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ABSTRACT 

Pedestrians account for a disproportionate share of urban 
traffic casualties, most of which occur at speeds below 50 
km/h, where timely driver warning could avert impact. We 
present a low-cost, camera-only Advanced Driver-
Assistance System that detects, tracks, and range-estimates 
pedestrians in real time on commodity hardware. The core 
detector is YOLO11n1 (≈ 4 M parameters) fine-tuned on a 
50-50 day-night subset of the EuroCity Persons dataset2 (4 
650 day and 4,222-night training images), eliminating the 
daylight bias typical of existing models. The system sustains 
a latency of 33 ms per 640 × 480 frame (<1 GB RAM). A 
ByteTrack module maintains identities across frames, and a 
pin-hole projection coupled with a time-to-collision filter 
triggers visual alerts when braking distance is insufficient. 
Unlike prior work that assumes discrete GPUs, multispectral 
sensors or daylight scenes, our pipeline delivers 
illumination-robust detection, constant-frame-rate inference 
and modular open-source implementation on hardware 
already present in budget vehicles. The results demonstrate 
that adequate pedestrian warning can be achieved without 
specialised sensors or expensive accelerometers, paving the 
way for wider deployment in cost-sensitive markets and 
retrofit scenarios.
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INTRODUCTION 
Road traffic collisions remain a leading cause of accidental 
death worldwide, and the burden is felt most acutely by 
pedestrians, the least protected road users. Whereas vehicle 
occupants benefit from crumple zones, airbags, and seat 
belts, a pedestrian struck even at moderate speed faces a high 
risk of severe injury or fatality. Recent analyses of advanced-

1 https://docs.ultralytics.com/models/yolo11/ 
2 https://eurocity-dataset.tudelft.nl 

driver-assistance systems (ADAS) underline the scale of the 
preventable problem: if just the six most common ADAS 
functions were deployed fleet-wide, overall crash frequency 
could fall by almost a quarter, with automatic emergency 
braking alone reducing pedestrian impacts by 28 % in the 
United Kingdom, or roughly 19,000 avoided crashes each 
year. These statistics frame the overarching motivation of 
this work, augmenting human drivers with computer-vision 
capabilities that do not tire, blink, or become distracted. 

Pedestrian detection by on-board cameras is a cornerstone of 
such capabilities. Yet, it remains challenging in the very 
scenarios where human vision struggles most: low 
illumination, glare, and cluttered urban backgrounds. 
Traditional benchmark datasets, such as Caltech3 or KITTI4, 
are dominated by daytime footage, so detectors trained on 
them often suffer from a daylight bias and degrade sharply 
after dusk. To address this gap, the EuroCity Persons (ECP) 
dataset provides more than 200,000 annotated pedestrians 
captured across 31 European cities, balanced across seasons, 
weather conditions, and—crucially—day and nighttime 
scenes. Its high-resolution images preserve the fine detail 
needed for recognising distant or partially occluded 
pedestrians in complex traffic. Leveraging ECP therefore, 
promises not only higher accuracy but also greater 
robustness to illumination changes. 

On the algorithmic side, one-stage detectors of the You Only 
Look Once (YOLO) family have become de facto standards 
for high-frame-rate perception. By regressing bounding 
boxes and class scores in a single forward pass, YOLO 
avoids the multi-stage region-proposal bottleneck of earlier 
R-CNN variants and consistently achieves real-time
throughput on commodity GPUs. Lightweight iterations—
most recently YOLO11n—compress model depth and width
while retaining the decoupled head architecture that
improves small-object recall, making them attractive for
edge devices such as in-vehicle integrated graphics
processors. Nevertheless, a generic model trained on the MS-
COCO benchmark is sub-optimal for monoclass pedestrian
detection and cannot exploit ECP’s night-time diversity.

This paper presents a streamlined pipeline that bridges that 
gap. First, we curate a balanced ECP subset containing 4 650 

3 https://data.caltech.edu/records/f6rph-90m20 
4 https://www.cvlibs.net/datasets/kitti/ 
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daytime and 4 222 night-time images for training and an 
equal 770 (for day) and 770 (for night) for validation, 
maintaining a near-50/50 illumination ratio to mitigate bias. 
Second, we fine-tune YOLO11n on this subset, preserving 
the small model footprint (≈4 M parameters). Third, we 
export the network to ONNX and run inference via 
DirectML on an AMD Ryzen iGPU, achieving ≈30 ms per 
640 × 480 frame while consuming <350 MB of system 
memory . A simple pin-hole projection estimates pedestrian 
range, and a heuristically gated time-to-collision filter 
triggers a visual alert in a Tkinter graphical interface, 
demonstrating an end-to-end assistive prototype that 
operates without dedicated GPU hardware.  

