
An Analysis of Rubik's Cube Solving Algorithms
Anca Ionela Nicu

University of Craiova
Craiova, Romania

ancanicu2001@gmail.com

Paul Stefan Popescu
University of Craiova
Craiova, Romania

stefan.popescu@edu.ucv.ro

ABSTRACT
Nowadays, there are numerous methods to solve the Rubik’s
Cube of various dimensions, most of which aim to find the
optimal solution. Our application is an addition to them,
focusing on discovering a solution to the pocket Rubik’s
Cube by applying six different algorithms and comparing
their efficiency. Each of the six methods has been run four
times on a set of 45 test data (five cube configurations for
each optimal solution length from one to nine, where the
optimal solution represents the shortest sequence of moves
that can solve a cube), and for each test data, we computed
the success rate in discovering a solution, the average
memory used, the average execution time, and the average
solution length (the average number of moves a solution
has). Based on these results, we grouped the findings by the
optimal solution length and compared the algorithms on the
four criteria mentioned earlier. Comparing the algorithms'
results, we find that the Layer-by-layer method is the best in
terms of memory, execution time and success rate, but the
worst in terms of solution length, A* and bidirectional BFS
(Breadth-first search) are good overall for each criterion
considered, DFS (Depth-first search) has the lowest success
rate overall, and MCTS (Monte Carlo Tree Search) and Q-
learning do not perform well, especially on complex cube
configurations (cubes that can be solved optimally on six to
nine moves). This research contributes to the field of Rubik’s
cube solvers by developing six different ways from scratch
to solve the 2x2 cube and by demonstrating their efficiency
on different cube configurations, in comparison to each
other.
Author Keywords
Rubik’s cube, algorithms comparison, bidirectional BFS,
DFS, MCTS, Q-learning, A*, Layer-by-layer

General Terms
Human Factors; Design; Measurement.

DOI: 10.37789/icusi.2025.23

INTRODUCTION
Created fifty years ago, the Rubik’s Cube remains a popular
toy. Since its creation, people have sought innovative ways
to solve the cube physically. Those methods evolved and
were tailored for different purposes: some of them imply
memorizing fewer algorithms and are suitable for beginners
(such as Layer-by-layer), and others are made for speed
cubing and need memorizing a lot of algorithms (methods
like CFOP, Petrus, or Roux). Alongside technological

development, computer scientists attempted to find ways to
solve the cube in as few rotations as possible.

Using computers provided by Google, a team of researchers
established in 2010 that any 3x3 Rubik’s Cube can be solved
in a maximum of 20 moves.[12] This number is called God’s
number, and there are studies [5] demonstrating that it grows
as Θ(𝑛2/log𝑛) for an n×n cube. For a 2x2 cube (the object of
our study), God’s number is 11 when using the half-turn
metric.

Determining an optimal solution (or even a solution for the
bigger cube sizes) is not an easy task, especially considering
the huge state space (that grows considerably alongside with
the size of the cube). So, building algorithms for the Rubik’s
cube implies finding a balance both between memory and
time and between success rate and solution length. A method
that solves the memory problem is the one developed by
Kunkle and Cooperman’s (“Disk is the New RAM” [9]), in
which they showed that, by using commodity disks and their
Roomy library, a 3x3x3 cube can be solved in ≤ 26 moves,
which is pretty close to the optimal solution length.
However, their approach sacrifices the time component,
needing a long time for parallel preprocessing.

Used increasingly often nowadays in almost every aspect of
our lives, Artificial Intelligence could definitely be a valid
approach for the Rubik’s Cube problem. Some models of
Reinforcement Learning were already developed by
researchers, among which we mention two: one that doesn’t
use handcrafted heuristics, developed by McAleer et al. [3],
and one that extends it with bidirectional value improvement
and A* search, developed by Agostinelli et al. [4].

Nowadays, there are plenty of sites and applications for
solving the Rubik’s cube, each of them with its own
characteristics and goals: some of them requires scanning a
physical cube and determining a solution for that, others are
pure simulators that displays a 3D or 2D representations and
allows the user to shuffle the cube randomly or manually,
and then returns the solution. Most of the current applications
aim to solve the smaller Rubik’s cubes (3x3 or 4x4) and
focus on applying a single algorithm to get the solution.
Moreover, most of them are not intuitive enough or
appealing enough.

