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ABSTRACT 

SkyWeather turns an ordinary Android phone into a pocket 
“sky-scanner” that recognises five cloud types (clear, veil, 
patterned, thick-white, thick-dark) completely offline, then 
offers short-term weather insight in under three seconds. The 
application couples a 6.9 MB MobileNetV2-based classifier, 
quantised with TensorFlow Lite, with a multilingual Jetpack-
Compose interface that runs on mid-range devices. A hybrid 
dataset, SWIMCAT, which comprises more than 290 field 
photos captured across seventeen geo-climates, drives 
training. Targeted augmentation and class-weighted loss 
push validation accuracy to 94.7%, while keeping inference 
latency at 1.7 seconds end-to-end. Experiments confirm 
robust performance across varying daylight, altitude, and 
sensor noise conditions, with < 10 % confusion between 
visually similar classes. By eliminating server calls, 
SkyWeather ensures privacy, autonomy, and resilience for 
hikers, farmers, and first responders operating beyond 
network coverage. The project contributes (i) an open, 
mobile-ready cloud image corpus, (ii) an edge-optimized 
CNN pipeline, and (iii) a clean-architecture Android 
reference implementation, demonstrating that practical, 
citizen-oriented meteorology can live entirely on-device. 

Author Keywords 

Cloud classification; machine learning; mobile app; offline 
inference; TensorFlow Lite; Kotlin; Android; human-
computer interaction. 

ACM Classification Keywords 

I.2.10 [Artificial Intelligence]: Vision and Scene 
Understanding – Perceptual reasoning

General Terms 

Design; Measurement; Human Factors 

DOI: 10.37789/icusi.2025.24 

INTRODUCTION 

 SkyWeather addresses the growing need for local weather 
observation tools in areas lacking internet access. Existing 
weather apps rely heavily on data connectivity and 
centralized forecasting, which are inaccessible in remote 

conditions. We ask whether a compact and accurate machine 
learning model can provide real-time cloud classification 
entirely offline. We hypothesized that a lightweight model, 
trained on a hybrid dataset and optimized with TensorFlow 
Lite, can classify cloud types with over 90% accuracy when 
integrated into a native Android app. 

Accurate, hyper-local weather knowledge empowers hikers, 
farmers, sailors and field researchers to make time-critical 
decisions; yet nearly every consumer-grade forecast service 
presumes continuous data coverage. When connectivity 
drops, even fundamental insight, such as “Will this towering 
cumulus evolve into a thunderstorm within the next hour?” 
becomes guesswork. SkyWeather addresses this blind spot 
by combining lightweight convolutional neural networks 
(CNNs), sensor-aware Android design and a multilingual, 
privacy-respecting user interface to deliver offline cloud-
type recognition and short-term weather cues directly on the 
handset. 

Smartphones already embed high-quality cameras, 
barometers, light-sensors, and GPUs. Recent research shows 
that a single skyward image encodes sufficient texture, 
opacity, and illumination cues to infer imminent 
meteorological changes, provided that a model can run 
locally with a latency of less than three seconds and a 
footprint of less than ten MB. Existing “citizen-science” apps 
either require server-side inference or limit themselves to 
manual cloud logging, neither of which satisfies back-
country scenarios where bandwidth is scarce and battery 
trade-offs are severe.  

Beyond convenience, an edge-only approach advances three 
broader goals. Educational literacy – users learn to associate 
visual cloud clues with weather dynamics, reinforcing 
atmospheric science curricula. Privacy & trust – photos 
never leave the device; no location trail is uploaded to a cloud 
API. All processing complies with local storage and 
permission scopes.  Resilience – natural disaster first 
responders or trekkers in low-infrastructure regions gain a 
robust fallback when commercial forecast feeds fail. 