RELATED WORK 
Pedestrian detection is a relevant task as stated in [1] which 
provides a comprehensive survey of deep-learning 
approaches to pedestrian detection for autonomous driving, 
highlighting three persistent bottlenecks—occlusion, 
illumination variation (especially night-time scenes), and the 
small-object problem—and reviewing how modern one-
stage detectors (YOLOv3/v4), two-stage models (Faster R-
CNN), and lightweight backbones (MobileNet-SSD) attempt 
to mitigate them. The authors catalogue more than 40 recent 
studies, compare performance on canonical benchmarks 
(Caltech, CityPersons, KITTI, NightOwls5) and emphasise 
that data imbalance toward daylight imagery remains a root 
cause of poor nocturnal recall. They further argue that real-
time deployment on embedded hardware is still constrained 
by model size and compute budgets, noting a trade-off 
between speed-oriented “nano” variants and the accuracy 
gains brought by attention or multi-spectral fusion modules. 
Finally, the survey calls for curated day-/night-balanced 
datasets and task-specific compression techniques as key 
directions for future research. Our work answers both of 
these open recommendations: we construct a 50/50 day-night 
subset of EuroCityPersons to tackle the illumination bias, 
and we fine-tune the 4 M-parameter YOLO11n architecture, 
achieving state-of-the-art on that subset while sustaining 30 
ms inference on an integrated GPU thus extending the lines 
of inquiry pinpointed by authors of [1]. 

Liu et al. (2024) [2] tackle the twin obstacles of scale 
variance and crowding at signalised intersections by 
introducing YOLOv8-CB, a compact derivative of YOLO-
v8n that layers three architectural tweaks: a lightweight 
Cascade-Fusion Network (CFNet) to enrich deep-shallow 
feature interplay, a CBAM attention module to highlight 
salient spatial–channel cues, and a bidirectional BIFPN path 
for weighted multi-resolution fusion. Tested on dense-traffic 
footage, the model lifts detection accuracy by +2.4 points 
while trimming parameters (-6.45 %) and FLOPs (-6.74 %), 
clocking 10.8 ms per 640 × 640 frame—evidence that 
judicious feature re-use can surpass the vanilla YOLO-v8n 
speed/accuracy frontier without ballooning compute. The 

5 https://www.nightowls-dataset.org 

authors nonetheless leave the illumination-robustness 
question open, as their experiments focus on daylight scenes; 
moreover, the reliance on GPU-class hardware contrasts with 
our DirectML-enabled iGPU deployment. 

Raza et al. (2023) [3] confront the nighttime surveillance 
setting with a classical machine-learning pipeline that 
forgoes deep nets altogether: after background subtraction on 
infrared (IR) video, a random forest classifier segments 
pedestrian silhouettes, multiple template matching locates 
candidate bounding boxes, and a particle filter data 
association scheme maintains tracks across frames. On their 
proprietary IR dataset the authors report 93 % segmentation 
accuracy, 90 % detection accuracy, and 81 % multi-target 
tracking accuracy, crediting the combination of handcrafted 
features and pixel-level verification for robustness under 
poor illumination. While the work demonstrates that low-
cost IR sensors can mitigate the lighting issue, its reliance on 
template matching limits scalability to crowded scenes, and 
the absence of GPU-friendly deep learning precludes real-
time deployment on embedded ADAS hardware. Moreover, 
because the camera is static and the field of view restricted 
to fixed surveillance corridors, the method does not address 
ego-motion, range estimation, or the wide range of 
pedestrian poses encountered in forward-looking automotive 
footage—gaps our balanced EuroCityPersons training 
protocol and YOLO11n optimisation explicitly tackle. 

In paper [4], Li et al. (2023) pursue the speed-accuracy 
sweet-spot by re-engineering YOLOv5s into YOLOv5s-
GAM/Ghost, a 4.9 M-parameter variant that swaps standard 
convolutions for Ghost/GhostC3 blocks, injects a Global 
Attention Mechanism (GAM) between neck and head, and 
replaces the GIoU loss with a −CIoU term better aligned with 
bounding-box regression Evaluated on the WiderPerson 
benchmark, the design trims 13.2 % FLOPs while nudging 
mean average precision upward by +1.0 points, showing that 
judicious channel-redundancy pruning and attention 
injection can offset the accuracy typically lost to 
lightweighting. Although the authors acknowledge 
illumination challenges, their experiments focus exclusively 
on daylight RGB data and rely on a discrete GPU for real-
time throughput. Our work complements these gaps by 
balancing day- and night-time examples in EuroCityPersons 
and demonstrating sub-35 ms inference on an integrated 
GPU. 

