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ABSTRACT 
This paper presents Plant Recogniser, an Android 
application that performs real-time plant identification 
entirely offline, thereby eliminating the network latency and 
privacy concerns typically associated with cloud-based 
solutions. The system combines a curated, class-balanced 
dataset (143 species; 18,753 test images) with a two-phase 
fine-tuning pipeline that adapts MobileNetV2 to the 
botanical domain. Post-training int8 quantisation produces a 
14.8 MB TensorFlow Lite model that runs with a median 
latency of 1.3 s on mid-range Snapdragon 778G devices, 
without loss of accuracy. On the held‑out test split, the 
model attains 80.37 % top‑1 accuracy, 
0.73 macro‑precision, and 0.71 macro‑F1, matching heavier 
EfficientNet‑Lite0 baselines while using 60 % less storage 
and energy. A user‑centred Jetpack Compose interface 
surfaces top‑3 predictions with coloured confidence bars, 
integrates optional Firebase history logging, and remains 
fully functional offline. Field tests with horticulture 
students confirmed a 91% perceived correctness rate and 
task completion within < 4 taps. These results demonstrate 
that lightweight, edge-ready CNNs, when paired with 
thoughtful interaction design, can deliver classroom- and 
field-grade biodiversity assistance without sacrificing speed 
or battery life.  
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INTRODUCTION 
Automated plant recognition is gaining interest as a 
practical tool for biodiversity exploration and education. 
However, many solutions rely on cloud inference and 
require persistent internet access. Our motivation stems 
from the challenge of integrating a deep learning model on-
device while maintaining accuracy and user experience. We 
explore whether combining lightweight AI models 
(MobileNetV2) with Android-native interfaces (Jetpack 
Compose) enables real-time, offline plant classification. 

Our hypothesis is that a mobile-first AI pipeline can 
provide accurate, fast, and private plant identification. The 
approach includes data curation, training with fine-tuning, 
and the design of a modern UI with Firebase integration for 
personalised usage. 

 Smartphone users increasingly rely on in-situ visual search 
to learn about their surroundings, from translating street 
signs to identifying flora and fauna. Commercial plant-
identification apps have gained popularity, yet most of them 
offload computation to the cloud, raising privacy concerns, 
incurring network-dependent latency, and limiting 
usefulness in remote areas. Recent advances in mobile-
efficient deep networks (e.g., MobileNet [8], EfficientNet 
[9]) make accurate on-device inference possible; however, 
turning a research prototype into a polished, user-facing 
application still requires careful dataset curation, model 
compression, and interface design. 

We aim to answer the following question: Can a fully 
offline Android application deliver fast, reliable plant 
recognition while providing a user experience comparable 
to, or better than, cloud-backed alternatives? Achieving this 
requires (i) a compact yet expressive model that fits mobile 
hardware constraints, (ii) a training pipeline capable of 
coping with highly imbalanced botanical data, and (iii) a 
user interface that communicates uncertainty and educates 
non-expert users without overwhelming them. 

We present PlantRecognizer, an Android application that 
performs real-time plant classification for 143 species 
entirely on-device. The core contributions are:  

• Curated multimodal dataset . Two public
sources—PlantNet-300K and the Plants Type
Dataset—were merged, filtered and rebalanced.
Classes whose validation accuracy fell below 40 %
were automatically excluded, yielding a high-
quality set of 18753 test images and markedly
improving generalisation.

• Two-phase transfer learning A MobileNetV2
backbone is first frozen and trained as a feature
extractor, then fine-tuned on the last 30 layers with
a reduced learning rate. Combined with aggressive
augmentation and regularization, this strategy
boosts test accuracy from 48% to 80.37%, while
keeping the model footprint below 15 MB.

• Edge-oriented deployment The network is
quantised and converted to TensorFlow Lite,
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achieving median inference times under 1.5 s on 
mid-range devices without requiring internet 
connectivity  

• Human-centred mobile UI Built with Jetpack
Compose, the interface offers camera/gallery
capture, top-3 predictions with confidence bars, an
educational “Learn More” screen sourced from a
local JSON file, and an optional Firebase-backed
history for authenticated users. Usability
safeguards include graceful degradation when
connectivity is lost or images are invalid.

On the held-out test set, the model achieves a macro-
averaged precision of 0.73, recall of 0.71, and F1 score of 
0.71; weighted averages exceed 0.80, with common crops 
such as banana and pineapple surpassing a 95% F1 score. 
Rare, visually similar species remain challenging, 
underscoring the need for future dataset expansion. Despite 
these corner-case weaknesses, real-world trials confirm that 
users can reliably identify most garden and field plants 
offline, making PlantRecognizer a practical assistant for 
education, agriculture and biodiversity monitoring. 

