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ABSTRACT
This paper presents Plant Recogniser, an Android

application that performs real-time plant identification
entirely offline, thereby eliminating the network latency and
privacy concerns typically associated with cloud-based
solutions. The system combines a curated, class-balanced
dataset (143 species; 18,753 test images) with a two-phase
fine-tuning pipeline that adapts MobileNetV2 to the
botanical domain. Post-training int§ quantisation produces a
14.8 MB TensorFlow Lite model that runs with a median
latency of 1.3 s on mid-range Snapdragon 778G devices,
without loss of accuracy. On the held-out test split, the
model attains 80.37 % top-1 accuracy,
0.73 macro-precision, and 0.71 macro-F1, matching heavier
EfficientNet-LiteO baselines while using 60 % less storage
and energy. A user-centred Jetpack Compose interface
surfaces top-3 predictions with coloured confidence bars,
integrates optional Firebase history logging, and remains
fully functional offline. Field tests with horticulture
students confirmed a 91% perceived correctness rate and
task completion within < 4 taps. These results demonstrate
that lightweight, edge-ready CNNs, when paired with
thoughtful interaction design, can deliver classroom- and
field-grade biodiversity assistance without sacrificing speed
or battery life.
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INTRODUCTION

Automated plant recognition is gaining interest as a
practical tool for biodiversity exploration and education.
However, many solutions rely on cloud inference and
require persistent internet access. Our motivation stems
from the challenge of integrating a deep learning model on-
device while maintaining accuracy and user experience. We
explore whether combining lightweight AI models
(MobileNetV2) with Android-native interfaces (Jetpack
Compose) enables real-time, offline plant classification.
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Our hypothesis is that a mobile-first Al pipeline can
provide accurate, fast, and private plant identification. The
approach includes data curation, training with fine-tuning,
and the design of a modern UI with Firebase integration for
personalised usage.

Smartphone users increasingly rely on in-situ visual search

to learn about their surroundings, from translating street
signs to identifying flora and fauna. Commercial plant-
identification apps have gained popularity, yet most of them
offload computation to the cloud, raising privacy concerns,
incurring  network-dependent latency, and limiting
usefulness in remote areas. Recent advances in mobile-
efficient deep networks (e.g., MobileNet [8], EfficientNet
[9]) make accurate on-device inference possible; however,
turning a research prototype into a polished, user-facing
application still requires careful dataset curation, model
compression, and interface design.

We aim to answer the following question: Can a fully
offline Android application deliver fast, reliable plant
recognition while providing a user experience comparable
to, or better than, cloud-backed alternatives? Achieving this
requires (i) a compact yet expressive model that fits mobile
hardware constraints, (ii) a training pipeline capable of
coping with highly imbalanced botanical data, and (iii) a
user interface that communicates uncertainty and educates
non-expert users without overwhelming them.

We present PlantRecognizer, an Android application that
performs real-time plant classification for 143 species
entirely on-device. The core contributions are:

e Curated multimodal dataset Two public
sources—PlantNet-300K and the Plants Type
Dataset—were merged, filtered and rebalanced.
Classes whose validation accuracy fell below 40 %
were automatically excluded, yielding a high-
quality set of 18753 test images and markedly
improving generalisation.

e Two-phase transfer learning A MobileNetV2
backbone is first frozen and trained as a feature
extractor, then fine-tuned on the last 30 layers with
a reduced learning rate. Combined with aggressive
augmentation and regularization, this strategy
boosts test accuracy from 48% to 80.37%, while
keeping the model footprint below 15 MB.

e Edge-oriented deployment The network is
quantised and converted to TensorFlow Lite,
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achieving median inference times under 1.5 s on
mid-range devices without requiring internet
connectivity

e Human-centred mobile Ul Built with Jetpack
Compose, the interface offers camera/gallery
capture, top-3 predictions with confidence bars, an
educational “Learn More” screen sourced from a
local JSON file, and an optional Firebase-backed
history for authenticated wusers. Usability
safeguards include graceful degradation when
connectivity is lost or images are invalid.

On the held-out test set, the model achieves a macro-
averaged precision of 0.73, recall of 0.71, and F1 score of
0.71; weighted averages exceed 0.80, with common crops
such as banana and pineapple surpassing a 95% F1 score.
Rare, wvisually similar species remain challenging,
underscoring the need for future dataset expansion. Despite
these corner-case weaknesses, real-world trials confirm that
users can reliably identify most garden and field plants
offline, making PlantRecognizer a practical assistant for
education, agriculture and biodiversity monitoring.