Hsu and Yang (2023) [5] attack the chronic “blurry‐CCTV” 
corner-case by front-loading the detector with a Multi-scale 
Structure-Enhanced Super-Resolution (MsSE-SR) pre-
processor. Using a stationary-wavelet transform, each low-
resolution (LR) frame is split into frequency-specific sub-
images; dedicated branches reconstruct high- and low-
frequency details and then exchange cues through a high-to-
low sub-network information-transfer (H2LSnIT) module, 
yielding a sharper, structure-faithful up-scaled image. 
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Coupled with a YOLOv4 head, the end-to-end pipeline 
significantly improves pedestrian average precision on LR 
benchmarks, demonstrating that optical-quality restoration 
can be as impactful as detector redesign when cameras are 
the bottleneck. However, the study limits itself to daylight 
RGB footage and assumes GPU-class compute, leaving 
illumination robustness and true edge-device deployment 
open—gaps our day/night-balanced EuroCityPersons fine-
tuning and DirectML iGPU runtime explicitly address 

Zhang et al. (2024) push pedestrian perception [6] into the 
multi-sensor era with MMPedestron, a “generalist” 
transformer that ingests any combination of RGB, infrared, 
depth, LiDAR or event-camera frames through a single 
unified encoder. Two learnable tokens, MAA and MAF, 
adaptively fuse modality-aware and modality-agnostic 
representations before a shared detection head, letting the 
network swap seamlessly between sensor pairs at test time. 
To train and benchmark such flexibility they aggregate 
existing corpora and introduce MMPD, the first large-scale 
multimodal pedestrian dataset, adding a new event-camera 
subset (EventPed). Joint training lifts performance to 71.1 
AP on COCO-Persons [7] and 72.6 AP on LLVIP, while 
remaining 30 × smaller than InternImage-H on 
CrowdHuman—evidence that a single compact backbone 
can rival specialist models across modalities. Nevertheless, 
the study presumes discrete-GPU resources and does not 
dissect illumination bias within the RGB stream; by contrast, 
our work zeroes in on a lone, low-cost RGB sensor, balances 
day- and night-time footage in EuroCityPersons [9], and 
validates real-time inference on an integrated GPU. 

Last paper discussed in related work is also a survey [10] as 
the first one because Ghari et al. (2024) deliver the first 
comprehensive survey devoted exclusively to low-light 
pedestrian detection, reviewing more than 150 studies across 
classical vision, deep RGB, multispectral fusion, and radar–
vision hybrids. Their meta-analysis exposes three 
quantitative gaps: (i) dataset bias—nearly half of all papers 
benchmark solely on KAIST, with real-world night-driving 
videos used in < 6 % of works; (ii) methodological skew 
toward early- or halfway-fusion CNNs that merge visible and 
FIR channels, leaving single-sensor RGB solutions under-
explored; and (iii) deployment neglect, as only 9 % of 
surveyed methods report latency or energy figures pertinent 
to embedded ADAS. The authors conclude that illumination-
balanced datasets and compute-efficient monocular detectors 
are required for wider adoption. Our study responds directly: 
we craft a 50/50 day-night subset of EuroCityPersons and 
fine-tune a 4 M-parameter YOLO11n that clears 30 ms per 
640 p frame on an integrated GPU—thereby addressing both 
the data-imbalance and edge-inference shortcomings 
highlighted by Ghari et al. 

PROPOSED APPROACH 

Figure 1. Dataset preparation 

Figure 1 presents the preprocessing of the dataset. Since the 
same model would be used for varying light conditions, a 
50/50 distribution for day and night images was aimed for. 
All night images were extracted, along with 150 day images 
per city for the training set and 25 day images per city for the 
validation set. This resulted in a training split of 4650 day 
images and 4222 night images (52.41% day / 47.59% night), 
and a balanced validation split of 770 day images and 770 
night images. The training-to-validation ratio achieved was 
85.2%/14.8%. The images were also resized to a maximum 
resolution of 640 pixels, as the model uses 640x640 as an 
input and it also contributes to faster training times. All 
labels were converted to .txt YOLO format, and all classes 
except pedestrians were removed. The data.yaml file was 
also added and the dataset was ready to be used for training. 