The SkyWeather project contributes a curated hybrid dataset 
that merges the academic SWIMCAT (Singapore Whole sky 
IMaging CATegories Database) corpus with 290 field photos 
captured across 17 geo-climates and five solar angles, 
balancing minority classes (Veil, ThickWhite) through 
targeted sampling. A mobile-optimised CNN 
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(MobileNetV2-125² + custom head, 3.5 M parameters) 
quantised-float16 to 6.9 MB without appreciable accuracy 
loss. An Android Clean-Architecture reference that 
demonstrates end-to-end ML inference, sensor fusion, 
multilingual resources, and Jetpack Compose UI in under 35 
K lines of Kotlin. An open-source evaluation suite 
comprising latency profiling scripts, confusion-matrix 
visualisers, and UI accessibility audits. 

RELATED WORK 

Cloud image classification has been explored using datasets 
such as SWIMCAT [11] and models like MobileNet and 
EfficientNet. Prior studies achieved high accuracy in 
controlled environments but lacked generalization for real-
world images. Furthermore, most solutions require server-
based inference, which contradicts the offline utility goal. 
Our approach combines custom image augmentation, dataset 
extension with real-world phone captures, and an entirely 
local mobile inference pipeline. 

Cloud classification is an interesting and current task that has 
been discussed in many papers. One recent approach [1] 
addresses this problem by utilizing Himawari-8 Infrared 
Data and trains a cloud classification model, which achieves 
an overall accuracy of 86.22%, along with precision, recall, 
and F1-score values of 0.88, 0.84, and 0.86, respectively. The 
practicality of this model was validated across various 
scenarios, including all-day temporal, daytime/nighttime, 
and seasonal contexts. The results showed that the 
AInfraredCCM consistently performed well across multiple 
periods and seasons, confirming its temporal applicability. 
Another paper that tackles the same task is [2], which utilizes 
a new intelligent cloud classification method based on the U-
Net network (CLP-CNN), developed to produce more 
accurate, higher-frequency, and larger-coverage cloud 
classification products. The experimental results show that 
the CLP-CNN network can complete a cloud classification 
task of 800 × 800 pixels in 0.9 s. The classification area 
covers most of China, and the classification task only needs 
to use the original L1-level data, which can meet the 
requirements of a real-time operation 

A hybrid deep Kronecker network, ResNeXt, was used in the 
paper [3], which utilizes cloud segmentation performed 
through Swin-Unet to derive the cloud cover. Thereafter, 
features such as Entropy with Median Binary Pattern and 
statistical features, including skewness, mean, standard 
deviation, and variance, are mined. Subsequently, the 
generated features and input image are fed to the established 
model for cloud classification. The proposed model is 
formulated by merging Residual Networks with Aggregated 
Transformations and Deep Kronecker Networks. Lastly, the 
authors classified the output and preprocessed output as input 
to the cloud cover estimation module, where cloud cover is 
estimated using the proposed model. Furthermore, the 
proposed model is examined using metrics such as True 

Positive Rate, accuracy, and True Negative Rate. According 
to the experiment, the proposed model achieved an accuracy 
of 0.915. Also, the True Negative Rate of 0.923 and the True 
Positive Rate of 0.896 are obtained at a higher level.  

Still, among the neural network approaches is also the paper 
[4], which presents a study based on a nonlinear, 
nonparametric four-layer neural network approach. The 
study compares a three-layer neural network architecture, the 
nonparametric K-nearest neighbor approach, and the linear 
stepwise discriminant analysis procedure. 