We ask if known algorithms – such as graph traversal
methods (BFS or DFS), machine learning methods (MCTS
, Q-learning) or informed search methods (A*) – can be
successfully adapted to solving the pocket Rubik’s cube, and

Proceedings of ICUSI 2025

161

how a technique used in physically solving the cube (Layer-
by-layer) can be implemented in a program. Our hypotheses
focus on each of those algorithms as follows:

- Bidirectional BFS will always find the optimal
solution, but it will be memory-intensive for the
complex configuration.

- DFS will not perform well;

- The efficiency of A* depends on the heuristic and by
choosing a good heuristic, A* will provide solutions
close to the optimal in terms of length;

- MCTS and Q-learning will need a big amount of
training and a good reward function in order to be able
to learn how to solve the cube;

- Layer-by-layer will find a long solution compared to
the others, but it will be better than them in terms of
memory and execution time.

Moreover, we ask if we can create an application that strikes
a balance between user-friendly appearance and a robust set
of functional algorithms.

In contrast to other applications or sites for solving the
Rubik’s Cube, our approach focuses on a single Rubik’s
Cube (the pocket one) and develops six different ways to
solve it. The goal of our project is to create an application
that is both user-friendly (intuitive and visually appealing)
and allows us to compare six algorithms.

In order to make it intuitive, we created a simple scene that
contains both the 3D (the actual cube that can be shuffled and
solved) and 2D (the cube map that displays the actual cube
changes in real time) cube representation, and separate
buttons for each operation that can be applied to the cube
(one for each solving algorithm and one for randomly
shuffling the cube).

Most of the other applications and sites for this field focus
on bigger cube sizes (3x3 or higher), but our approach aims
to solve the smallest one, which, by its smaller state space,
allows us to develop and compare a decent amount of
methods to solve it. The algorithms chosen for the
comparison are well known and the key for adapting them to
the problem was finding a way to simulate the moves and to
represent the cube state. More than that, A* and machine
learning methods required finding a good heuristic and
reward function, respectively.

RELATED WORK
Automatically solving the Rubik's Cube is an enjoyable task
that has been addressed in numerous papers, and despite
being an old problem, it remains relevant today. Rubik’s
Cube research encompasses visual analytics, heuristic and
learning-based solvers, computational complexity theory,
and mechanical and robotic manipulation.

Regarding the visualization of Rubik's cube solution
algorithms, Steinparz et al. [1] introduced an interactive

projection of high-dimensional cube states that lets analysts
see how different solution algorithms traverse the search
space; their t-SNE views expose clusters of equivalent sub-
problems and reveal why some human methods stall early in
the state graph. This work inherits their agenda of human-
interpretable debugging but focuses on learning-based
solvers whose internal heuristics are opaque without
additional instrumentation.

Another approach is using swarm intelligence [11] for
solving the Rubik’s cube [2] as presented by Jeevan & Nair
benchmark four nature-inspired optimizers—PSO, ACO,
Krill-Herd and a Greedy Tree Search—on the 3×3×3 cube,
reporting success rates below 30 %. Median move counts
above 100, yet confirming that population-based search can
escape local optima unattainable to deterministic heuristics.
Their findings motivate our hybrid approach: they combine
a fast RL policy (Section 4) with a lightweight swarm layer
that diversifies late-stage searches.

The use of reinforcement learning was an approach explored
in both our work and other papers. McAleer et al. [3] propose
a bootstrapping scheme that trains value and policy networks
entirely from self-generated trajectories, achieving a 100%
solve rate with a 30-move median, without the use of
handcrafted heuristics. Another approach [4] is presented by
Agostinelli et al. called DeepCubeA, that extends this with
bidirectional value improvement and A* search, pushing the
median down to 26 moves and outperforming Kociemba’s
two-phase solver on random scrambles. Both methods treat
the cube as a sparse-reward MDP and highlight two
bottlenecks: (i) the expensive roll-outs during training, and
(ii) the limited interpretability of the learned heuristics.

