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ABSTRACT
This paper investigates how software developers understand com-
piler error messages and proposes visual annotations to support 
their comprehension. The research addresses the limitations of cur-
rent Integrated Development Environments (IDEs) in facilitating de-
velopers’ self-explanation processes. A user study with 28 software 
engineering students demonstrates that the proposed annotations 
improve developers’ ability to interpret error noti�cations, leading 
to more accurate mental models.
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1 INTRODUCTION
Integrated Development Environments (IDEs) such as Eclipse, In-
telliJ IDEA, and Visual Studio have evolved significantly to support 
software development tasks through a variety of visual aids and in-
teractive features. Among these, one of the most frequently encoun-
tered and crucial functionalities is the handling and presentation of 
compiler error messages. When a developer introduces an error into 
the code, modern IDEs typically highlight the corresponding location 
in the source text with red underlines, margin icons, or other visual 
cues. Additionally, a detailed textual error message is displayed, 
often in a console pane or error window, providing further context 
regarding the issue.
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Despite these visual aids, compiler errors continue to be a source
of frustration for developers, especially for novices or those un-
familiar with the particular compiler’s diagnostic style. Prior re-
search [18] has documented that many developers �nd these error
messages cryptic, ambiguous, and di�cult to interpret. One con-
tributing factor to this confusion is that compilers generally do not
make transparent the logical steps or internal reasoning that lead
to the generation of the error message. From a user’s standpoint,
the compiler behaves like a black box that merely presents an end
result without revealing how that conclusion was reached.

In typical development work�ows, the burden is placed entirely
on the developer to understand and �x the error. This requires a
mental process that involves reverse-engineering the compiler’s
diagnostic pathway — a form of self-explanation [16]. Starting from
the error output, developers must infer the nature of the problem,
identify related parts of the codebase, trace back dependencies or
misused constructs, and hypothesize plausible �xes. This backward
reasoning can be cognitively demanding, time-consuming, and
prone to misinterpretation, especially in complex codebases or for
subtle errors. Moreover, human reasoning is often bounded by
limited domain knowledge, working memory, and attention [11],
which makes such tasks error-prone.

It is important to note that much of the information develop-
ers attempt to infer during this self-explanation process is already
known to the compiler at the time the error is produced. The com-
piler, during the di�erent stages of lexical analysis, syntax checking,
semantic analysis, and code generation, accumulates a rich set of
intermediate representations and internal states. These internal
diagnostics form a reasoning trail that is typically discarded or
hidden from the user, even though it could be harnessed to improve
the user’s understanding of what went wrong.

Current IDE visualizations, such as red squiggly lines and side-
bar icons, are predicated on the assumption that the compiler is an
opaque entity. These visual cues serve more as alerts than explana-
tions, providing minimal support for understanding the underlying
cause of errors. As a result, they are limited in their ability to guide
developers through the logical chain of events that led to the error.

In this paper, we challenge this paradigm and advocate for a
shift from opaque to transparent compiler diagnostics. We propose
that making compiler reasoning accessible and visually explorable
can signi�cantly enhance developers’ comprehension of errors. By
exposing internal compiler diagnostics to the IDE, we can generate
what we term explanatory visualizations—context-aware, structured
visual cues that mirror the inferential steps developers would oth-
erwise perform manually.

The main contributions of this work are as follows:
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Figure 1: Comparison of uninitialized variable error shown
via (a) baseline, (b) explanatory visualizations, and (c) textual
message.

• We present a foundational framework of composable visual
annotation types that re�ect the structure of compiler rea-
soning. These annotations are designed to work together to
tell a coherent story about the origin and nature of an error.

• We conduct a controlled explanation task study using paper
prototypes, comparing our proposed explanatory visualiza-
tions with standard IDE visualizations. Our results show
that participants using explanatory visualizations are signi�-
cantly more accurate in producing correct self-explanations.

• We further evaluate the impact of explanatory visualizations
on program comprehension through a recall task, in which
participants intentionally write erroneous code within a sim-
pli�ed development environment. Our �ndings demonstrate
that the additional insight a�orded by explanatory visualiza-
tions enables developers to form more accurate and lasting
mental models of compiler errors.

Through this work, we aim to bridge the gap between the internal
logic of compilers and the external tools developers use to interact
with them. By making compiler diagnostics more transparent and
intelligible, we open up new possibilities for improving developer
productivity, learning outcomes, and overall software quality.
Paper roadmap. Section 2 details the visual design of the error
explanations and their integration into the work�ow. Section 3 de-
scribes the study design, participants, tasks, and measures. Section
4 reports quantitative and qualitative results, including statistical
tests for explanation quality and annotation usage. Section 5 con-
nects the �ndings to mental-model theory and implications for IDE
tooling, and Section 6 concludes with limitations and avenues for
future work.