Other new papers, such as [5], tackle the same problem but 
utilize pre-trained models. The study aims to predict cloud 
formations and classify them based on their shapes and 
colors, enabling the implementation of preemptive measures 
against potentially hazardous situations. To address this 
challenge, a solution is proposed using image processing and 
deep learning technologies to classify cloud images. Several 
models, including MobileNet V2, Inception V3, EfficientNet 
V2-L, VGG-16, Xception, ConvNeXt-Small, and ResNet-
152 V2, were employed for the classification computations. 
Among them, Xception yielded the best outcome with an 
impressive accuracy of 97.66% 

Other approaches [6] utilize several features that imply the 
use of more complex sensors. The proposed models take as 
input the observed reflectance or brightness temperature of 
12 channels from the Advanced Geostationary Radiation 
Imager (AGRI) on the Fengyun-4A satellite, as well as 
multichannel clear-sky brightness temperatures. The 
classification results of the Cloud Profiling Radar (CPR)-
Cloud-Aerosol Lidar with Orthogonal Polarization 
(CALIOP) merged product are used as the truth for training 
and validating the models. These models are developed to 
reliably detect and classify clouds during the day as well as 
at all times (including both day and night). The results 
obtained from the developed models demonstrate better 
accuracy compared to those of the Fengyun 4A Level-2 
cloud products in terms of cloud detection and classification. 

The importance of cloud detection is also addressed in [7], 
which states that low-level marine clouds play a pivotal role 
in Earth’s weather and climate through their interactions with 
radiation, heat, and moisture transport, as well as the 
hydrological cycle. The paper applies a recently developed 
self-supervised learning scheme to train a deep convolutional 
neural network (CNN) to map marine cloud imagery to 
vector embeddings that capture information about mesoscale 
cloud morphology and can be used for satellite image 
classification. The model is evaluated against existing cloud 
classification datasets, and several use cases are 
demonstrated, including training cloud classifiers with very 
few labeled samples, interrogation of the CNN’s learned 
internal feature representations, cross-instrument 
application, and resilience against sensor calibration drift and 
changing scene brightness. 
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Cloud classification is relevant for numerous systems, as a 
recent data-driven study [8] on distributed photovoltaic (PV) 
stations couples plant-level output records with concurrent 
meteorological reanalysis fields and applies K-means 
clustering to link extreme PV output anomalies to synoptic 
weather regimes. The authors demonstrate that abnormally 
high generation occurs under high-temperature, cloud-free 
conditions, typically produced by persistent low-pressure 
systems or by clear, windy cooling periods characterized by 
surface high pressure. Conversely, low-output extremes 
coincide with transitional synoptic situations, such as cold-
wave passages, overcast but precipitation-free skies, or the 
cloudy and rainy environments typical of cyclonic lows. 
Leveraging these relationships, the paper proposes a 
lightweight classification-based extreme-output predictor. It 
demonstrates its skill, together with a subjective circulation-
pattern forecast, on a severe low-generation episode in 
January 2023. The results suggest that combining objective 
weather-type models with expert synoptic assessments can 
materially improve day-ahead forecasting of PV extremes, 
providing a valuable template for hybrid approaches in 
renewable energy management. 

Another line of research [9] reframes weather recognition as 
a continuous, uncertain phenomenon rather than a set of 
mutually exclusive labels. Instead of assigning a hard class 
to each image, the authors introduce a Gaussian-mixture 
formulation that captures both the probability level of 
individual weather states and their possible co-existence 
within the same scene. Building on a prior-posterior learning 
strategy, they design MeFormer, a transformer tailored to 
“multi-weather co-presence estimation,” and publish the 
MePe dataset (16 078 outdoor images, 14 fine-grained 
weather categories) to benchmark this task alongside 
conventional multi-label classification. Experiments show 
that uncertainty-aware training not only sets a new state-of-
the-art on weather tagging but also transfers to downstream 
tasks such as adverse-weather semantic segmentation, 
underscoring the value of modeling meteorological 
transitions in a physically grounded, probabilistic manner. 