Regarding the algorithmic and complexity foundations, there
is some early theoretical work by Demaine et al. [5] that
proves that God's Number for the n×n×n cube grows as
Θ(𝑛2/log𝑛) and gives an asymptotically optimal parallel
algorithm that realizes this bound. Subsequently, the same
group (and later an independent arXiv version [6])
established NP-completeness for deciding optimal solutions
on the general n-cube, via a reduction from Hamiltonian
Cycles on grid graphs. These hardness results justify the
community’s shift from minimal-move guarantees to near-
optimal yet scalable heuristics.

The Rubik's Cube solving problem goes even further in
mechanical and robotic manipulation, as practical
deployment often requires physically executing moves. Higo
et al. [7] present a high-speed, vision-guided, multi-fingered
hand that can grasp and reorient individual layers at 10 Hz,
demonstrating reliable hardware execution of algorithmic
plans. Complementing the hardware view, Zeng et al. [8]
review broader mechanical applications of the cube—
ranging from dexterity benchmarks to encryption
primitives—and argue that manipulation speed, accuracy,
and robustness are now mature enough to close the sim-to-
real loop for autonomous solvers.

Proceedings of ICUSI 2025

162

Regarding the external memory utilization Kunkle and
Cooperman’s “Disk is the New RAM” [9] showed that sheer
I/O bandwidth can substitute for DRAM when enumerating
gigantic implicit graphs such as the 3×3×3 cube. Their
Roomy library strips multi-terabyte pattern-databases across
dozens of commodity disks, enabling a breadth-first
exploration that proved every state solvable in ≤ 26 moves—
tightening the practical upper bound on God’s Number.
While this external-memory strategy yields optimal or near-
optimal solutions almost instantly at run time, it pays an
upfront cost in many hours of parallel preprocessing and is
tied to a single cube size.

Another deep learning approach presented by Johnson
(2021) [10] proposes a Learned Guidance Function (LGF)
that is trained via deep neural networks to predict distance-
to-goal from partial cube states. The LGF is updated in
stages, each time using solutions found by an evolutionary
strategy (ES) to refine the network, thereby boosting ES
success from below 20% to above 80% without the use of
hand-crafted heuristics. This supervision-based approach is
more data-efficient than sparse-reward reinforcement
learning, but it still relies on an initial corpus of solved states
and struggles with extrapolation to larger cubes. In contrast,
we combine self-play RL with a lightweight swarm layer: the
RL policy supplies an adaptive value proxy akin to Johnson’s
LGF, while the swarm component injects diversity,
eliminating the need for pre-solved examples and yielding
stronger generalization.

PROPOSED APPROACH

General Overview
Our project materializes in a simple Unity application that
focuses on shuffling a pocket Rubik’s cube and solving it by
one of the six implemented algorithms. The pipeline of our
application, shown in Figure 1, consists of four main steps:
user interaction, cube shuffling, cube solving and scene
rendering. The flow of our application starts with the user
shuffling the cube manually or by pressing the “Shuffle”
button. As a result, the rendering module displays the
shuffling steps in sequence, culminating in the final
scrambled cube. Then, the user can select an algorithm for
solving the cube by pressing one of the “Solve” buttons. The
selected algorithm attempts to find a solution, and once the
method finishes its execution, the rendering module is used
again to display the solution steps and a success message (if
a solution is found) or an error message (otherwise).

Figure 1 - Application pipeline

The pipeline can be divided into four modules, as follows:

1. The User Interaction Module handles the user input,
in both shuffling and solving the cube. The shuffling
process is triggered by pressing the “Shuffle” button or
by manually rotating the faces, whereas the solving
process is initiated by pressing one of the solving
algorithm buttons.

2. The Cube Shuffling Module handles the shuffling cube
process that was previously triggered.

3. The Game Scene Rendering Module handles the
visuals in both shuffling (displaying the shuffling steps
and updating the cube map and cube state accordingly)
and solving (displaying the selected algorithm results
and, for a successful run, updating the cube map and
cube state accordingly) processes.

4. The Solving Algorithms Module is responsible for
applying the selected algorithm to the current cube state.
By using raycasting, the current cube state is read and,
using it as the initial state, the chosen algorithm steps are
applied to it. After the method finishes its execution, the
execution time is displayed. If a solution is found, it is
then passed to be applied to the cube in the scene.