2 MOTIVATING EXAMPLE
To illustrate the challenges developers face when interpreting com-
piler error messages, consider the hypothetical case of Yoonki, a
seasoned C++ programmer who is transitioning to a Java-based
project. During development, Yoonki encounters a red wavy under-
line beneath the declaration final int i, as depicted. This visual
indicator suggests an error, but does not immediately clarify its
cause. Curious, Yoonki checks the error output in the IDE’s console,
which states that the variable i "might not have been initialized."

Initially, Yoonki is skeptical of the message. The referenced line
seems harmless — it simply contains a closing curly brace. Given
his past experiences in C++, where compiler warnings sometimes
pointed to unrelated or misleading locations, he is inclined to dis-
miss the warning as a false alarm.

Relying on his prior knowledge, Yoonki draws a parallel between
Java’s final and C++’s const keyword, assuming that both enforce
immutability from the point of declaration. Based on this under-
standing, he modi�es the line to explicitly initialize the variable,
changing it to final int i = 3;. However, this change introduces
a new error further down in the code: cannot assign a value
to final variable i on Line 6. Yoonki now realizes that he has
violated Java’s rule that a final variable, once assigned, cannot be
reassigned.

To resolve the issue, he removes the conditional structure where
the variable was being set. Although this allows the program to
compile without errors, it alters the intended logic of the program.
In essence, Yoonki has made a correction that satis�es the compiler
but not the underlying functionality, highlighting a disconnect
between the tool’s feedback and the developer’s mental model.

This misunderstanding arises from a subtle distinction between
Java and C++: while both languages enforce a single assignment
for constant variables, Java allows the assignment to occur later
in the control �ow, as long as it happens before the variable is
accessed. Yoonki’s prior mental model, e�ective in a C++ context,
fails to accommodate this nuance, leading to what we can describe
as a knowledge breakdown [11] — a situation where a developer’s
conceptual framework does not align with the behavior of the
system.

The core issue is exacerbated by the IDE’s limited means of
communication. While the red underline and textual message are
accurate in identifying a potential problem, they lack the context
necessary for a deeper understanding. The IDE does not visualize
the dependency between variable initialization and conditional con-
trol �ow paths. It simply �ags the symptom (possible uninitialized
variable), without showing the underlying cause (a code path where
the variable is never set).

Now imagine Yoonki working in an enhanced development envi-
ronment, such as the one we propose, which incorporates explana-
tory visualizations. Instead of a single underline and terse message,
the IDE highlights multiple relevant elements in the source code. It
visually traces the control paths, showing that in one branch of the
conditional (when b = true), the variable i is correctly assigned a
value, but in the alternate path (when b = false), no assignment
occurs.

This explicit representation of control �ow and data dependen-
cies enables Yoonki to recognize that the error stems not from the
declaration syntax, but from incomplete conditional logic. Armed
with this insight, he implements a correct �x by adding an else
clause that assigns i a value when b = false. This change pre-
serves the intended program logic and adheres to Java’s constraints
on final variables.

This example underscores the limitations of current error noti�-
cation paradigms in IDEs, which often treat compilers as opaque
entities that reveal only surface-level symptoms. Developers are left
to reverse-engineer the reasoning process through trial, error, and
introspection. In contrast, explanatory visualizations can make the
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compiler’s reasoning explicit, helping developers avoid incorrect
assumptions and ultimately leading to more accurate and e�cient
debugging.

The broader implication is that the typical form of error reporting
— consisting of an error message and a single highlighted location
— is insu�cient for complex reasoning tasks required during de-
bugging. Developers bene�t when tools bridge the gap between
raw analysis results and actionable understanding. Our approach
aims to �ll this gap by making the compiler’s internal reasoning
more transparent and aligned with how humans naturally construct
explanations.

3 PILOT STUDY
3.1 Purpose and Research Question
Before developing our visualization-based annotation approach,
we carried out a small-scale exploratory study with undergraduate
students in a Software Engineering course. This preliminary inves-
tigation aimed to understand how students naturally explain com-
piler errors to their peers and what visual strategies they employ
in doing so. We sought to answer the following research question:
RQ0: What kinds of visual annotations do student developers in-

tuitively use when explaining error messages to others?
We posited that if developers demonstrate a preference for cer-

tain types of annotations when engaged in peer-to-peer explana-
tions, then integrating these forms of visual cues into programming
environments—such as IDEs—could improve comprehension and
error resolution during coding.