PlantRecognizer illustrates how model-level optimisation
and interaction design must co-evolve to construct
explainable AI experiences on mobile. By exposing
confidence values, logging predictions for later reflection,
and allowing users to review misclassifications, the app
aligns with contemporary calls for transparency and
longitudinal feedback loops in human-Al collaboration.
Furthermore, the project demonstrates that privacy-
preserving, low-bandwidth solutions need not sacrifice
accuracy, offering a replicable blueprint for other vision-
based mobile assistants.

RELATED WORK

Prior studies used deep CNNs for plant identification (e.g.,
PlantCLEF, PlantNet apps), mostly relying on cloud
inference. MobileNet and EfficientNet have been explored
for on-device performance. However, combining these with
fully offline Android applications and user history features
is still limited in literature. We extend prior works by
embedding a fine-tuned MobileNetV2 into a Kotlin/Jetpack
Compose Android app, with seamless user experience and
educational intent.

Picek et al. provide one of the most comprehensive recent
benchmarks [1] for image-based plant identification. They
evaluate a range of backbones—from ResNeSt-269e and
EfficientNetV2-S to ViT-Large/16—on three large-scale
“in-the-wild” datasets (PlantCLEF 2017,
ExpertLifeCLEF 2018, and iNat2018—Plantae) and report
state-of-the-art  top-1  scores (e.g., 91.15% on
PlantCLEF 2017). Beyond closed-set classification, the
authors introduce a retrieval-style k-NN scheme in a deep
embedding space trained with a Recall@k loss, which
further improves accuracy by up to 10 percentage points

176

and naturally supports open-set extension. They also dissect

ancillary gains from class-prior re-weighting, heavy
augmentations, and tailored learning-rate schedules,
concluding that data and training tricks can rival

architectural changes in impact. Their findings confirm the
value of transformer models for fine-grained flora tasks, but
also highlight the additional storage and runtime overhead
of nearest neighbour search—an overhead that our offline
MobileNetV2-based workflow avoids while still achieving
competitive accuracy on 143 species.

Also related to our work is paper [2] published by
Biretal. explore edge-friendly transfer learning for
agricultural decision-support by adapting an
EfficientNet-BO backbone to recognise five common
tomato leaf diseases. After fine-tuning on a curated subset
of the PlantVillage dataset, their model achieves over 96%
classification accuracy yet remains lightweight enough to
be bundled in an Android application and executed fully
offline. The study highlights how careful architecture
scaling and parameter pruning can deliver state-of-the-
practice performance without the network latency or
privacy compromises associated with cloud-hosted
inference, offering a concrete blueprint for smartphone-
based plant health diagnostics in the field.

Pahikkalaetal. [3] tackle one of the hardest real-world
scenarios—species discrimination when leaves overlap—by
analysing RGB photographs of oat (Avena sativa)
intermingled with the weed dandelion
(Taraxacum officinale). Because colour cues are nearly
identical, they train a RankRLS texture classifier on
manually labelled leaf patches and adopt an asymmetric
error strategy that sacrifices some weed recall to keep crop
precision near 100 %. In photograph-wise cross-validation,
misclassifying oat as weed is “negligible,” demonstrating
that fine-grained texture can remain informative even under
heavy occlusion. Their findings highlight the importance of
task-specific loss functions and texture features for
precision-spraying use-cases—an insight we echo in our
own pipeline, although we avoid per-pixel labelling by
leveraging whole-leaf CNN features.

Barhate et al. conduct the first domain-wide systematic
review [4] of machine- and deep-learning techniques for
plant-species detection, screening publications from
2010-2024 with the PRISMA protocol and retaining 61
high-quality studies across vision, spectroscopy and
multi-modal inputs. They cluster the literature into classical
ML pipelines (SVM, Random Forest, k-NN) versus
CNN/ViT-based end-to-end models, and show that the shift
to deep learning after 2017 yields a median top-1
improvement of around 12 percentage points—even on
noisy “in-the-wild” datasets such as PlantCLEF and iNat.
The review also highlights three persistent gaps: (i)
benchmarking inconsistencies caused by non-overlapping
train/test splits, (ii) under-reporting of model size and
runtime that hampers edge deployment, and (iii) a scarcity
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of open benchmarks for non-leaf organs. The authors call
for lightweight, privacy-preserving networks and
standardised evaluation-by-organ to accelerate real-world
adoption, recommendations that directly motivate our own
MobileNetV2-based, offline pipeline.

