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ABSTRACT

Pedestrians account for a disproportionate share of urban
traffic casualties, most of which occur at speeds below 50
km/h, where timely driver warning could avert impact. We
present a low-cost, camera-only Advanced Driver-
Assistance System that detects, tracks, and range-estimates
pedestrians in real time on commodity hardware. The core
detector is YOLO!11n' (= 4 M parameters) fine-tuned on a
50-50 day-night subset of the EuroCity Persons dataset? (4
650 day and 4,222-night training images), eliminating the
daylight bias typical of existing models. The system sustains
a latency of 33 ms per 640 x 480 frame (<1 GB RAM). A
ByteTrack module maintains identities across frames, and a
pin-hole projection coupled with a time-to-collision filter
triggers visual alerts when braking distance is insufficient.
Unlike prior work that assumes discrete GPUs, multispectral
sensors or daylight scenes, our pipeline delivers
illumination-robust detection, constant-frame-rate inference
and modular open-source implementation on hardware
already present in budget vehicles. The results demonstrate
that adequate pedestrian warning can be achieved without
specialised sensors or expensive accelerometers, paving the
way for wider deployment in cost-sensitive markets and
retrofit scenarios.
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INTRODUCTION

Road traffic collisions remain a leading cause of accidental
death worldwide, and the burden is felt most acutely by
pedestrians, the least protected road users. Whereas vehicle
occupants benefit from crumple zones, airbags, and seat
belts, a pedestrian struck even at moderate speed faces a high
risk of severe injury or fatality. Recent analyses of advanced-
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Paul-Stefan Popescu

University of Craiova
Craiova,
stefan.popescul@edu.ucv.ro

181

Marian Cristian Mihaescu

University of Craiova
Craiova, Romania
cristian.mihaescu@edu.ucv.ro

Romania

driver-assistance systems (ADAS) underline the scale of the
preventable problem: if just the six most common ADAS
functions were deployed fleet-wide, overall crash frequency
could fall by almost a quarter, with automatic emergency
braking alone reducing pedestrian impacts by 28 % in the
United Kingdom, or roughly 19,000 avoided crashes each
year. These statistics frame the overarching motivation of
this work, augmenting human drivers with computer-vision
capabilities that do not tire, blink, or become distracted.

Pedestrian detection by on-board cameras is a cornerstone of
such capabilities. Yet, it remains challenging in the very
scenarios where human vision struggles most: low
illumination, glare, and cluttered urban backgrounds.
Traditional benchmark datasets, such as Caltech? or KITTI?,
are dominated by daytime footage, so detectors trained on
them often suffer from a daylight bias and degrade sharply
after dusk. To address this gap, the EuroCity Persons (ECP)
dataset provides more than 200,000 annotated pedestrians
captured across 31 European cities, balanced across seasons,
weather conditions, and—crucially—day and nighttime
scenes. Its high-resolution images preserve the fine detail
needed for recognising distant or partially occluded
pedestrians in complex traffic. Leveraging ECP therefore,
promises not only higher accuracy but also greater
robustness to illumination changes.

On the algorithmic side, one-stage detectors of the You Only
Look Once (YOLO) family have become de facto standards
for high-frame-rate perception. By regressing bounding
boxes and class scores in a single forward pass, YOLO
avoids the multi-stage region-proposal bottleneck of earlier
R-CNN variants and consistently achieves real-time
throughput on commodity GPUs. Lightweight iterations—
most recently YOLO11n—compress model depth and width
while retaining the decoupled head architecture that
improves small-object recall, making them attractive for
edge devices such as in-vehicle integrated graphics
processors. Nevertheless, a generic model trained on the MS-
COCO benchmark is sub-optimal for monoclass pedestrian
detection and cannot exploit ECP’s night-time diversity.

This paper presents a streamlined pipeline that bridges that
gap. First, we curate a balanced ECP subset containing 4 650

3 https://data.caltech.edu/records/f6rph-90m20

4 https://www.cvlibs.net/datasets/kitti/
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daytime and 4 222 night-time images for training and an
equal 770 (for day) and 770 (for night) for validation,
maintaining a near-50/50 illumination ratio to mitigate bias.
Second, we fine-tune YOLO11n on this subset, preserving
the small model footprint (=<4 M parameters). Third, we
export the network to ONNX and run inference via
DirectML on an AMD Ryzen iGPU, achieving =30 ms per
640 x 480 frame while consuming <350 MB of system
memory . A simple pin-hole projection estimates pedestrian
range, and a heuristically gated time-to-collision filter
triggers a visual alert in a Tkinter graphical interface,
demonstrating an end-to-end assistive prototype that
operates without dedicated GPU hardware.