User Interface

Figure 2 - User Interface

The user interface (see Figure 2) is simple and user-friendly.
It consists of five areas: Area 1 contains the buttons for
solving algorithms, six buttons in total. Area 2 contains the
cube map, which is updated in real-time based on the 3D
cube representation. Area 3 is the shuffle button, that can be
pressed multiple times in a row so that the user gets the cube
as scrambled as preferred. Area 4 is the results panel, which
displays a different message based on the situation (the one
in Figure 2 at the beginning of the game, the name of the
running algorithm after a solve button was pressed, or the
chosen algorithm results after the method finished its
execution). Area 5 is the 3D cube that can be shuffled,
solved, and rotated.

Cube Faces Rotations
The cube configuration in our project follows the classical
one: red face opposed to the orange one, yellow face opposed
to the white one, and green face opposed to the blue one, with

Proceedings of ICUSI 2025

163

red, white and blue faces arranged in this order clockwise (as
shown in Figure 2, Area 2). In contrast to the real-world
cube, where the faces are considered based on their position
in relation to the user, our approach considers the faces based
on their original colour. So, for naming the faces, and then
the related rotations, we used the following notations: F for
the front/orange face, B for back/ red face, U for up/yellow
face, D for down/white face, L for left/green face and R for
right/ blue face.

Our implementation follows the half-turn metric and uses the
Singmaster notation, so we have 18 types of rotations, six
900 counterclockwise rotations (F’, R’, L’, U’, B’, D’), six
900 clockwise rotations (F, R, L, U, B, D) and six double
rotations (F2, R2, L2, U2, B2, D2). Those rotations are used
in both shuffling and solving the cube.

In code, the simulation of rotations was hard coded using
functions that get the cube state, apply the rotation logic and
return the resulting cube state.
Cube State Representation
In our approach, a cube configuration is represented as a 24-
character string, four characters for each face, with yellow,
blue, orange, green, red, and white faces in this order, as
presented in Figure 3. So, for the cube configuration in
Figure 3, the cube state string is
“UUUURRRRFFFFDDDDLLLLBBBB”.

Figure 3 - Cubelets order in cube state representation

The actual cube configuration when pressing a solving
button is read from the 3D cube using raycasting and passed
to the chosen algorithm in this format.

Solved Cube Conditions
In real life Rubik’s cube solving or in other applications or
sites, a cube is considered solved when each face contains
only one solid colour, and rotating the entire cube doesn’t
change its configuration. Compared to them, our approach
has a more strict set of rules. So, to be considered solved, a
cube should have the exact configuration shown in Figure 3
and its state should be
“UUUURRRRFFFFDDDDLLLLBBBB”. No other
configuration will be considered as a solved cube.

ALGORITHMS

Layer-by-layer
The layer-by-layer algorithm implements the steps followed
by a beginner in solving the 2x2 Rubik’s cube, and consists
in four steps:

Step 1 solves the yellow face and the row below it. At the
end of it, the cube map looks as in Figure 4 (grey cells can
be any of the available colours), and the cube state is
“UUUURRxxFFxxxxxxLLxxBBxx”, where x can be
replaced by any of the available faces identifiers.

Figure 4 - Cube map after step 1

Step 2 (OLL - Orient The Last Layer) solves the white face,
but not the adjacent row. At the end of it, the cube map looks
as in Figure 5 (grey cells can be any of the available colours),
and the cube state is “UUUURRxxFFxxDDDDLLxxBBxx”,
where x can be replaced by any of the available faces
identifiers.

Figure 5 - Cube map after OLL

Step 3 (PLL - Permutation of The Last Layer) solves the
adjacent layer of the white face (the one coloured with grey
in Figure 5). At the end of it, the two median layers (the layer
adjacent to white and the one adjacent to yellow in Figure 5)
can be misaligned.
Step 4 align the two layers by rotating the white one
accordingly.

Bidirectional BFS
Even for the pocket Rubik’s cube the state space is huge
so, in consequence, a classical BFS approach will be space
and time consuming. In order to solve this issue, we used a
bidirectional BFS approach, that still preserves the BFS
property of finding the shortest path (the optimal solution).