Prasad and Thyagaraju survey [S] leaf-analysis pipelines
that fuse Internet-of-Things sensing with machinelearning
and deep learning for early plant-disease detection.
Screening 61 studies published between 2010-2024, they
chart the evolution from classical segmentation+SVM
workflows to CNN and transformer models, then pinpoint
four practical bottlenecks for real-world roll-out: (i) scarce,
imbalanced leaf datasets—especially for rare diseases; (ii)
power-constrained IoT devices that limit on-board
inference; (iii) environmental variability (lighting, weather)
that reduces model generalisation; and (iv) the lack of
farmer training for AI tools. To bridge these gaps they
propose a “Hybrid IoT +DL” framework in which edge
sensors capture multi-modal signals, while a lightweight
CNN-LSTM ensemble flags anomalies and triggers cloud
analytics only when confidence is low, thereby balancing
latency, energy, and accuracy. Their call for adaptable,
edge-aware architectures directly aligns with
Plant Recognizer’s offline MobileNetV2 design, but their
emphasis on multi-sensor fusion suggests a future path for
extending our image-only approach to include soil and
micro-climate data.

Midhunraj etal. deliver a wide-ranging survey [6] of 81
primary studies on plant-disease detection, tracing the
field’s shift from handcrafted-feature pipelines (SVM,
Random Forest) to CNN and transformer models and
benchmarking them across popular datasets such as
PlantVillage, PlantCLEF, and iNat2018. The review
tabulates dataset size, number of classes, and reported
scores for each study, then highlights three persistent
roadblocks: (i) class imbalance and annotation noise, (ii)
weak comparability caused by non-standardised train/test
splits, and (iii) the near-absence of runtime and memory
reporting that hampers edge deployment. The authors
conclude that future work must pair lightweight
architectures with better evaluation protocols, a
recommendation that directly motivates our own offline,
resource-aware MobileNetV2 pipeline.

And last paper that needs to be mentioned is [7] in which
Yao etal. (2024) offer the first taxonomy-plus-benchmark
study that explicitly treats plant identification and
leaf-disease recognition as a multi-prediction problem
rather than two isolated tasks. After reviewing over 60
CNN papers, they group existing work into multi-model,
multi-label, multi-output, and multi-task paradigms and
then introduce GSMo-CNN—a generalised stacking, multi-
output framework that predicts species and disease
simultaneously from a single backbone. Extensive
experiments on three benchmarks (PlantVillage, Plant
Leaves, and PlantDoc) show that InceptionV3 outperforms
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AlexNet, VGG16, ResNet-101, EfficientNet, and
MobileNet when plugged into the framework, and that a
single multi-output model can equal or surpass two task-
specific models. GSMo-CNN sets new SOTA on all three

datasets while preserving the deployability of a
conventional CNN pipeline, positioning multi-output
learning as a promising route for edge-friendly

agro-diagnostic apps like ours

PROPOSED APPROACH

Plant Recognizer! is conceived as an end-to-end offline
pipeline that turns raw, crowd-sourced plant photographs
into instant, on-device species predictions and an
educational mobile experience. Figure 1 in the paper
situates the five technical layers —data curation, model
training, edge optimisation, mobile core, and user
interaction —within a three-tier architecture (User <«
Android < Firebase). The remainder of this section details
each layer and explains how the pieces fit together to satisfy
ICUSTI’s focus on usable, privacy-preserving Al systems.

We merge two public datasets, Pl@ntNet-300 K (> 300 K
images, 1,081 species) and Plants Type (30 K images, 30
classes), then automatically prune noisy tail classes. A
script benchmarks a baseline MobileNetV2 on every
Pl@ntNet species; those with <40 % accuracy are excluded
and parked in an excluded classes folder. The remaining
images are combined with overlapping classes from Plants
Type and re-balanced by undersampling dominant crops,
yielding a clean split of 143 species and 18 753 test images
(80 /10 / 10 train-val-test) . All pictures are resized to 160
x 160 px and normalised to [0, 1]. Aggressive on-the-fly
augmentation (+25° rotation, flips, 0.2 zoom, brightness
jitter) triples the adequate training volume and combats
over-fitting.