RELATED WORK

Pedestrian detection is a relevant task as stated in [1] which
provides a comprehensive survey of deep-learning
approaches to pedestrian detection for autonomous driving,
highlighting three persistent bottlenecks—occlusion,
illumination variation (especially night-time scenes), and the
small-object problem—and reviewing how modern one-
stage detectors (YOLOv3/v4), two-stage models (Faster R-
CNN), and lightweight backbones (MobileNet-SSD) attempt
to mitigate them. The authors catalogue more than 40 recent
studies, compare performance on canonical benchmarks
(Caltech, CityPersons, KITTI, NightOwls®) and emphasise
that data imbalance toward daylight imagery remains a root
cause of poor nocturnal recall. They further argue that real-
time deployment on embedded hardware is still constrained
by model size and compute budgets, noting a trade-off
between speed-oriented “nano” variants and the accuracy
gains brought by attention or multi-spectral fusion modules.
Finally, the survey calls for curated day-/night-balanced
datasets and task-specific compression techniques as key
directions for future research. Our work answers both of
these open recommendations: we construct a 50/50 day-night
subset of EuroCityPersons to tackle the illumination bias,
and we fine-tune the 4 M-parameter YOLO1 1n architecture,
achieving state-of-the-art on that subset while sustaining 30
ms inference on an integrated GPU thus extending the lines
of inquiry pinpointed by authors of [1].

Liu et al. (2024) [2] tackle the twin obstacles of scale
variance and crowding at signalised intersections by
introducing YOLOV8-CB, a compact derivative of YOLO-
v8n that layers three architectural tweaks: a lightweight
Cascade-Fusion Network (CFNet) to enrich deep-shallow
feature interplay, a CBAM attention module to highlight
salient spatial-channel cues, and a bidirectional BIFPN path
for weighted multi-resolution fusion. Tested on dense-traffic
footage, the model lifts detection accuracy by +2.4 points
while trimming parameters (-6.45 %) and FLOPs (-6.74 %),
clocking 10.8 ms per 640 x 640 frame—evidence that
judicious feature re-use can surpass the vanilla YOLO-v8n
speed/accuracy frontier without ballooning compute. The

3 https://www.nightowls-dataset.org
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authors nonetheless leave the illumination-robustness
question open, as their experiments focus on daylight scenes;
moreover, the reliance on GPU-class hardware contrasts with
our DirectML-enabled iGPU deployment.

Raza et al. (2023) [3] confront the nighttime surveillance
setting with a classical machine-learning pipeline that
forgoes deep nets altogether: after background subtraction on
infrared (IR) video, a random forest classifier segments
pedestrian silhouettes, multiple template matching locates
candidate bounding boxes, and a particle filter data
association scheme maintains tracks across frames. On their
proprietary IR dataset the authors report 93 % segmentation
accuracy, 90 % detection accuracy, and 81 % multi-target
tracking accuracy, crediting the combination of handcrafted
features and pixel-level verification for robustness under
poor illumination. While the work demonstrates that low-
cost IR sensors can mitigate the lighting issue, its reliance on
template matching limits scalability to crowded scenes, and
the absence of GPU-friendly deep learning precludes real-
time deployment on embedded ADAS hardware. Moreover,
because the camera is static and the field of view restricted
to fixed surveillance corridors, the method does not address
ego-motion, range estimation, or the wide range of
pedestrian poses encountered in forward-looking automotive
footage—gaps our balanced EuroCityPersons training
protocol and YOLO1 1n optimisation explicitly tackle.

In paper [4], Li et al. (2023) pursue the speed-accuracy
sweet-spot by re-engineering YOLOvSs into YOLOvS5s-
GAM/Ghost, a 4.9 M-parameter variant that swaps standard
convolutions for Ghost/GhostC3 blocks, injects a Global
Attention Mechanism (GAM) between neck and head, and
replaces the GIoU loss with a —ClIoU term better aligned with
bounding-box regression Evaluated on the WiderPerson
benchmark, the design trims 13.2 % FLOPs while nudging
mean average precision upward by +1.0 points, showing that
judicious channel-redundancy pruning and attention
injection can offset the accuracy typically lost to
lightweighting.  Although the authors acknowledge
illumination challenges, their experiments focus exclusively
on daylight RGB data and rely on a discrete GPU for real-
time throughput. Our work complements these gaps by
balancing day- and night-time examples in EuroCityPersons
and demonstrating sub-35 ms inference on an integrated
GPU.