The bidirectional BFS approach involves applying classical
BFS twice: once starting from the shuffled cube and
traversing the tree towards the solved cube (called forward)
and once starting from the solved cube and traversing the tree
towards the shuffled cube (called backward). The algorithm
stops when a state visited by one traversal was already
visited by the other. The solution is built reuniting the paths
followed by the two traversals: the sequence of moves in
forward traversal stays the same, and it is followed by the
sequence of backward traversal, reversed and inverted.

Proceedings of ICUSI 2025

164

DFS
The DFS approach we used in our implementation is the
classical one. Its goal is to find a solution, not the optimal
one. Because of the large state space, we made some
adjustments: we limited the search depth to 11 (because the
God’s number is 11 and any of the test data in our
experiments can be solved optimally in less than ten moves)
and the maximum number of steps to three million.

Moreover, to increase the chances of finding a solution, we
randomly shuffled the allowed rotations for each step of the
algorithm. In this approach, for a particular step, the allowed
moves are all half-turn metric rotations except for rotations
of type X, X’ or X2, where the move that generated the
current state belongs to {X, X’, X2,} and X can be any of F,
R, L, U, D, B.

A* algorithm
The A* method aims to find a solution close in length to the
optimal one. The quality of the heuristic function determines
the quality of its results. In this approach, at each step, the
method selects the child node of the current node with the
smallest cost. The cost function, 𝑓(𝑛), is computed by
summing 𝑔(𝑛) and ℎ(𝑛), where:

- 𝑛 is the node;

- 𝑔(𝑛) represents the number of moves took so far;

- ℎ(𝑛) is the heuristic function, computed as the sum
of the minimum number of moves to bring each
corner to its place, without considering the location
of the other corners.

The heuristic function was created from scratch and tailored
for the size of the cube.

To avoid cycles, A* follows the DFS rule for generating the
allowed moves from a node.

Monte Carlo Tree Search (MCTS)
The MCTS approach we implemented is not a general solver,
it aims to find a solution for the cube configuration received
as a parameter.

This approach tries to find a solution in a maximum of 30
steps (which is equivalent to 30 moves). At each step, it runs
the MCTS algorithm to find the best move to make from the
current state, applies the determined rotation and adds it to
the solution.

Figure 6 - UCB formula1

1 https://builtin.com/machine-learning/monte-carlo-tree-
search

The actual MCTS method runs over 700 iterations, each
iteration consisting of four steps:

- Selection - starting from the root node (the initial cube
state), it traverses the tree on the best children branch
using the UCB formula (see Figure 6) until it reaches a
terminal (the solved cube) or a not fully expanded node.
In case of a not fully expanded node, it expands it;
otherwise, it returns it.

- Expansion - for the not fully expanded node previously
selected, it generates all its children, randomly chooses
one of them, adds the child to the tree, and returns the
child node.

- Simulation using epsilon-greedy strategy
- To avoid cycles and to increase the chances of it

finding a solution, we kept a list of visited states in
the simulation;

- Starting from the selected node (the terminal one
from the selection phase or the child node returned
by expansion), simulates a sequence of moves until
it reaches the terminal state or the maximum depth
(set as 20);

- At each simulation step, it chooses a random move
from the allowed ones in 20% of the cases, or the
move with the smallest heuristic value (the heuristic
function is the same as in A* approach) in 80% of
the cases;

- At the end of it, it returns a reward of 1 +
1

𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑖𝑜𝑛 𝑑𝑒𝑝𝑡ℎ
, for the solved cube state at the end

of the simulation, or 1
1+ℎ(𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑡𝑎𝑡𝑒)

 otherwise.
- Backpropagation - traverses the tree backwards, starting

from the selected node to the root, and updates the wins
and scores for each node, according to the simulation
results.

For the MCTS approach, the allowed moves are all half-turn
metric rotations except for the inverses.

Q-learning
Just like the MCTS-based algorithm, Q-learning is not a
general solver. In its center is the Q-table structure, a table
that provides a value for a cube state, rotation made pair.
Due to the large state space, the Q-table is initially empty,
and states are added to the table as they are generated. A
newly added record has the value set as zero for all 18 moves.