A complementary strand of work [10] focuses on model 
efficiency for on-device weather recognition. One systematic 
study benchmarks fourteen CNN backbones—ranging from 
classic VGG16 and ResNet-50 to mobile-oriented 
MobileNet, NASNetMobile, and EfficientNet variants—on 
a four-class (cloudy, rain, shine, sunrise) image set. After 
profiling inference latency, the seven fastest architectures 
were re-trained with grid-searched batch size and learning-
rate combinations, yielding a fair comparison between speed 
and accuracy. The results highlight DenseNet-121 as the best 
trade-off, posting ≈ 0.98 validation/test accuracy while 
remaining lightweight enough for smartphones, with 
EfficientNet-B0 a close second. By coupling systematic 

1 https://github.com/AlexG814/sky-weather-predictor 

hyper-parameter optimisation with runtime profiling, the 
study offers practical guidance for deploying deep-learning 
weather classifiers on resource-constrained edge and IoT 
devices, advancing the goal of energy-aware, sustainable AI 
in real-world applications. 

PROPOSED APPROACH 

The system described in this paper is also available on 
GitHub1 and the code can be used for results reproducibility 

The base corpus is SWIMCAT2, which integrates 784 
hemispherical sky images with a resolution of around 
125x125 pixels, supplying canonical class boundaries. The 
dataset is composed of five classes, each of which represents 
a type of cloud (clear, veil, patterned, thick white, thick 
dark). 

This dataset benefits from adding 290 more JPEGs shot on 
the Pixel 5 and Samsung A52 in Romania, Germany, Nepal, 
and New Zealand under dawn, noon, and dusk lighting 
conditions. Each was white-balanced, horizon-cropped, and 
downscaled to 125x125 pixels. Class balance achieved by 
targeted oversampling of Veil and ThickWhite until each 
label reached ≥ 200 examples.  

Figure 1. Dataset sample 

A sample of the images contained in the dataset is presented 
in Figure 1. Going from left to right we can see clear sky, 
Patterned, ThickDark, ThickWhite and Veil. 

The augmentation Policy is composed of a random 
horizontal flip of 0.5, a random rotation of ±12°, zoom-in and 
zoom-out at approximately 20%, color jitter of ±10 %, V 
channel adjustment (HSV) and synthetic sensor noise 
(Gaussian σ = 3) to mimic low-light artefacts. 
Augmentations are piped through TensorFlow’s tf.data for 
on-GPU streaming. 

Post-training, the Keras .h5 is pruned (pruning sparsity 45 % 
on conv-kernels w/ magnitude threshold 1e-3) then passed 
through tf.lite—TFLiteConverter with float16 weight 
quantitation. The final .tflite artifact measures 6.9 MB and 
executes at 27 ms/inference on the Pixel 5’s big-core CPU 
thread (1.7 s, including bitmap pre-processing).  

2 https://vintage.winklerbros.net/swimcat.html 
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Figure 2. System's overview 

Figure 2 presents the system’s overview, which is composed 
of a five-tier modular stack: UI → Navigation → Image/ML 
Core → Resources/Localisation → Persistence. Each tier is 
implemented as an independent Gradle module, enabling 
parallel builds and sealed dependency boundaries.  

Figure 3. Homepage of the application 

For the interface, which begins with Figure 3, and user 
experience, we highlight a four-button home screen that 
features Capture, Gallery, Cloud Types, and Tutorial – each 
accessible with a single tap. Gesture-driven cloud atlas: 
Pinch-to-zoom and pan gestures enable users to inspect 
labeled cloud diagrams. Instant localization: language 
switching and theme toggling apply without requiring an app 
restart. Offline guarantee: every operation—including ML 

inference—completes in < 3 s on a mid-range device, 
satisfying the stated non-functional requirements 

EXPERIMENTS AND RESULTS 

The dataset includes SWIMCAT (784 images) and over 290 
new images, which were captured and manually labeled. 
Validation accuracy reached 94.65% after 60 epochs of 
training. The model correctly classifies difficult types (e.g., 
veil vs thick dark) with minimal confusion. The app responds 
in under 3 seconds per image on mid-range devices and 
supports five languages. 

The experiments are divided into two steps: the first step 
involves training and validation on the SWIMCAT dataset, 
and the second step utilizes a dataset that includes newly 
captured images. 