3.2 Study Design and Methodology
The pilot activity was carried out in a controlled classroom setting
as part of regularly scheduled lab sessions. Each student participant
was provided with a printed snippet of source code along with a
corresponding compiler error. These snippets were intentionally
stripped of any visual indicators or annotations that might bias the
students’ interpretive strategies.

Students worked in pairs, rotating through two roles: explainer
and listener. The explainer was asked to verbally interpret the mean-
ing of the compiler error for the listener while simultaneously
marking up the printed source code with any visual elements they
deemed helpful—such as arrows, text, or symbols. Importantly, they
were not permitted to consult any external resources such as docu-
mentation or internet searches. After two minutes, the roles were
reversed and a second, distinct example was used for the next round.

Each participant was randomly assigned one of four example
tasks (T1, T2, T3, or T6), selected from real-world compiler error
cases extracted from the OpenJDK 7 unit test suite for Java diag-
nostics. Tasks T4 and T5 were excluded from this pilot as they had
not yet been curated. In total, we gathered 73 annotated samples:
17 from task T1 (23%), 12 from T2 (16%), 20 from T3 (27%), and 24
from T6 (33%).

3.3 Data Analysis
To interpret the collected annotations, we employed a two-phase
qualitative coding process. First, we examined all annotated artifacts
and derived a classi�cation scheme—or taxonomy—of annotation

Table 1: Summary of Visual Annotation Types and Usage
Frequency in the Pilot Study

Annotation Type Frequency Description
Token Highlighting 49 Marking individual code elements such
as keywords, variables, or operators using circles, underlines, or

boxes to draw attention to speci�c syntax.

Explanatory Text 45 Use of handwritten text to clarify errors,
such as writing “variable not initialized” or “invalid syntax” near

the relevant code.

Visual Connections 33 Drawing lines (with or without arrows)
to link related parts of the code, such as a declaration and a usage,

illustrating dependencies or control �ow.

Symbolic Markers 20 Insertion of visual icons like question
marks, crosses, or numbered markers to signal uncertainty, errors,

or sequential order.

Illustrative Code Fragments 14 Writing example code or
pseudo-code alongside the original code to illustrate a correction
or clarify logic. These were not always syntactically correct Java,

but were understandable approximations.

Strikethroughs 5 Crossing out incorrect or irrelevant code to
indicate parts that should be removed or ignored. This di�ers from

highlighting as it implies deletion.

Color Usage (Unavailable) N/A Use of color as a
communicative aid—such as orange/red for errors and green for
correct segments—was noted as a desirable but unavailable feature

during the study.

types based on recurring patterns. This taxonomy was inductively
formed from the data. Second, we applied this taxonomy to each
student’s annotated sheet to quantify how often each type of anno-
tation appeared.

3.4 Insights and Design Implications
The results from this pilot activity o�er key insights into how de-
velopers instinctively visualize and externalize their understanding
of program errors. Without any prior training or instruction, stu-
dents gravitated toward a consistent set of visual strategies—such
as highlighting tokens, drawing lines between related code, and
adding short explanatory comments.

These �ndings suggest that such visual conventions are both
intuitive and potentially useful for broader adoption in developer
tooling. The prevalence of these annotations also supports the idea
that embedding similar forms of visual feedbackwithin an IDE could
help developers better understand and resolve compiler errors on
their own. Consequently, the taxonomy developed through this
study served as a blueprint for designing the annotation types later
incorporated into our visual explanation system.
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Table 2: Legend for Visual Annotations

Symbol Description

code Marks the initial site of the compiler error.
code Highlights related elements contributing to the error.
Directed arrows trace logical connections or cause-e�ect links

between code fragments.
1 Used to sequentially number important annotations, especially

those positioned away from the original source line.
? Represents missing associations; an expected link to another

code element is absent.
Denotes con�icting or contradictory code elements.

code Refers to synthesized code blocks introduced by the
compiler or for illustration. Not part of the user’s original code.

Represents code coverage: green for executed lines, red for
unexecuted or failed code paths.

4 VISUAL EXPLANATIONS FOR COMPILER
ERROR MESSAGES

To improve developer comprehension and debugging e�ciency, we
introduce a set of eight graphical annotations to visually enhance
the presentation of compiler error messages. Table 2 summarizes
these annotations. We illustrate their application with a motivating.

The initial reference point in the source code is visually encoded
using a —a red rectangle identifying the precise location where
the error originates. This location often coincides with the site
marked by standard IDEs such as IntelliJ. In our running example,
the declaration final int i is �agged this way.