When calling the Q-learning method, the training process
starts from scratch, so the results of the past runs are not
considered in the current one and the Q-table is empty.
Training the model consists of 50000 episodes. Each episode
starts from the same initial cube state and runs until it reaches
a terminal state (the solved cube) or the maximum depth (set
as 30). An episode step consists of choosing a move using an
epsilon-greedy policy (the move with the lowest heuristic
value out of the allowed moves, determined as in MCTS,

Proceedings of ICUSI 2025

165

with a probability of 𝑒𝑝𝑠𝑖𝑙𝑜𝑛, or a random move from the
allowed ones with a probability of 1 − 𝑒𝑝𝑠𝑖𝑙𝑜𝑛), computing
the reward and updating the current state and the Q-table
accordingly.

The reward for the current state and the chosen move is
computed as ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑏𝑒𝑓𝑜𝑟𝑒 − ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑎𝑓𝑡𝑒𝑟, where
ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑏𝑒𝑓𝑜𝑟𝑒 is the heuristic value of the current state,
and ℎ𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐 𝑎𝑓𝑡𝑒𝑟 is the heuristic value of the new state,
if the new state is non-terminal, or 100 otherwise.

The Q-table update follows the Temporal Difference
formula. In addition to the epsilon-greedy strategy, we used
epsilon decay. So, at each episode, epsilon is computed using
the following formula: 𝜀 = 𝜀𝑚𝑖𝑛 + (𝜀𝑖𝑛𝑖𝑡 − 𝜀𝑚𝑖𝑛) ∙
𝑒−𝑑𝑒𝑐𝑎𝑦𝑅𝑎𝑡𝑒 ∙ 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 , where: 𝜀𝑚𝑖𝑛 is the minimum epsilon
value (0.05), 𝜀𝑖𝑛𝑖𝑡 is the initial epsilon value (1), e is Euler’s
number, decayRate is the rate at which epsilon decreases,
and episode is the number of the episode.

TEST DATA DESCRIPTION
The test data has been generated by code and consists of 45
data points, five for each optimal solution length from one to
nine, which covers a wide range of cube state complexity.
The optimal length for a cube configuration was determined
by running the bidirectional BFS on that configuration.

The test data has been saved in a JSON file in which
a record (see an example in Figure 7) contains: the test ID,
the optimal solution length, and the resulting cube
configuration as a 24-character string.

Figure 7 - A record example from the test data file

EXPERIMENTS OVERVIEW
All the experiments were executed on a computer with the
following characteristics: Windows 10 as operating system;
an Intel® Core™ i5-8265U CPU @ 1.60GHz processor,
with four physical cores / eight logical cores and a 1.80 GHz
speed; Memory speed as 2400 MHz.

Testing Criteria
For each optimal solution length, we evaluate each
implemented method considering four criteria, which cover
the most important aspects of evaluation for such a project:
First is the average execution time (measured in
milliseconds). The second is average memory used
(measured in kilobytes). The third is the success rate, and the
last one is the average solution length.

Testing Method
In order to capture more accurate results, we run each
algorithm four times on each test data, and we compute the
average execution time, average memory used, success rate,
and solution length. The average execution time and average
memory used were calculated as the averages of the

execution times and memory used, respectively, for the test
data record. The success rate is calculated as the number of
successes over the number of runs, and the average solution
length is the average of the solution lengths determined in
the successful runs. These results were saved in six JSON
files, one for each algorithm.

The implemented code determined the execution time and
memory used for a run. For execution time, we called the
Start() method of a Stopwatch object before running the
algorithm, then the Stop() method after the algorithm
finished its execution. The time elapsed between these calls
is the execution time. For memory usage, we called
GC.GetTotalMemory() before and after running the
algorithm, and the difference between these values divided
by 1024 is the memory used, measured in KB.

Once these results have been determined, we grouped them
based on the optimal solution length and computed the final
results that will be used in comparing the algorithms. So, for
an optimal solution length of n, we have:

- The average execution time is the average of all the
average execution times of the test data of length n;

- The average memory used is the average of all the
average memory used of the test data of length n;

- The success rate is the average of all the success rates
of the test data of length n;

- The average solution length is computed as
∑4

𝑖=1 (𝑆𝑖∙𝑙𝑖)
∑4

𝑖=1 𝑆𝑖
, where 𝑆𝑖 is the success rate for test data i

and 𝑙𝑖 is the average solution length for test data i.

The final results were also saved in six JSON files, one for
each algorithm. All the results and the test data are available
on GitHub [13].