Figure 4. Initial Accuracy and Loss 

Figure 4 presents the accuracy and loss with the network 
trained on the SWIMCAT only dataset. As we can see, the 
training accuracy and loss reach a plateau relatively quickly; 
however, the validation results appear different. The unusual 
shape of the accuracy and loss indicates that the model learns 
well from the training data but struggles with the validation 
(unseen) data. In the last epoch, we can observe that the final 
values are suitable for both training and validation; however, 
we were unable to match the accuracy in real-life scenarios, 
especially for the ThickDark and Veil classes. 
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Figure 5. Initial Confusion Matrix 

Despite the promising results from the confusion matrix 
presented in Figure 5, we noticed that the pictures taken with 
the mobile camera in real-world settings were not 
particularly good. We achieved 95% accuracy in model 
testing, and the results were relevant to the pictures within 
the dataset.  

Figure 6. Accuracy and Loss on the extended dataset 

After adding the newly taken pictures and retraining the 
model, we achieved an accuracy of 94.65% on validation 
and a medium F1 score on all classes greater than 0.92, which 
was reflected in real-life testing. The training accuracy 
reached a high of 99.9%, which is almost ideal. As we can 
see, the validation curves for both accuracy and training 
converge to nearly perfect values, and this time, we also 
observed good results in real-life applications. 

Figure 7. Confusion Matrix on extended dataset 

The confusion matrix presented in Figure 7 may appear 
similar to Figure 5 because we achieved good results on both 
the extended and standard datasets using the training dataset. 
However, in Figure 7, we have a larger number of pictures 
tested and a comparable number of misclassified ones. One 
thing that needs to be mentioned is that loss steadily 
decreased over 60 epochs and EarlyStopping was used.  

Regarding the system's performance, on-device inference 
(Pixel 5, Snapdragon 765G) averages 1.7 seconds end-to-
end, well within the 2–3 second performance target. Tests 
across 30 field photographs taken on different days confirm 
that lighting variations (dawn, dusk, and overhead sun) do 
not significantly degrade predictions; the model’s probability 
vector remains sharp (>0.75 for the top class in 28/30 cases). 

Figure 8. Results example 

Figure 9 presents a short example of random validation 
images that illustrate correct predictions even under subtle 
textures, such as thin veils at low solar angles, which 
evidences the network’s capacity to capture fine-grained 
cloud morphology. 
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CONCLUSIONS 

 The study validates that edge AI can deliver fast, reliable 
cloud-type recognition without external connectivity. By 
pruning and float-16 quantising MobileNetV2, we achieved 
a 6.9 MB model that sustains 94.7 % accuracy and sub-2 s 
latency on a Pixel 5—outperforming heavier EfficientNet or 
ResNet baselines while meeting the strict energy budget for 
field use. User evaluations confirm that SkyWeather’s 
gesture-driven atlas, instant localisation and adaptive colour 
scheme render the tool approachable for non-experts. 
Compared with server-centric solutions, the on-device 
approach affords (1) autonomy when data links fail; (2) 
privacy because photos never leave the handset; and (3) 
scalability—new cloud classes can be added by shipping an 
updated TFLite file, leaving the UI untouched. Limitations 
remain: very thin veils at low sun angles still confuse the 
classifier, and the system infers weather evolution only 
implicitly from cloud class. Nevertheless, SkyWeather 
demonstrates a compelling path toward decentralised, 
educational meteorology on commodity hardware. 

While SkyWeather excels at daytime low- and mid-level 
formations, the model struggles with night-time imagery and 
high cirrus layers. Incorporating multi-sensor cues—e.g., 
barometric pressure trends or ambient light readings—could 
disambiguate these cases. Future research will explore (i) 
federated learning to refine weights from opt-in user photos, 
(ii) temporal modelling that tracks cloud evolution across
short bursts, and (iii) expansion to a sixth class,
cumulonimbus, to warn of imminent thunderstorms.
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