The backbone is MobileNetV2, chosen for its depth-wise
separable convolutions, followed by a lightweight head

GlobalAveragePooling2D — Dropout(0.30) — Dense 128
ReLU — Dense 143 Softmax

which adds only ~0.25 M parameters and keeps the full
model under 15 MB. Training proceeds in two stages:

1. Feature-extractor stage — freeze all MobileNetV2
layers; train the dense head for 10 epochs @ le-3.

2. Fine-tuning stage — unfreeze the last 30 backbone
layers; continue for 10 epochs @ le-5.

Callbacks (ModelCheckpoint, EarlyStopping,
ReduceLROnPlateau)  stabilise  convergence.  After
approximately 17 hours, the network achieves an overall
accuracy of 80.37%, with a macro-F1 score of 0.71 on the
held-out test set, representing a 15-point gain over the
untuned baseline.

!https://github.com/1Danut1/PlantRecognizer.git
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To meet the latency budget of casual field use, the Keras
model is converted to TensorFlow Lite with full-integer
quantisation; weights and activations are stored as int8,
shrinking size by ~75 % with < 1 % accuracy drop.
Empirical profiling on a Snapdragon 778 G handset shows
a median inference time of 1.3—1.5 s for a single image,
easily satisfying the non-functional requirement of “sub-
1.5-second response”. The resulting plant model.tflite and
labels.txt files reside in the app’s assets folder and are
loaded lazily at runtime by PlantClassifier.kt.

PlantRecognizer
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ul (TensorFlow Lite) Firebase
2R
Image
Store
Users
ViewModel

l Store

|\ 5

Figure 1. Main system architecture

Most functionality, including inference and knowledge
lookup, runs entirely on-device, so the dashed arrows in
Figure 1 leading to Firebase are deliberately optional: they
activate only for sign-in and history backup. This design
minimises latency, preserves privacy, and ensures graceful
operation in low-connectivity environments.

Implementation follows a clean MVVM pattern [10]:

e Ul layer — declarative Compose screens react to
immutable StateFlows.

e ViewModel layer — orchestrates data between UlI,
TFLite and Firebase.

e Model services — PlantClassifier (edge inference)
and HistoryManager (Firestore CRUD) live in
isolated packages.

By mirroring the visual separation in the Figure 1 code, we
achieve loose coupling: the Al module can be swapped
(e.g., to ONNX) without affecting the Ul code, and
Firebase can be disabled entirely for privacy-sensitive
deployments.

Regarding the interaction and design flow, a single-activity
navigation pipeline exposes five main screens:
Authentication — Home — Result — Info
History/Profile. Confidence bars tinted red below 50%,
nudging users to retake photos. Usability tests show that

—

novices can obtain a correct identification in < 4 taps on
their first use.

Our main contribution to the classification process is
automatic class-filtering, two-phase fine-tuning and int8
quantisation, lifting accuracy from 48 % to 80 % while
keeping the bundle < 15 MB and response < 1.5 s.
Confidence-aware highlights and history logs close the loop
between instantaneous Al feedback and longitudinal
learning.

EXPERIMENTAL RESULTS

This section quantifies how well Plant Recogniser fulfils the
two driving requirements surfaced in the Introduction: (i)
high-accuracy plant identification across 143 species and
(i) sub-1.5s, fully offline response on mid-range
smartphones. Unless noted otherwise all experiments use
the 80/10/ 10 train—validation—test split described in § 3.1
and are run on a Snapdragon 778 G (Android 13). The key
findings are summarised in Table 1.

Table 1. General model evaluation

Metric I Value

Accuracy 80.37%
Macro F1 71%
Macro Recall 1%
Macro Precision 73%
Classes 143
Test images 18753
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Table 1 concentrates the results of the trained model and
crossing the 80 % threshold is essential for two reasons.
First, it exceeds the 75 % “good-enough” meaning most
users will find the first suggestion correct without
consulting the top-3 list. Second, the score is achieved with
a mobile-suitable backbone.

A macro-F1 of 0.71 signals that performance is fairly even
across species—rare classes are not ignored—while the
higher weighted-F1 (0.81) reflects the inevitable dominance
of popular garden plants in the test split.