EXPERIMENTAL RESULTS
In this section, we present the final results of our
experiments, considering all four criteria.

Average Execution Time

Figure 8 - Average Execution Time Diagram

Considering the information provided by Figure 8, we can
draw the following conclusions about the average execution
time:

- Layer-by-layer has the smallest execution time, its value
stabilizing somewhere around 6ms, so its execution time
is almost constant during experiments;

Proceedings of ICUSI 2025

166

- Bigger than Layer-by-layer average execution time, the
average execution time for bidirectional BFS is smaller
than the others for all optimal solution lengths;

- For A* and bidirectional BFS, the average execution
time grows with the increase of optimal solution length,
which is to be expected considering the exponential
growth of the state space;

- DFS has a somewhat constant average execution time
during experiments. For the longer solutions (five
moves or more), where it tends to find a solution rarely,
the average execution time of DFS reaches its maximum
value;

- MCTS and Q-learning have the most significant average
execution time overall, which is caused by the training
period.

- For lengths of one to six, Q-learning has the most
significant average execution time, and for lengths of
seven to nine (where it rarely finds a solution), it is
surpassed only by MCTS;

- The average execution time of MCTS grows
dramatically from one length to another, especially for
the longer optimal solutions (six to nine moves), which
is to be expected considering the way MCTS approach
searches for a solution (a more complex cube
configuration needs more moves to be solved, so it
needs running MCTS algorithm several times).

Average Memory Used

Figure 9 - Average Memory Used Diagram

Considering the information provided by Figure 9, we can
draw the following conclusions about the average memory
used:

- Layer-by-layer doesn’t use a big amount of memory,
its value is zero or close to zero for each optimal
solution length;

- In general, bidirectional BFS consumes a pretty small
amount of memory compared to other algorithms;

- The average amount of memory used by bidirectional
BFS and A* increases with the optimal solution
length, which is to be expected considering the
exponential growth of the state space;

- The average amount of memory used by DFS is large
for all optimal solution lengths and, for the longer
ones, where it rarely or never finds a solution (six to
nine moves), the average amount of memory used
stabilizes around 846000 KB;

- MCTS approach uses a small and almost constant
amount of memory during testing (2000 - 3000 KB),
which is due to the small tree that is created and then
destroyed at each step of the approach;

- Q-learning consumes the biggest amount of memory,
its values increasing dramatically from one optimal
solution length to another, which is to be expected due
to the increasing size of Q-table.

Average Solution Length

Figure 10 - Average Solution Length Diagram

Considering the information provided by Figure 10 (where a
value of zero means that the algorithm failed in finding a
solution, we can draw the following conclusions about the
average solution length:

- Layer-by-layer always finds the longest solutions, and
the cube state complexity does not influence the
solution length found by it, but rather the way the cube
state lends itself to the steps of the method.

- Due to the way DFS traverses the tree, it tends to find
a solution close in length to its maximum depth (i.e.
11), even for less complex cube configurations, and,
for the longer optimal solutions (seven to nine moves),
it never finds a solution;

- A* determines a solution close in length to the optimal
one, which shows that the heuristic is good enough.

- Bidirectional BFS always finds the optimal solution;
- For the successful runs, Q-learning tends to find a

solution close in length to the optimal one, but it fails
to discover a solution for complex cube states (eight
and nine moves);

- The MCTS approach tends to find long solutions, and
for the cubes that can be solved in eight or nine moves,
the increase in solution length is dramatic.

Success Rate

Figure 11 - Success Rate Diagram

Proceedings of ICUSI 2025

167

Considering the information provided by Figure 11, we can
draw the following conclusions about the success rate:

- Because we didn’t set any limitations, A*, Layer-by-
layer and bidirectional BFS always find a solution, so
their success rate is 1;

- DFS does not always succeed to find a solution even
for the smallest optimal solution lengths. Due to the
way it traverses the tree and chooses a move at each
step, the success rate of DFS is not entirely dependent
on the optimal solution length.

- Q-learning has always found a solution for the optimal
solution lengths of one to four moves, but its efficiency
decreases as the optimal solution length increases and
for the tests of eight or nine moves in solution, its
success rate is zero.

- The success rate of the MCTS approach also decreases
as the optimal solution length increases, but, in
contrast to Q-learning, it is never zero.