Additional related elements—such as a reassignment or asso-
ciated declaration—are marked in orange using , highlighting
them as contributing to the issue. The logical link between these
two points is indicated with a directional arrow , suggesting an
inferred control or data �ow.

To further contextualize the problem, we introduce explanatory
blocks, rendered as code , that replicate or reformulate the code
in a simpli�ed or pedagogical format. These do not exist in the
original codebase and are designed purely to aid understanding.

In more complex cases, these blocks are integrated into com-
posite annotations that include control-�ow cues and coverage
data. For instance, colored arrows like (green) and (red)
illustrate whether particular branches were executed or bypassed
during a program run. To di�erentiate between such branches, we
use numeric markers like 1 and 2 .

Through these compositional visuals, we can assert facts like: i
= 3 and all statements in branch 1 will execute if b = true. This
allows users to identify and understand counterexamples, such as
when i remains uninitialized due to branch 2.

While such facts could be verbally explained (e.g., i is uninitial-
ized when b = false), we hypothesize that visualizing each step
of this logic fosters deeper comprehension and improves recall for
developers.

Two additional visual indicators, not used in our main example,
are included here for completeness. The �rst is the red cross symbol;

Figure 2: Red cross-out marker used for highlighting errors.

Figure 3: Visual marker representing uncertainty or a miss-
ing value.

the second is a circle with a question mark. Together, these anno-
tations constitute a rich visual language for conveying compiler
diagnostics with clarity, traceability, and pedagogical value.

The initial reference point in the source code is visually encoded
using a red rectangle, identifying the precise location where the er-
ror originates. Additional related elements—such as a reassignment
or associated declaration—are marked in red using code annota-
tions, highlighting them as contributing to the issue.

5 METHODOLOGY
5.1 Research Questions
We conducted a between-subjects study with 28 participants split
into control (red wavy underline) and treatment (explanatory visu-
als) groups. We investigated:

RQ1 Do explanatory visuals improve developer explanations?
RQ2 Do developers adopt annotation styles from visuals?
RQ3 What features di�erentiate explanatory from baseline visuals?
RQ4 Do better explanations re�ect improved mental models?

5.2 Participants
28 third-year Software Engineering students (82% male, mean age
22, avg. 9 months industry experience) participated for course credit.
Most used Eclipse and rated as Intermediate/Advanced Java devel-
opers.

5.3 Error Messages
Six representative Java compiler errors from OpenJDK tests were
chosen (Table 2), focusing on clarity and potential for visual expla-
nation.

5.4 Mockups
12 paper mockups (6 per group) simulated IDE outputs; treatment
versions included explanatory annotations based on prior study
and compiler knowledge. No IDE tooltips were included.
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Figure 4: Ratings of explanation quality by group. Treat-
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Figure 5: Annotation usage. Type distribution not di�erent
(j2 = ⇠⇠⇠, ? = 0.--- ); Treatment used more annotations per
participant (Mann–Whitney * = --- , ? = 0.--- ).

5.5 Procedure
Participants explained errors (Phase 1) and later recalled details
(Phase 2). Sessions were recorded; random group assignment en-
sured balance.

5.6 Example Error
[style=JavaError] Zebra.java:8: error: cannot infer type arguments
for BlackStripe<>; Stripe<String> sf1 = newBlackStripe<>("Marty");
A40B>= : 8=5 4AA43C~?43>4B=>C2>=5 >A<C>342;0A431>D=3 (B)8=5 4AA43 :
(CA8=61>D=3 (B) : #D<14A14AA>A

5.7 Statistical Analysis
Unless otherwise noted, two-sided nonparametric tests were used
due to the ordinal and overdispersed nature of the data. For ex-
planation ratings (ordinal scale), we used the Mann–Whitney U
test to compare Control vs. Treatment, reporting * , I, exact ? , and
e�ect size (A and Cli�’s X). For binary or categorical outcomes (e.g.,
counts of rating categories or annotation-type distributions), we
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Figure 6: Explanation ratings for six tasks correlated with re-
call correctness, showing higher ratings lead to better recall.

(a) (b)

Figure 7: A contrast between visual explanations o�ered by
(a) control group participant with explanation rating of Fail,
and (b) treatment group participant with explanation rating
of Excellent.

used chi-square tests of independence (or Fisher’s exact test when
expected cell counts < 5), and report j2, df, ? , and Cramér’s + .
For per-participant annotation counts, we used Mann–Whitney U
with e�ect sizes as above. When multiple tests were run across
annotation categories, we controlled the false discovery rate with
Benjamini–Hochberg.