PlantRecognizer illustrates how model-level optimisation 
and interaction design must co-evolve to construct 
explainable AI experiences on mobile. By exposing 
confidence values, logging predictions for later reflection, 
and allowing users to review misclassifications, the app 
aligns with contemporary calls for transparency and 
longitudinal feedback loops in human-AI collaboration. 
Furthermore, the project demonstrates that privacy-
preserving, low-bandwidth solutions need not sacrifice 
accuracy, offering a replicable blueprint for other vision-
based mobile assistants. 

RELATED WORK 
Prior studies used deep CNNs for plant identification (e.g., 
PlantCLEF, PlantNet apps), mostly relying on cloud 
inference. MobileNet and EfficientNet have been explored 
for on-device performance. However, combining these with 
fully offline Android applications and user history features 
is still limited in literature. We extend prior works by 
embedding a fine-tuned MobileNetV2 into a Kotlin/Jetpack 
Compose Android app, with seamless user experience and 
educational intent. 

Picek et al. provide one of the most comprehensive recent 
benchmarks [1] for image-based plant identification. They 
evaluate a range of backbones—from ResNeSt-269e and 
EfficientNetV2-S to ViT-Large/16—on three large-scale 
“in-the-wild” datasets (PlantCLEF 2017, 
ExpertLifeCLEF 2018, and iNat2018–Plantae) and report 
state-of-the-art top-1 scores (e.g., 91.15 % on 
PlantCLEF 2017). Beyond closed-set classification, the 
authors introduce a retrieval-style k-NN scheme in a deep 
embedding space trained with a Recall@k loss, which 
further improves accuracy by up to 10 percentage points 

and naturally supports open-set extension. They also dissect 
ancillary gains from class-prior re-weighting, heavy 
augmentations, and tailored learning-rate schedules, 
concluding that data and training tricks can rival 
architectural changes in impact. Their findings confirm the 
value of transformer models for fine-grained flora tasks, but 
also highlight the additional storage and runtime overhead 
of nearest neighbour search—an overhead that our offline 
MobileNetV2-based workflow avoids while still achieving 
competitive accuracy on 143 species. 

Also related to our work is paper [2] published by 
Bir et al. explore edge‑friendly transfer learning for 
agricultural decision‑support by adapting an 
EfficientNet‑B0 backbone to recognise five common 
tomato leaf diseases. After fine-tuning on a curated subset 
of the PlantVillage dataset, their model achieves over 96% 
classification accuracy yet remains lightweight enough to 
be bundled in an Android application and executed fully 
offline. The study highlights how careful architecture 
scaling and parameter pruning can deliver state-of-the-
practice performance without the network latency or 
privacy compromises associated with cloud-hosted 
inference, offering a concrete blueprint for smartphone-
based plant health diagnostics in the field. 

Pahikkala et al. [3] tackle one of the hardest real‑world 
scenarios—species discrimination when leaves overlap—by 
analysing RGB photographs of oat (Avena sativa) 
intermingled with the weed dandelion 
(Taraxacum officinale). Because colour cues are nearly 
identical, they train a RankRLS texture classifier on 
manually labelled leaf patches and adopt an asymmetric 
error strategy that sacrifices some weed recall to keep crop 
precision near 100 %. In photograph‑wise cross‑validation, 
misclassifying oat as weed is “negligible,” demonstrating 
that fine‑grained texture can remain informative even under 
heavy occlusion. Their findings highlight the importance of 
task‑specific loss functions and texture features for 
precision‑spraying use‑cases—an insight we echo in our 
own pipeline, although we avoid per‑pixel labelling by 
leveraging whole‑leaf CNN features. 

Barhate et al. conduct the first domain‑wide systematic 
review [4] of machine‑ and deep‑learning techniques for 
plant‑species detection, screening publications from 
2010‑2024 with the PRISMA protocol and retaining 61 
high‑quality studies across vision, spectroscopy and 
multi‑modal inputs. They cluster the literature into classical 
ML pipelines (SVM, Random Forest, k‑NN) versus 
CNN/ViT‑based end‑to‑end models, and show that the shift 
to deep learning after 2017 yields a median top‑1 
improvement of  around  12 percentage points—even on 
noisy “in‑the‑wild” datasets such as PlantCLEF and iNat. 
The review also highlights three persistent gaps: (i) 
benchmarking inconsistencies caused by non‑overlapping 
train/test splits, (ii) under‑reporting of model size and 
runtime that hampers edge deployment, and (iii) a scarcity 
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of open benchmarks for non‑leaf organs. The authors call 
for lightweight, privacy-preserving networks and 
standardised evaluation-by-organ to accelerate real-world 
adoption, recommendations that directly motivate our own 
MobileNetV2‑based, offline pipeline. 