Figure 2. Data flow diagram 

The fine-tuned model will perform real-time inference using 
the ONNX Runtime. This runtime was chosen for its support 
of DirectML, a hardware-accelerated DirectX 12 API from 
Microsoft, enabling the model’s deployment even on 
integrated GPUs commonly found in lower-cost or 
embedded devices, thereby increasing system accessibility. 
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As can be observed in Figure 2, the system aims for a simple 
design to facilitate its implementation in a vehicle. For this 
reason, it is necessary to approximate the speed at which each 
pedestrian approaches the car. For this, each pedestrian will 
be tracked from frame to frame using Supervision’s 
implementation of ByteTrack. The pinhole camera model 
will be employed to ascertain the approximate distance 
between the camera and the pedestrian (necessitating the use 
of an average height for this calculation). Once these 
distances are determined, they can be stored in a vector, and 
the approaching speed can be calculated over an average of 
5 frames. This speed is derived from the rate at which 
distances change between frames, combined with the time 
elapsed between those frames, yielding an approximate 
speed. Based on this calculated speed and the maximum 
braking G-force provided by the user via the application, the 
driver can be alerted. This alert is visually conveyed by 
turning the bounding boxes red if a pedestrian enters a 
critical zone (i.e., too close for the driver to brake in time). 

Figure 3. System architecture diagram 

As shown in Figure 3, the architecture of the system adopts 
a modular design. The system is built using four components: 
the CameraFeed, dedicated to acquiring raw video frames; 
the ONNXDetector, which handles hardware-accelerated 
pedestrian detection and tracking; the FrameProcessor, 
responsible for real-time safety calculations and frame 
annotation; and the ApplicationGUI, which functions as both 
the user interface and central control hub. 

The ApplicationGUI controls the entire system by 
initializing the CameraFeed, ONNXDetector, and 
FrameProcessor. From there, the CameraFeed continuously 
supplies raw frames to the FrameProcessor. The 
FrameProcessor then uses the ONNXDetector for object 
detection and tracking. It performs crucial safety 
calculations, including distance, speed, and required braking 
distance, before annotating the frames. Then these processed 
frames and various performance metrics are passed to the 
ApplicationGUI for them to be displayed. This decoupled 
structure facilitates efficient data flow and ensures a clear 
division of responsibilities across the modules. 

EXPERIMENTAL RESULTS 
The EuroCity Persons (ECP) dataset is a valuable resource 
for pedestrian detection, especially in autonomous driving 
and driver-assistance systems. What makes it special is its 
diversity and scale, the dataset includes images from 31 cities 
across 12 European countries, captured in all four seasons. It 

contains 40217 daytime images (with  183004 annotated 
pedestrians) and 7118 nighttime images (with 35309 
annotations), all in high resolution. The dataset also covers 
different weather conditions, including both dry and wet. 

One limitation is that ECP only includes European data, 
meaning models trained on it might not generalize as well to 
other regions where infrastructure, or visual conditions 
differ. Even so, given its wide variety of European 
environments and the sheer number of annotations, ECP 
remains a highly relevant benchmark for developing and 
testing pedestrian detection systems in real-world European 
applications.

Figure 4. Training and Validation losses 

As can be seen in Figure 4 the training is progressing very 
fast in the first 10-15 epochs evidenced by a steep decrease 
in all the training and validation loss components. After this 
we can observe that the rate of training significantly slows 
down. Furthermore, we can observe that the training is 
approaching completion and the model is generalizing 
effectively because the respective training and validation 
loss curves for each component converge and flatten out, 
indicating that the model is no longer making significant 
improvements and is stable on both seen and unseen data, 
without signs of overfitting. 

Figure 5. Validation performance metrics 

The validation metrics exhibit trends inversely related to the 
training and validation losses during the model's learning 
process. As can be observed in Figure 5, a noticeable 
improvement in the performance metrics is evident during 
the initial 10 to 15 epochs. Following this rapid progress, the 
rate of improvement significantly slows down, and the 
metrics mostly stabilize after epoch 50, suggesting that the 
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model is performing at its best under the current training 
circumstances. 

Additionally, the achieved pedestrian detection 𝑚𝐴𝑃@0.5:0.95
of 0.40 on the ECP dataset is remarkably close to the 
𝑚𝐴𝑃@0.5:0.95 value of 0.395 reported by Ultralytics [8] for
this model on the COCO6 dataset. We can also observe that 
the mAP values don't start from 0, which is likely attributed 
to the model being trained on the COCO dataset which 
contains a person class that provides a solid base for fine-
tuning for pedestrians. 

Figure 6. F1 score over epochs 

The F1 score from Figure 6 shows similar tendencies to the 
other performance metrics, the values improve considerably 
in the first 10-20 epochs, after which the rate of improvement 
slows down. From epoch 50 to epoch 70 a plateau can be 
observed, indicating that the model has been successfully 
trained. 