6 RESULTS
We report �ndings from our between-subjects user study, focusing
on participants’ error explanations, use of visual annotations, and
recall accuracy. Results are organized according to our research
questions (RQ1–RQ4).
Explanation quality Treatment explanations were rated higher
than Control on the ordinal scale (Mann–Whitney * = --- , I =
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... , ? = 0.--- ; e�ect sizes A  = ''', Cli�’s X = ⇡⇡⇡). Aggregat-
ing into {Good/Excellent} vs. {Fail/Poor}, we also observed a di�er-
ence in proportions (Control 29% vs. Treatment 68%; j2 (1) = ⇠⇠⇠ , 
? = 0.--- ; Cramér’s + = +++ ).

6.1 RQ1: Do Explanatory Visuals Improve
Developer Explanations?

As shown in Figure 4, participants in the treatment group (explana-
tory visuals) produced signi�cantly higher-rated explanations than
those in the control group (baseline visuals). Speci�cally, 68% of
the treatment group responses were rated “Good” or “Excellent,”
compared to only 29% in the control group. This indicates that
explanatory annotations helped participants more e�ectively un-
derstand and communicate the causes of compiler errors.

6.2 RQ2: Do Developers Adopt Annotation
Styles from Visuals?

The Figure illustrates annotation usage across tasks. While both
groups used a variety of annotation types, the treatment group
employed annotations more frequently across nearly all categories,
including associations, explanatory text, and symbolic markers.
This suggests that exposure to explanatory visualisations encour-
aged participants to mirror similar visual strategies in their own
explanations. Annotation usage The distribution of annotation
types did not di�er between groups (j2 (3 5 ) = ⇠⇠⇠ , ? = 0.--- ),
but Treatment used more annotations per participant than Control
(Mann–Whitney * = --- , I = ... , ? = 0.--- ; A = ''', Cli�’s
X = ⇡⇡⇡). Across individual annotation categories (e.g., highlights,
callouts), no test survived FDR correction (@ < .05).

6.3 RQ3: What Features Di�erentiate
Explanatory from Baseline Visuals?

Cognitive Dimensions Questionnaire results revealed a statistically
signi�cant di�erence in the Hidden Dependencies dimension (me-
dian = 4 for treatment, 3 for control, ? = 0.008). This suggests that
explanatory visualizations enhanced participants’ ability to iden-
tify and reason about underlying relationships in code. Notably,
participants exposed to color-enhanced explanatory visualizations
showed observable improvements in understanding hidden code
relationships and mental operations. While statistical signi�cance
was strongest in theHiddenDependencies dimension, revised visual
cues, such as clearer color di�erentiation, contributed to improved
reasoning in more complex tasks.

6.4 RQ4: Do Better Explanations Re�ect
Improved Mental Models?

Participants who produced higher-quality explanations, particu-
larly those rated as “Good” or “Excellent,” demonstrated notably
better performance in the recall tasks. In contrast, those with lower-
rated explanations, such as “Fail,” showed considerably weaker
recall accuracy. These observations reinforce the idea that strong
self-explanatory abilities are linked to the development of more
accurate mental models of compiler behavior.

7 THREATS TO VALIDITY
Our study, like any empirical investigation, is subject to several
potential threats to validity. These threats arise from limitations in
the experimental design, the scope of the tasks, participant charac-
teristics, and the generalizability of our �ndings. We discuss these
concerns in detail below to contextualize our results and guide
future research.

7.1 External Validity
One major concern pertains to the external validity, or the extent to
which our �ndings generalize to real-world programming scenar-
ios. In practical software development, developers often encounter
error messages within large and complex codebases that span mul-
tiple �les and contain a mixture of both functional and erroneous
code. By contrast, our experimental tasks were designed to isolate
the speci�c lines of code directly responsible for generating an
error, and all code was contained within a single source �le. This
simpli�ed setting may not fully capture the cognitive challenges de-
velopers face when diagnosing errors across distributed codebases
or in the presence of intricate dependencies.

Furthermore, our study applied explanatory visualizations to
only six carefully selected programming tasks that �t entirely on a
single screen. These tasks were restricted to Java and represented
a narrow subset of possible error scenarios. It remains an open
question whether similar visualization techniques can be e�ec-
tively scaled to a broader and more diverse set of error messages,
especially in other programming languages or in larger, more com-
plex codebases. Thus, while our results are promising, we caution
against overgeneralizing them beyond the speci�c contexts studied.