Hsu and Yang (2023) [5] attack the chronic “blurry-CCTV”
corner-case by front-loading the detector with a Multi-scale
Structure-Enhanced Super-Resolution (MsSE-SR) pre-
processor. Using a stationary-wavelet transform, each low-
resolution (LR) frame is split into frequency-specific sub-
images; dedicated branches reconstruct high- and low-
frequency details and then exchange cues through a high-to-
low sub-network information-transfer (H2LSnIT) module,
yielding a sharper, structure-faithful up-scaled image.
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Coupled with a YOLOv4 head, the end-to-end pipeline
significantly improves pedestrian average precision on LR
benchmarks, demonstrating that optical-quality restoration
can be as impactful as detector redesign when cameras are
the bottleneck. However, the study limits itself to daylight
RGB footage and assumes GPU-class compute, leaving
illumination robustness and true edge-device deployment
open—gaps our day/night-balanced EuroCityPersons fine-
tuning and DirectML iGPU runtime explicitly address

Zhang et al. (2024) push pedestrian perception [6] into the
multi-sensor era with MMPedestron, a “generalist”
transformer that ingests any combination of RGB, infrared,
depth, LiDAR or event-camera frames through a single
unified encoder. Two learnable tokens, MAA and MAF,
adaptively fuse modality-aware and modality-agnostic
representations before a shared detection head, letting the
network swap seamlessly between sensor pairs at test time.
To train and benchmark such flexibility they aggregate
existing corpora and introduce MMPD, the first large-scale
multimodal pedestrian dataset, adding a new event-camera
subset (EventPed). Joint training lifts performance to 71.1
AP on COCO-Persons [7] and 72.6 AP on LLVIP, while
remaining 30 x smaller than Internlmage-H on
CrowdHuman—evidence that a single compact backbone
can rival specialist models across modalities. Nevertheless,
the study presumes discrete-GPU resources and does not
dissect illumination bias within the RGB stream; by contrast,
our work zeroes in on a lone, low-cost RGB sensor, balances
day- and night-time footage in EuroCityPersons [9], and
validates real-time inference on an integrated GPU.

Last paper discussed in related work is also a survey [10] as
the first one because Ghari et al. (2024) deliver the first
comprehensive survey devoted exclusively to low-light
pedestrian detection, reviewing more than 150 studies across
classical vision, deep RGB, multispectral fusion, and radar—
vision hybrids. Their meta-analysis exposes three
quantitative gaps: (i) dataset bias—nearly half of all papers
benchmark solely on KAIST, with real-world night-driving
videos used in < 6 % of works; (ii) methodological skew
toward early- or halfway-fusion CNNs that merge visible and
FIR channels, leaving single-sensor RGB solutions under-
explored; and (iii) deployment neglect, as only 9 % of
surveyed methods report latency or energy figures pertinent
to embedded ADAS. The authors conclude that illumination-
balanced datasets and compute-efficient monocular detectors
are required for wider adoption. Our study responds directly:
we craft a 50/50 day-night subset of EuroCityPersons and
fine-tune a 4 M-parameter YOLO11n that clears 30 ms per
640 p frame on an integrated GPU—thereby addressing both
the data-imbalance and edge-inference shortcomings
highlighted by Ghari et al.
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PROPOSED APPROACH
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Figure 1. Dataset preparation

Figure 1 presents the preprocessing of the dataset. Since the
same model would be used for varying light conditions, a
50/50 distribution for day and night images was aimed for.
All night images were extracted, along with 150 day images
per city for the training set and 25 day images per city for the
validation set. This resulted in a training split of 4650 day
images and 4222 night images (52.41% day / 47.59% night),
and a balanced validation split of 770 day images and 770
night images. The training-to-validation ratio achieved was
85.2%/14.8%. The images were also resized to a maximum
resolution of 640 pixels, as the model uses 640x640 as an
input and it also contributes to faster training times. All
labels were converted to .txt YOLO format, and all classes
except pedestrians were removed. The data.yaml file was
also added and the dataset was ready to be used for training.

ONNX model
A Postprocessing

Bounding boxes and
confidence NMS + ByteTrack
L)
Frame annotation,

Bounding boxes
and labels speed and distances
__Sllown output

The fine-tuned model will perform real-time inference using
the ONNX Runtime. This runtime was chosen for its support
of DirectML, a hardware-accelerated DirectX 12 API from
Microsoft, enabling the model’s deployment even on
integrated GPUs commonly found in lower-cost or
embedded devices, thereby increasing system accessibility.