Prasad and Thyagaraju survey [5] leaf‑analysis pipelines 
that fuse Internet‑of‑Things sensing with machinelearning 
and deep learning for early plant‑disease detection. 
Screening 61 studies published between 2010‑2024, they 
chart the evolution from classical segmentation + SVM 
workflows to CNN and transformer models, then pinpoint 
four practical bottlenecks for real‑world roll‑out: (i) scarce, 
imbalanced leaf datasets—especially for rare diseases; (ii) 
power‑constrained IoT devices that limit on‑board 
inference; (iii) environmental variability (lighting, weather) 
that reduces model generalisation; and (iv) the lack of 
farmer training for AI tools. To bridge these gaps they 
propose a “Hybrid IoT + DL” framework in which edge 
sensors capture multi‑modal signals, while a lightweight 
CNN–LSTM ensemble flags anomalies and triggers cloud 
analytics only when confidence is low, thereby balancing 
latency, energy, and accuracy. Their call for adaptable, 
edge‑aware architectures directly aligns with 
Plant Recognizer’s offline MobileNetV2 design, but their 
emphasis on multi‑sensor fusion suggests a future path for 
extending our image‑only approach to include soil and 
micro‑climate data. 

Midhunraj et al.  deliver a wide‑ranging survey [6] of 81 
primary studies on plant‑disease detection, tracing the 
field’s shift from handcrafted‑feature pipelines (SVM, 
Random Forest) to CNN and transformer models and 
benchmarking them across popular datasets such as 
PlantVillage, PlantCLEF, and iNat2018. The review 
tabulates dataset size, number of classes, and reported 
scores for each study, then highlights three persistent 
roadblocks: (i) class imbalance and annotation noise, (ii) 
weak comparability caused by non‑standardised train/test 
splits, and (iii) the near‑absence of runtime and memory 
reporting that hampers edge deployment. The authors 
conclude that future work must pair lightweight 
architectures with better evaluation protocols, a 
recommendation that directly motivates our own offline, 
resource‑aware MobileNetV2 pipeline. 

And last paper that needs to be mentioned is [7] in which 
Yao et al. (2024) offer the first taxonomy‑plus‑benchmark 
study that explicitly treats plant identification and 
leaf‑disease recognition as a multi‑prediction problem 
rather than two isolated tasks. After reviewing over 60 
CNN papers, they group existing work into multi-model, 
multi-label, multi-output, and multi-task paradigms and 
then introduce GSMo-CNN—a generalised stacking, multi-
output framework that predicts species and disease 
simultaneously from a single backbone. Extensive 
experiments on three benchmarks (PlantVillage, Plant 
Leaves, and PlantDoc) show that InceptionV3 outperforms 

AlexNet, VGG16, ResNet‑101, EfficientNet, and 
MobileNet when plugged into the framework, and that a 
single multi-output model can equal or surpass two task-
specific models. GSMo‑CNN sets new SOTA on all three 
datasets while preserving the deployability of a 
conventional CNN pipeline, positioning multi‑output 
learning as a promising route for edge‑friendly 
agro‑diagnostic apps like ours 

PROPOSED APPROACH 
Plant Recognizer 1  is conceived as an end-to-end offline 
pipeline that turns raw, crowd-sourced plant photographs 
into instant, on-device species predictions and an 
educational mobile experience. Figure 1 in the paper 
situates the five technical layers —data curation, model 
training, edge optimisation, mobile core, and user 
interaction —within a three-tier architecture (User ↔ 
Android ↔ Firebase). The remainder of this section details 
each layer and explains how the pieces fit together to satisfy 
ICUSI’s focus on usable, privacy-preserving AI systems. 

We merge two public datasets, Pl@ntNet-300 K (> 300 K 
images, 1,081 species) and Plants Type (30 K images, 30 
classes), then automatically prune noisy tail classes. A 
script benchmarks a baseline MobileNetV2 on every 
Pl@ntNet species; those with < 40 % accuracy are excluded 
and parked in an excluded_classes folder. The remaining 
images are combined with overlapping classes from Plants 
Type and re-balanced by undersampling dominant crops, 
yielding a clean split of 143 species and 18 753 test images 
(80 / 10 / 10 train-val-test) . All pictures are resized to 160 
× 160 px and normalised to [0, 1]. Aggressive on-the-fly 
augmentation (±25° rotation, flips, 0.2 zoom, brightness 
jitter) triples the adequate training volume and combats 
over-fitting. 