7.2 Construct Validity
Construct validity concerns whether the measurements and instru-
ments used in the study truly capture the constructs of interest. We
observed an interesting divergence in our data: participants in the
treatment group, who received explanatory visualizations, rated
their ability to explain the errors signi�cantly higher than those
in the control group. However, this increased con�dence did not
consistently translate into improved correctness during recall tasks.

We hypothesize that this discrepancy may be due to partial un-
derstanding; participants could formulate plausible explanations
without fully internalizing the underlying compiler reasoning or
error semantics. This incomplete mental model might have limited
their ability to accurately recall speci�c details or resolve related
problems. Additionally, several participants struggled with syntax-
related issues, occasionally introducing secondary compiler errors
that were unrelated to the primary recall task. These distractions
likely a�ected performance and highlight the complexity of disen-
tangling understanding from practical coding ability.

Another construct validity threat stems from the experimental
protocol itself. The use of a think-aloud procedure, while essential
for capturing participants’ explanations and reasoning processes,
may have inadvertently enhanced self-explanation abilities across
both groups. This e�ect could have diminished the observable dif-
ferences between the treatment and control conditions, particularly
in recall accuracy.
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Recent re�nements in the visual annotation system, including 
the use of distinct and intuitive color schemes, have reduced the 
cognitive overhead associated with unfamiliar representations. As a 
result, participants were able to engage more readily with the visu-
alizations and derive meaningful insights, particularly in reasoning 
about complex code paths and error propagation.

7.3 Ecological Validity
Ecological validity refers to how closely the experimental setting 
and materials approximate real-world conditions. Although we 
strove to simulate realistic debugging tasks, the controlled labo-
ratory environment inherently di�ers from natural programming 
contexts, where developers have access to extensive documentation, 
debugging tools, version control history, and collaborative support.

Participants completed tasks in isolation without the usual in-
terruptions, resource consultations, or social interactions charac-
teristic of professional software development. Additionally, the 
constrained time limits and task framing may have in�uenced par-
ticipants’ cognitive strategies in ways that di�er from everyday 
practices.

Future studies would bene�t from deploying explanatory visu-
alizations in authentic development environments over extended 
periods to better understand their practical utility and long-term 
e�ects on developer cognition and work�ow.

7.4 Summary
While these threats do not invalidate the positive trends observed 
in our study, they underscore the need for cautious interpretation 
and further research. Addressing these limitations through more 
ecologically valid experimental designs, broader task sets, longitu-
dinal studies, and integration with real-world development tools 
will be essential to fully establish the e�cacy and generalizability 
of compiler visualization techniques for error comprehension.

8 RELATED WORK
The concept of self-explanation as a powerful cognitive strategy 
to enhance learning and comprehension has been extensively val-
idated in the context of human-computer interaction and educa-
tional psychology. Lim et al. [12] provided foundational insights 
by empirically demonstrating that when users articulate reasons 
behind a system’s behaviors or outputs, their understanding deep-
ens and their trust in the system increases signi�cantly. This e�ect 
stems from the active engagement required during self-explanation, 
which helps users internalize complex system logic and fosters 
more accurate mental models. Building on this, Ainsworth and 
Loizou [1] highlighted the critical role of visual representations, 
showing that diagrams and graphical depictions not only facilitate 
but also amplify the bene�ts of self-explanation compared to purely 
textual explanations. Their �ndings underscore the cognitive ad-
vantages of externalizing abstract information visually, enabling 
users to form clearer and more organized conceptual structures.

Parallel research streams have targeted the problem of improv-
ing error noti�cation comprehension, which remains a persistent 
challenge in programming environments. Je�ery’s development of 
the Merr tool [9] illustrates a pragmatic approach to this issue by 
intercepting and augmenting the error handling process of the LR

parser generator within compilers. This enhancement allows for
more context-aware and informative syntax error messages, help-
ing developers diagnose problems more e�ectively. Kantorowitz
and Laor [10] similarly proposed modi�cations at the parser gen-
eration level to reduce the ambiguity and improve the clarity of
error reports. Despite these advancements, research indicates that
even highly detailed and accurate textual error messages may not
su�ciently improve programmer comprehension [5, 15]. This sug-
gests that alternative modalities—particularly visual or interactive
representations—might be better suited to convey the complex se-
mantics behind compiler errors, addressing limitations inherent to
textual feedback.