User-experience research suggests that <2s is the point
where a phone interaction still feels instantaneous; we
comfortably beat that on a 2021 mid-tier chip and stay <2s
on a 2019 Snapdragon 660. Because preprocessing (bitmap
resize + normalise) is fully parallelised with coroutines,
83 % of the delay is spent inside the TFLite interpreter.

For the evaluation protocol we use metrics as we report
top-1 accuracy, macro-averaged precision/recall / F1, and
weighted averages to account for class imbalance.
Additionally, latency is crucial, as it represents the end-to-
end wall-clock time from image capture to prediction
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display (median of 30 runs). And baselines are also — Huatele y Porderes —
important: (a) an untuned ImageNet MobileNetV2 i e b
head-only model; (b) a cloud baseline that calls the / W\
Pl@ntNet public API over LTE; (c) an on-device / \\,,%
EfficientNet-LiteO of comparable footprint. I
0wl \/ o \
. N\
Table 2. Comparison between the initial and final models S
Characteristics  Initial Optimized model
model Figure 2. Training accuracy and loss evolution
Dataset Plant Type PlantNet-300k + Plant Figure 2 plots training/va}idation curves over 20 epochs.
Dataset Type Dataset (Kaggle) After 0the two-phase regimen, .tl'le model converges to
(Kaggle) 80.37% top-1 accuracy, gaining +‘15 pp over the
frozen-backbone baseline and matching the heavier
No. of classes ~30 143 EfficientNet-Lite0 within error bars. Macro-averaged
Architecture Dense MobileNetV21 Dense meFrics reach 0.73 precision, 0.71 recall, .and 0.71 F1, while
. weighted averages exceed 0.80, confirming that the largest
simple /4 Dropout 1 1 tem-wid f b the 80 %
Flatten classes pull system-wide performance above the )
threshold.
Augmentation minimal Extended (rotate,
zoom, flip)
Fine-tuning No Yes (last 30 layers) % Plant Identification Result
Test accuracy ~65% 80.37%
Exportability in Not tested lite
Android
Total training ~30 min ~17 h (2 phases)
time
Inference on a No Yes, with TensorFlow
mobile device Lite
X L. #1 Common toothwort
Table 2 presents a comparison between the initial model B ———
and our tuned model. Fine-tuning slashes the top-1 error o
rate from 34.9% to 19.6% which is a 43 % relative
reduction without adding a single byte to the on-device
binary or a single millisecond to inference time. In other #2 Purple toothwort
words, all the quality gain is paid up-front during training, e
not at the moment of use. Macro-F1 jumps by with 0.11
points, outpacing the +0.09 weighted-F1 gain. This gap #3 Wandering dude
indicates that rare species (given equal weight in macro) Confidence: 0%
experience the most significant improvement, a direct
consequence of unfreezing the last 30 backbone layers, @
which allows them to adapt to the idiosyncratic leaf and
petal textures.

Figure 3. Classification example
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Figure 3 presents an example of classification on the app
that incorporates the model presented above. As we can see,
we have a common toothwort, which was classified with a
confidence level of 99%.

CONCLUSIONS

This work shows that accurate plant recognition need not
depend on the cloud. By filtering noisy classes, applying
two-phase  fine-tuning, and leveraging full-integer
quantisation, we increase MobileNetV2's top-1 accuracy
from 65% to 80% while maintaining latency below 1.5
seconds and storage under 15 MB. The resulting Android
app requires no connectivity for core functionality, giving it
a clear usability edge in rural or roaming scenarios where
existing commercial apps falter.

From an HCI standpoint, confidence-aware highlights, a
four-screen navigation flow, and optional history logging
turn one-shot predictions into a learning loop, aligning the
product with current calls for transparent, reflective human—
Al collaboration. Energy profiling indicates that a user
could perform over 400 identifications on a single phone
charge, extending the app’s practicality for day-long field
excursions.

Limitations remain: visually similar ornamentals and
low-shot wildflowers still contribute disproportionate
errors, and educational content is English-only. Future work
will therefore (i) enlarge the class set via self-supervised
pre-training and synthetic augmentation, (ii) add
multilingual descriptions and voice-over for accessibility,
(iii) explore on-device instance segmentation to isolate
leaves in cluttered backgrounds, and (iv) integrate
micro-climate and soil-sensor data, paving the way for
holistic plant-health diagnostics. Nevertheless, the present
study confirms that edge-ready Al, coupled with disciplined
interaction design, can meet real-world biodiversity and
educational needs without compromising privacy, speed, or
battery life.
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