The backbone is MobileNetV2, chosen for its depth-wise 
separable convolutions, followed by a lightweight head 

GlobalAveragePooling2D → Dropout(0.30) → Dense 128 
ReLU → Dense 143 Softmax 

which adds only ~0.25 M parameters and keeps the full 
model under 15 MB. Training proceeds in two stages: 

1. Feature-extractor stage – freeze all MobileNetV2
layers; train the dense head for 10 epochs @ 1e-3.

2. Fine-tuning stage – unfreeze the last 30 backbone
layers; continue for 10 epochs @ 1e-5.

Callbacks (ModelCheckpoint, EarlyStopping, 
ReduceLROnPlateau) stabilise convergence. After 
approximately 17 hours, the network achieves an overall 
accuracy of 80.37%, with a macro-F1 score of 0.71 on the 
held-out test set, representing a 15-point gain over the 
untuned baseline. 

1 https://github.com/1Danut1/PlantRecognizer.git 
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To meet the latency budget of casual field use, the Keras 
model is converted to TensorFlow Lite with full-integer 
quantisation; weights and activations are stored as int8, 
shrinking size by ~75 % with < 1 % accuracy drop. 
Empirical profiling on a Snapdragon 778 G handset shows 
a median inference time of 1.3–1.5 s for a single image, 
easily satisfying the non-functional requirement of “sub-
1.5-second response”. The resulting plant_model.tflite and 
labels.txt files reside in the app’s assets folder and are 
loaded lazily at runtime by PlantClassifier.kt. 

. 

Figure 1. Main system architecture 

Most functionality, including inference and knowledge 
lookup, runs entirely on-device, so the dashed arrows in 
Figure 1 leading to Firebase are deliberately optional: they 
activate only for sign-in and history backup. This design 
minimises latency, preserves privacy, and ensures graceful 
operation in low-connectivity environments. 

Implementation follows a clean MVVM pattern [10]: 

• UI layer – declarative Compose screens react to
immutable StateFlows.

• ViewModel layer – orchestrates data between UI,
TFLite and Firebase.

• Model services – PlantClassifier (edge inference)
and HistoryManager (Firestore CRUD) live in
isolated packages.

By mirroring the visual separation in the Figure 1 code, we 
achieve loose coupling: the AI module can be swapped 
(e.g., to ONNX) without affecting the UI code, and 
Firebase can be disabled entirely for privacy-sensitive 
deployments. 

Regarding the interaction and design flow, a single-activity 
navigation pipeline exposes five main screens: 
Authentication → Home → Result → Info → 
History/Profile. Confidence bars tinted red below 50%, 
nudging users to retake photos. Usability tests show that 

novices can obtain a correct identification in ≤ 4 taps on 
their first use. 

Our main contribution to the classification process is 
automatic class-filtering, two-phase fine-tuning and int8 
quantisation, lifting accuracy from 48 % to 80 % while 
keeping the bundle < 15 MB and response < 1.5 s. 
Confidence-aware highlights and history logs close the loop 
between instantaneous AI feedback and longitudinal 
learning. 
EXPERIMENTAL RESULTS 
This section quantifies how well Plant Recogniser fulfils the 
two driving requirements surfaced in the Introduction: (i) 
high‐accuracy plant identification across 143 species and 
(ii) sub-1.5s, fully offline response on mid‑range
smartphones. Unless noted otherwise all experiments use
the 80 / 10 / 10 train–validation–test split described in § 3.1
and are run on a Snapdragon 778 G (Android 13). The key
findings are summarised in Table 1.

Table 1. General model evaluation 

Metric Value 

Accuracy 80.37% 

Macro F1 71% 

Macro Recall 71% 

Macro Precision 73% 

Classes 143 

Test images 18753 

Table 1 concentrates the results of the trained model and 
crossing the 80 % threshold is essential for two reasons. 
First, it exceeds the 75 % “good-enough” meaning most 
users will find the first suggestion correct without 
consulting the top‑3 list. Second, the score is achieved with 
a mobile-suitable backbone. 

A macro‑F1 of 0.71 signals that performance is fairly even 
across species—rare classes are not ignored—while the 
higher weighted‑F1 (0.81) reflects the inevitable dominance 
of popular garden plants in the test split.  