CONCLUSIONS
The project presented in this paper successfully balances a
user-friendly interface with the functionalities of six
different methods for solving the pocket Rubik’s Cube. The
experimental test data provides a varied and robust set of
cube configurations that allows us to observe and compare
the efficiency of the algorithms we developed. Based on the
experimental results, we can conclude that all implemented
methods have their advantages and disadvantages, and in
order to choose the best one of them, we should focus on the
user’s requirements. Thus, DFS is not a good approach
overall. Bidirectional BFS always finds the optimal solution
in a decent amount of time and memory. Layer-by-layer is
the quickest and uses the smallest amount of memory, but the
solution found by it is longer compared to the other methods.
A* is ideal in terms of success rate and provides a solution
of close to optimal length, but is not as efficient in terms of
memory and execution time as bidirectional BFS or Layer-
by-layer. The Q-learning approach we developed is not the
ideal approach for solving the Rubik’s cube, because of its
success rate for more complex cube states, memory, and
execution time . The MCTS approach is not ideal either,
because of its execution time, success rate, or solution length,
especially for the complex cube configurations.

In future work in this direction, we aim to focus on machine
learning methods, as a more effective training approach can
significantly improve them. Moreover, we want to turn our
algorithms into general solvers. Therefore, instead of aiming
to solve only the current cube configuration, we want to run
each algorithm on all possible configurations and save the
method's results in an external file or database. When the
user presses one of the solving buttons, the algorithm results
should be retrieved directly from this source.

REFERENCES
1. Steinparz, C. A., Hinterreiter, A. P., Stitz, H., & Streit,

M. (2019). Visualization of Rubik's Cube Solution
Algorithms. In EuroVA@ EuroVis (pp. 19-23).

2. Jeevan, J., & Nair, M. S. (2022). On the performance
analysis of solving the Rubik’s cube using swarm
intelligence algorithms. Applied Artificial Intelligence,
36(1), 2138129..

3. McAleer, S., Agostinelli, F., Shmakov, A., & Baldi, P.
(2018). Solving the Rubik's cube without human
knowledge. arXiv preprint arXiv:1805.07470.

4. Agostinelli, F., McAleer, S., Shmakov, A., & Baldi, P.
(2019). Solving the Rubik’s cube with deep
reinforcement learning and search. Nature Machine
Intelligence, 1(8), 356-363..

5. Demaine, E. D., Demaine, M. L., Eisenstat, S., Lubiw,
A., & Winslow, A. (2011). Algorithms for solving
Rubik’s cubes. In Algorithms–ESA 2011: 19th Annual
European Symposium, Saarbrücken, Germany,
September 5-9, 2011. Proceedings 19 (pp. 689-700).
Springer Berlin Heidelberg.

6. Demaine, E. D., Eisenstat, S., & Rudoy, M. (2017).
Solving the Rubik's Cube Optimally is NP-complete.
arXiv preprint arXiv:1706.06708.

7. Higo, R., Yamakawa, Y., Senoo, T., & Ishikawa, M.
(2018, October). Rubik's cube handling using a high-
speed multi-fingered hand and a high-speed vision
system. In 2018 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) (pp. 6609-6614).
IEEE.

8. Zeng, D. X., Li, M., Wang, J. J., Hou, Y. L., Lu, W. J.,
& Huang, Z. (2018). Overview of Rubik’s cube and
reflections on its application in mechanism. Chinese
Journal of Mechanical Engineering, 31, 1-12.

9. Kunkle, D., & Cooperman, G. (2008). Solving rubik's
cube: disk is the new ram. Communications of the
ACM, 51(4), 31-33.

10. Johnson, C. G. (2021). Solving the Rubik's cube with
stepwise deep learning. Expert Systems, 38(3), e12665.

11. Chakraborty, A., & Kar, A. K. (2017). Swarm
intelligence: A review of algorithms. Nature-inspired
computing and optimization: Theory and applications,
475-494.

12. Wikipedia, Rubik's Cube, n.d., available online at:
https://en.wikipedia.org/wiki/Rubik%27s_Cube

13. https://github.com/AncaNicu/Algorithms-for-solving-
2x2-Rubik-s-cube

Proceedings of ICUSI 2025

168