Figure 2. Data flow diagram
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As can be observed in Figure 2, the system aims for a simple
design to facilitate its implementation in a vehicle. For this
reason, it is necessary to approximate the speed at which each
pedestrian approaches the car. For this, each pedestrian will
be tracked from frame to frame using Supervision’s
implementation of ByteTrack. The pinhole camera model
will be employed to ascertain the approximate distance
between the camera and the pedestrian (necessitating the use
of an average height for this calculation). Once these
distances are determined, they can be stored in a vector, and
the approaching speed can be calculated over an average of
5 frames. This speed is derived from the rate at which
distances change between frames, combined with the time
elapsed between those frames, yielding an approximate
speed. Based on this calculated speed and the maximum
braking G-force provided by the user via the application, the
driver can be alerted. This alert is visually conveyed by
turning the bounding boxes red if a pedestrian enters a
critical zone (i.e., too close for the driver to brake in time).

ONNXDetector
P Displays
Initializes A
GUI Output
CameraFeed I Initializes

rovides processed
frames

Provides raw

frames

ApplicationGUI

Uses

FrameProcessor

Figure 3. System architecture diagram

As shown in Figure 3, the architecture of the system adopts
amodular design. The system is built using four components:
the CameraFeed, dedicated to acquiring raw video frames;
the ONNXDetector, which handles hardware-accelerated
pedestrian detection and tracking; the FrameProcessor,
responsible for real-time safety calculations and frame
annotation; and the ApplicationGUI, which functions as both
the user interface and central control hub.

The ApplicationGUI controls the entire system by
initializing the CameraFeed, ONNXDetector, and
FrameProcessor. From there, the CameraFeed continuously
supplies raw frames to the FrameProcessor. The
FrameProcessor then uses the ONNXDetector for object
detection and tracking. It performs crucial safety
calculations, including distance, speed, and required braking
distance, before annotating the frames. Then these processed
frames and various performance metrics are passed to the
ApplicationGUI for them to be displayed. This decoupled
structure facilitates efficient data flow and ensures a clear
division of responsibilities across the modules.

EXPERIMENTAL RESULTS

The EuroCity Persons (ECP) dataset is a valuable resource
for pedestrian detection, especially in autonomous driving
and driver-assistance systems. What makes it special is its
diversity and scale, the dataset includes images from 31 cities
across 12 European countries, captured in all four seasons. It
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contains 40217 daytime images (with 183004 annotated
pedestrians) and 7118 nighttime images (with 35309
annotations), all in high resolution. The dataset also covers
different weather conditions, including both dry and wet.

One limitation is that ECP only includes European data,
meaning models trained on it might not generalize as well to
other regions where infrastructure, or visual conditions
differ. Even so, given its wide variety of European
environments and the sheer number of annotations, ECP
remains a highly relevant benchmark for developing and
testing pedestrian detection systems in real-world European
applications.

Training and Validation Losses
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Figure 4. Training and Validation losses

As can be seen in Figure 4 the training is progressing very
fast in the first 10-15 epochs evidenced by a steep decrease
in all the training and validation loss components. After this
we can observe that the rate of training significantly slows
down. Furthermore, we can observe that the training is
approaching completion and the model is generalizing
effectively because the respective training and validation
loss curves for each component converge and flatten out,
indicating that the model is no longer making significant
improvements and is stable on both seen and unseen data,
without signs of overfitting.

Validation Performance Metrics
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Figure 5. Validation performance metrics

The validation metrics exhibit trends inversely related to the
training and validation losses during the model's learning
process. As can be observed in Figure 5, a noticeable
improvement in the performance metrics is evident during
the initial 10 to 15 epochs. Following this rapid progress, the
rate of improvement significantly slows down, and the
metrics mostly stabilize after epoch 50, suggesting that the
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model is performing at its best under the current training
circumstances.

Additionally, the achieved pedestrian detection mAPgg s.0.95
of 0.40 on the ECP dataset is remarkably close to the
MAPgg 5095 value of 0.395 reported by Ultralytics [8] for
this model on the COCO® dataset. We can also observe that
the mAP values don't start from 0, which is likely attributed
to the model being trained on the COCO dataset which
contains a person class that provides a solid base for fine-
tuning for pedestrians.

F1 Score over Epochs

— F1 Score

F1 Score

0 10 20 30 40 50 60 )
Epoch

Figure 6. F1 score over epochs

The F1 score from Figure 6 shows similar tendencies to the
other performance metrics, the values improve considerably
in the first 10-20 epochs, after which the rate of improvement
slows down. From epoch 50 to epoch 70 a plateau can be
observed, indicating that the model has been successfully
trained.

