaria. (2023), 148-157.

2. Barki H. and Chung, W. Mental stress detection using a
wearable in-ear plethysmography. Biosensors 13, 397
(2023).

148

11.

12.

13.

14.

16.

17.

Boffet, A., Arsac, L., Ibanez, V., Sauvet F. and
Deschodt-Arsac, V. Detection of cognitive load
modulation by EDA and HRV. Sensors 25, 8 (2025).

de Moraes, J., Id, M., Rocha, G., Vasconcelos, F.,
Vasconcelos, V., Hugo, V. Advances in
photopletysmography signal. Sensors 18, 10 (2018).

Delliaux, S., Delaforge, A., Deharo, J. and Roche, F.
Mental workload alters heart rate variability, lowering
non-linear dynamics. Front. Physiol. 10 (2019), 565.

Electrocardiography.
https://www.anslab.net/static/help/cardiography.html

He, L., Chen, Y., Wang, W, He, S. and Hu, X.
Wearable device-based real-time monitoring of
physiological signals: evaluating cognitive load across
different tasks. arXiv preprint arXiv:2406.07147.
https://arxiv.org/abs/2406.07147 (2024).

Howie, E., Harari, R., Dias, R., Wigmore, S. and
Skipworth, J. Feasibility of wearable sensors to assess
cognitive load during clinical performance. J. Surg. Res.
302 (2024), 222-231.

HRYV analysis methods - How is HRV calculated.
https://www .kubios.com/blog/hrv-analysis-methods/.

. Hye-Geum, K., Eun-Jin, C., Dai-Seg, B., Young, L. and

Bon-Hoon, K. Stress and heart rate variability: a meta-
analysis. Psychiatry Investig. 15, 3 (2018), 235-245.

Paas, F., Renkl, A. and Sweller, J. Cognitive load theory
and instructional design. Educ. Psych. 38, 1 (2003), 1-4.

Pillai, P., Balasingam, B., Jaekel, A. and Biondi, F.
Comparison of concurrent cognitive load measures
during n-back tasks. Appl. Ergon. 117, 104079 (2024).

Siirtola, P. Continuous stress detection using the sensors
of commercial smartwatch. In Proc. UbiComp/ISWC
Adjunct. (2019), 1198-1201.

Singh, N., Aggarwal, Y. and Sinha, R. Heart rate
variability analysis under varied task difficulties in
mental arithmetic performance. Health Technol. 9
(2019), 211-220.

. Suzuki, Y., Wild F. and Scanlon, E. Measuring

cognitive load in augmented reality with physiological
methods: a systematic review. J. Comput. Assist. Learn.
40, 2 (2024), 375-393.

Sweller, J. Cognitive load during problem solving:
effects on learning. Cogn. Sci. 12, 2 (1988), 257-285.

van der Linden, D., Frese, M. and Meijman, T.F. Mental
fatigue and the control of cognitive processes. Acta
Psychol. 113, 1 (2003), 45-65.