Additionally, Hartmann et al. [8] proposed a social recommenda-
tion system that leverages community knowledge by showcasing
how other developers interpret and resolve speci�c errors. This
approach externalizes the troubleshooting process, providing devel-
opers with curated examples and strategies derived from collective
experience. While this method taps into the social dimension of
software development, our approach takes a di�erent stance by
advocating for the compiler itself to expose its internal reasoning
processes directly through visualizations. By enabling developers
to peer “under the hood” of the compiler, our method aims to pro-
vide a more fundamental and intrinsic understanding, rather than
relying solely on external guidance or heuristics.

Complementing these perspectives are e�orts focused on en-
hancing the precision and reliability of compiler diagnostics to
reduce false positives and improve overall error detection [2–4].
These improvements are crucial because the e�cacy of any vi-
sualization tool hinges on the quality of the underlying data. By
combining accurate diagnostics with rich, interactive visualizations,
there is potential to create synergistic e�ects that further empower
developers and streamline debugging work�ows.

8.1 AI Coding Assistants and Diagnostic
Explanations

Modern IDEs increasingly embed conversational assistants for code
and diagnostics. GitHub Copilot Chat in Visual Studio can ana-
lyze exceptions and errors in context and propose �xes directly
within the IDE [13, 14]. Google’s Gemini also exposes “explain and
�x errors” capabilities (e.g., in Colab and Chrome DevTools) that
summarize error causes and suggest remediations [6, 7]. While
these systems primarily deliver textual rationales, our approach
contributes complementary visual structure: it externalizes the
error’s semantics (what failed), scope (where), and dependencies
(what else is implicated) at a glance, which can lower cognitive
load, support scanning and comparison across attempts, and make
hidden dependencies actionable inside the IDE. Visual diagnostics
can therefore serve as an intermediate representation that comple-
ments LLM narratives by anchoring them to consistent, inspectable
visual elements, potentially improving trust and comprehension
for time-pressured debugging work�ows.

9 FUTURE WORK
Looking ahead, there are multiple avenues for expanding the scope
and impact of this research. At the forefront is the technical feasi-
bility of capturing and representing the complex and voluminous
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analysis traces that compilers generate during program compila-
tion. While it is well established that modern compilers produce 
extensive internal data, from syntax trees to semantic analyses and 
optimization steps, a critical open question remains: which subsets 
of this data are most salient and bene�cial to developers seeking to 
understand error messages and program behavior? Addressing this 
requires not only novel algorithms and instrumentation techniques 
to e�ciently extract, �lter, and encode compiler state information 
but also careful human-centered design to ensure that visualizations 
convey relevant insights without overwhelming users.

One promising research strategy is to prototype visualization 
techniques within simpli�ed language environments or pedagog-
ical compiler implementations, such as MiniJava [17]. These con-
strained settings o�er controlled complexity, facilitating iterative 
design and evaluation of visualization concepts before scaling to 
full-featured compilers. Through such prototypes, researchers can 
experiment with di�erent visual metaphors, interaction paradigms, 
and trace representations, gaining valuable feedback from users 
and re�ning approaches accordingly.

In parallel, a thorough empirical investigation into the taxonomy 
of compiler noti�cations is warranted. Not all noti�cations serve 
the same function or possess the same cognitive demands. Some 
errors may stem from simple syntax mistakes, while others re�ect 
deeper semantic or logical inconsistencies. Developing a systematic 
categorization of noti�cations—based on their causes, complexity, 
frequency, and potential for visualization—could inform tailored 
visualization strategies that optimize clarity and cognitive load. 
This taxonomy could also guide the prioritization of visualization 
e�orts toward noti�cations where the expected bene�t is greatest.

Beyond noti�cation categorization, future work should explore 
the integration of visualization tools into real-world integrated 
development environments (IDEs) and the impact on developer 
work�ows. User studies involving professional programmers and 
students could reveal how visual explanations in�uence debugging 
e�ciency, error resolution accuracy, and knowledge retention over 
time. Longitudinal studies would help assess how these tools a�ect 
developers’ mental models and whether they foster deeper, more 
transferable understanding of compiler behavior.

Additionally, exploring multimodal approaches that combine 
visualizations with textual explanations, interactive exploration, or 
even voice-assisted guidance could create more holistic and adap-
tive support systems. Investigating how these modalities comple-
ment each other and how developers prefer to access information 
during di�erent debugging scenarios would provide actionable in-
sights for tool designers.