10 Precision-Recall Curve

0.8

0.6 1

Precision

0.4 4

0.0
0.0

0.2 0.4 0.6

Recall

0.8 1.0

Figure 7. Precision-Recall curve

The obtained Precision-Recall (PR) curve, as shown in
Figure 7, demonstrates a very high precision (close to 1) for
low recall values (until 0.4). This indicates that with a strict
classification threshold, the model makes very few correct
positive predictions, resulting in high precision, though at
reduced recall.

¢ https://cocodataset.org/#home
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As the decision threshold relaxes, recall increases while
precision gradually decreases until a recall of approximately
0.5-0.6. This trade-off signifies identifying more positive
examples at the cost of increased false positives.

A notable characteristic is the sharp drop in precision from
0.8-0.9 to low values (0.1-0.2) around a recall of 0.6-0.8.
This decline suggests that at very high recall numbers, the
model generates many wrong positive predictions,
drastically reducing precision.

In conclusion, the PR curve highlights an efficient
compromise region in the recall range of 0.2-0.5. A decision
threshold around 0.4 is identified as a functional equilibrium
point between precision and recall, suitable for the
application's requirements.

F1-Confidence Curve
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Figure 8. F1-Confidence curve

Based on Figure 8, the optimal confidence number for the
model can be easily approximated. The F1 score, which
balances precision and recall, rises significantly as the
confidence threshold increases from very low values. It
reaches its peak performance, approximately 0.65, at a
confidence threshold of 0.35. Beyond this point, increasing
the confidence threshold further results in a gradual decline
in the F1 score, as the model becomes overly stringent and
misses too many true positives. Consequently, a confidence
threshold of 0.35 represents the optimal operating point for
this model, effectively balancing its capacity to accurately
identify pedestrians with minimizing both false positives and
false negatives.

Additionally, the system's potential for mobile deployment
was examined. Testing involved running the model on an
Android device (a Samsung S21 Exynos smartphone was
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used for testing), utilizing the ONNX Mobile Runtime.
However, preliminary evaluations revealed sub-optimal
performance, with inference times consistently ranging
between 300-400ms per frame, most likely caused by the
high resolution of the model. Given the real-time
requirement of the application, this performance bottleneck
proved to be a significant roadblock to further development
within the scope of this paper. An example of the model
running can be seen in Figure 9. Example of output. The
corresponding code is available in the GitHub repository.

I -

Figure 9. Example of output

The model exhibits strong real-time capabilities in the
context of the system's performance, as illustrated by a
representative output image in Figure 9. When running on an
iGPU from an AMD Ryzen 5 5500U laptop, inference times
consistently fall within a highly efficient range of 30-40 ms
per frame. Compared to the previously discussed mobile
implementation, this performance is approximately ten times
faster, resulting in a fast frame rate that is essential for
delivering real-time driver warnings. This speed is matched
by the model's ability to discriminate between pedestrians,
even in densely populated areas, accurately. Accurate
distance estimation, a crucial part of the warning system, is
made possible by consistently precise bounding boxes.

For reproducibility considerations all the code and diagrams
are available on GitHub’.

CONCLUSIONS

This research successfully developed and implemented a
real-time pedestrian detection and warning system intended
to enhance road safety. The system exhibits strong
operational performance, running at a fast frame rate that is
necessary to provide driver warnings instantly. The model
demonstrates the ability to differentiate pedestrians, even in
highly populated areas, producing consistently precise
bounding boxes that facilitate critical distance estimation, a
crucial part of the warning system.

Some notable features include its detection capabilities,
which result from fine-tuning on the large and varied ECP
dataset; its modular and maintainable architecture; and its
operational performance on widely available hardware. The

7 https://github.com/Wisuy/Pedestrian-detection
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dataset's exclusive European contexts present a limitation
that affects the model's ability to generalize to other parts of
the world.

Preliminary testing on Android devices revealed subpar
performance, which is a hurdle for broad portability without
additional optimization. Future work will focus on
expanding the model's training to a range of non-European
driving conditions using additional datasets, testing
optimization techniques to enhance performance across
various platforms, including mobile devices, and potentially
incorporating new sensor inputs, such as lidar or stereo
cameras, to improve distance approximation accuracy and
provide broader applicability. This study demonstrates the
potential for developing and deploying real-time pedestrian
warning systems, a promising method for enhancing road
safety globally, regardless of the type of vehicle.
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