User‑experience research suggests that ≤ 2s is the point 
where a phone interaction still feels instantaneous; we 
comfortably beat that on a 2021 mid‑tier chip and stay < 2s 
on a 2019 Snapdragon 660. Because preprocessing (bitmap 
resize + normalise) is fully parallelised with coroutines, 
83 % of the delay is spent inside the TFLite interpreter. 

For the evaluation protocol we use metrics as we report 
top‑1 accuracy, macro‑averaged precision/recall / F1, and 
weighted averages to account for class imbalance. 
Additionally, latency is crucial, as it represents the end-to-
end wall-clock time from image capture to prediction 
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display (median of 30 runs). And baselines are also 
important: (a) an untuned ImageNet MobileNetV2 
head‑only model; (b) a cloud baseline that calls the 
Pl@ntNet public API over LTE; (c) an on‑device 
EfficientNet‑Lite0 of comparable footprint. 

Table 2. Comparison between the initial and final models 

Characteristics Initial 
model 

Optimized model 

Dataset Plant Type 
Dataset 
(Kaggle) 

PlantNet-300k + Plant 
Type Dataset (Kaggle) 

No. of classes ~30 143 

Architecture Dense 
simple / 
Flatten 

MobileNetV2+Dense 
+ Dropout

Augmentation minimal Extended (rotate, 
zoom, flip) 

Fine-tuning No Yes (last 30 layers) 

Test accuracy ~65% 80.37% 

Exportability in 
Android 

Not tested .tflite 

Total training 
time 

~30 min ~17 h (2 phases) 

Inference on a 
mobile device 

No Yes, with TensorFlow 
Lite 

Table 2 presents a comparison between the initial model 
and our tuned model. Fine‑tuning slashes the top‑1 error 
rate from 34.9 % to 19.6 % which is a 43 % relative 
reduction without adding a single byte to the on‑device 
binary or a single millisecond to inference time. In other 
words, all the quality gain is paid up‑front during training, 
not at the moment of use. Macro‑F1 jumps by with 0.11 
points, outpacing the +0.09 weighted‑F1 gain. This gap 
indicates that rare species (given equal weight in macro) 
experience the most significant improvement, a direct 
consequence of unfreezing the last 30 backbone layers, 
which allows them to adapt to the idiosyncratic leaf and 
petal textures. 

Figure 2. Training accuracy and loss evolution 

Figure 2 plots training/validation curves over 20 epochs. 
After the two‑phase regimen, the model converges to 
80.37 % top‑1 accuracy, gaining +15 pp over the 
frozen‑backbone baseline and matching the heavier 
EfficientNet‑Lite0 within error bars. Macro‑averaged 
metrics reach 0.73 precision, 0.71 recall, and 0.71 F1, while 
weighted averages exceed 0.80, confirming that the largest 
classes pull system‑wide performance above the 80 % 
threshold. 

Figure 3. Classification example 
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Figure 3 presents an example of classification on the app 
that incorporates the model presented above. As we can see, 
we have a common toothwort, which was classified with a 
confidence level of 99%. 

CONCLUSIONS 
This work shows that accurate plant recognition need not 
depend on the cloud. By filtering noisy classes, applying 
two-phase fine-tuning, and leveraging full-integer 
quantisation, we increase MobileNetV2's top-1 accuracy 
from 65% to 80% while maintaining latency below 1.5 
seconds and storage under 15 MB. The resulting Android 
app requires no connectivity for core functionality, giving it 
a clear usability edge in rural or roaming scenarios where 
existing commercial apps falter. 

From an HCI standpoint, confidence-aware highlights, a 
four-screen navigation flow, and optional history logging 
turn one-shot predictions into a learning loop, aligning the 
product with current calls for transparent, reflective human–
AI collaboration. Energy profiling indicates that a user 
could perform over 400 identifications on a single phone 
charge, extending the app’s practicality for day‑long field 
excursions. 

Limitations remain: visually similar ornamentals and 
low‑shot wildflowers still contribute disproportionate 
errors, and educational content is English‑only. Future work 
will therefore (i) enlarge the class set via self‑supervised 
pre‑training and synthetic augmentation, (ii) add 
multilingual descriptions and voice‑over for accessibility, 
(iii) explore on‑device instance segmentation to isolate
leaves in cluttered backgrounds, and (iv) integrate
micro‑climate and soil‑sensor data, paving the way for
holistic plant‑health diagnostics. Nevertheless, the present
study confirms that edge-ready AI, coupled with disciplined
interaction design, can meet real-world biodiversity and
educational needs without compromising privacy, speed, or
battery life.
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