Figure 7. Precision-Recall curve 

The obtained Precision-Recall (PR) curve, as shown in 
Figure 7, demonstrates a very high precision (close to 1) for 
low recall values (until 0.4). This indicates that with a strict 
classification threshold, the model makes very few correct 
positive predictions, resulting in high precision, though at 
reduced recall. 

6 https://cocodataset.org/#home 

As the decision threshold relaxes, recall increases while 
precision gradually decreases until a recall of approximately 
0.5-0.6. This trade-off signifies identifying more positive 
examples at the cost of increased false positives. 

A notable characteristic is the sharp drop in precision from 
0.8-0.9 to low values (0.1-0.2) around a recall of 0.6-0.8. 
This decline suggests that at very high recall numbers, the 
model generates many wrong positive predictions, 
drastically reducing precision. 

In conclusion, the PR curve highlights an efficient 
compromise region in the recall range of 0.2-0.5. A decision 
threshold around 0.4 is identified as a functional equilibrium 
point between precision and recall, suitable for the 
application's requirements. 

Figure 8. F1-Confidence curve 

Based on Figure 8, the optimal confidence number for the 
model can be easily approximated. The F1 score, which 
balances precision and recall, rises significantly as the 
confidence threshold increases from very low values. It 
reaches its peak performance, approximately 0.65, at a 
confidence threshold of 0.35. Beyond this point, increasing 
the confidence threshold further results in a gradual decline 
in the F1 score, as the model becomes overly stringent and 
misses too many true positives. Consequently, a confidence 
threshold of 0.35 represents the optimal operating point for 
this model, effectively balancing its capacity to accurately 
identify pedestrians with minimizing both false positives and 
false negatives. 

Additionally, the system's potential for mobile deployment 
was examined. Testing involved running the model on an 
Android device (a Samsung S21 Exynos smartphone was 
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used for testing), utilizing the ONNX Mobile Runtime. 
However, preliminary evaluations revealed sub-optimal 
performance, with inference times consistently ranging 
between 300-400ms per frame, most likely caused by the 
high resolution of the model. Given the real-time 
requirement of the application, this performance bottleneck 
proved to be a significant roadblock to further development 
within the scope of this paper. An example of the model 
running can be seen in Figure 9. Example of output. The 
corresponding code is available in the GitHub repository. 

Figure 9. Example of output 

The model exhibits strong real-time capabilities in the 
context of the system's performance, as illustrated by a 
representative output image in Figure 9. When running on an 
iGPU from an AMD Ryzen 5 5500U laptop, inference times 
consistently fall within a highly efficient range of 30-40 ms 
per frame. Compared to the previously discussed mobile 
implementation, this performance is approximately ten times 
faster, resulting in a fast frame rate that is essential for 
delivering real-time driver warnings. This speed is matched 
by the model's ability to discriminate between pedestrians, 
even in densely populated areas, accurately. Accurate 
distance estimation, a crucial part of the warning system, is 
made possible by consistently precise bounding boxes. 

For reproducibility considerations all the code and diagrams 
are available on GitHub7.  

CONCLUSIONS 
This research successfully developed and implemented a 
real-time pedestrian detection and warning system intended 
to enhance road safety. The system exhibits strong 
operational performance, running at a fast frame rate that is 
necessary to provide driver warnings instantly. The model 
demonstrates the ability to differentiate pedestrians, even in 
highly populated areas, producing consistently precise 
bounding boxes that facilitate critical distance estimation, a 
crucial part of the warning system. 

Some notable features include its detection capabilities, 
which result from fine-tuning on the large and varied ECP 
dataset; its modular and maintainable architecture; and its 
operational performance on widely available hardware. The 

7 https://github.com/Wisuy/Pedestrian-detection 

dataset's exclusive European contexts present a limitation 
that affects the model's ability to generalize to other parts of 
the world. 

Preliminary testing on Android devices revealed subpar 
performance, which is a hurdle for broad portability without 
additional optimization. Future work will focus on 
expanding the model's training to a range of non-European 
driving conditions using additional datasets, testing 
optimization techniques to enhance performance across 
various platforms, including mobile devices, and potentially 
incorporating new sensor inputs, such as lidar or stereo 
cameras, to improve distance approximation accuracy and 
provide broader applicability. This study demonstrates the 
potential for developing and deploying real-time pedestrian 
warning systems, a promising method for enhancing road 
safety globally, regardless of the type of vehicle. 
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