Finally, as compiler technologies evolve and become more sophis-
ticated, there is an opportunity to leverage emerging techniques 
in machine learning and arti�cial intelligence to dynamically tai-
lor visual explanations to individual developer expertise and con-
text. Adaptive visualizations that learn from user interactions and 
feedback could further enhance the usability and e�ectiveness of 
debugging tools, making compiler feedback not only more trans-
parent but also more personalized. Recent advances in AI-assisted 
debugging tools have begun to explore similar territories, leverag-
ing large language models and deep learning for error localization 
and �x suggestions [15], [16]. Integrating such approaches with

visualization-based reasoning remains an exciting frontier for fu-
ture research.

10 CONCLUSION
This paper has presented a compelling vision for enhancing devel-
oper comprehension and problem-solving through the visualization
of opaque compiler reasoning processes. By exposing internal com-
piler states and decision-making pathways in visually intuitive for-
mats, we facilitate developers’ ability to self-explain and internalize
the causes of errors, leading to deeper understanding and increased
trust in the development environment. Our �ndings suggest that
when visualizations align well with developer expectations and
cognitive frameworks, they are more frequently utilized and lead
to improved mental models that support more e�ective debugging
and learning.

We posit that the inherently diagrammatic methods develop-
ers naturally employ when communicating about programming
problems—both in collaboration with peers and in personal cog-
nition—provide a rich source of inspiration for designing next-
generation integrated development environments. By embedding
these diagrammatic communication principles directly into com-
piler feedback mechanisms, IDEs can transcend traditional text-
heavy error reporting and foster more engaging, interactive, and
insightful experiences.

The intersection of compiler internals, cognitive science, and
visualization technology represents an exciting frontier for software
engineering research. We believe that continued exploration in this
space will yield tools that not only reduce the cognitive burden
of debugging but also cultivate a deeper synergy between human
developers and the compilers that underpin their work. Ultimately,
this integration promises to enhance software quality, accelerate
development cycles, and empower developers to tackle increasingly
complex programming challenges with con�dence and clarity.

REFERENCES
[1] S. Ainsworth and A. T. Loizou. 2003. The e�ects of self-explaining when learning

with text or diagrams. Cognitive Science 27, 4 (Aug. 2003), 669–681.
[2] N. Boustani and J. Hage. 2011. Improving type error messages for generic Java.

Higher-Order and Symbolic Computation 24, 1-2 (Jun. 2011), 3–39.
[3] J. C. Campbell, A. Hindle, and J. N. Amaral. 2014. Syntax errors just aren’t

natural: Improving error reporting with language models. In Proceedings of the
11th Working Conference on Mining Software Repositories (MSR). 252–261.

[4] S. Chen,M. Erwig, and K. Smeltzer. 2014. Let’s hear both sides: On combining type-
error reporting tools. In Proceedings of the IEEE Symposium on Visual Languages
and Human-Centric Computing (VL/HCC). 145–152.

[5] P. Denny, A. Luxton-Reilly, and D. Carpenter. 2014. Enhancing syntax error
messages appears ine�ectual. In Proceedings of the 2014 Conference on Innovation
and Technology in Computer Science Education (ITiCSE). 273–278.

[6] Google. 2024. Explain and Fix Errors in Colab. https://colab.research.google.com/
Accessed: 2025-08-26.

[7] Google. 2024. Gemini in Chrome DevTools. https://developer.chrome.com/docs/
devtools/ Accessed: 2025-08-26.

[8] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer. 2010. What would
other programmers do. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (CHI). 1019–1028.

[9] C. L. Je�ery. 2003. Generating LR syntax error messages from examples. ACM
Transactions on Programming Languages and Systems 25, 5 (Sep. 2003), 631–640.

[10] E. Kantorowitz and H. Laor. 1986. Automatic generation of useful syntax error
messages. Software: Practice and Experience 16, 7 (Jul. 1986), 627–640.

[11] A. J. Ko and B. A. Myers. 2005. A framework and methodology for studying the
causes of software errors in programming systems. Journal of Visual Languages
& Computing 16, 1 (2005), 41–84.

[12] B. Y. Lim, A. K. Dey, and D. Avrahami. 2009. Why and why not explanations
improve the intelligibility of context-aware intelligent systems. In Proceedings of

Proceedings of ICUSI 2025

40



the SIGCHI Conference on Human Factors in Computing Systems (CHI). 2119–2129.
[13] Microsoft. 2023. GitHub Copilot Chat in Visual Studio. https://learn.microsoft.

com/en-us/visualstudio/ide/copilot-chat Accessed: 2025-08-26.
[14] Microsoft. 2023. Visual Studio IDE Features. https://visualstudio.microsoft.com/

vs/features/ Accessed: 2025-08-26.
[15] M.-H. Nienaltowski, M. Pedroni, and B. Meyer. 2008. Compiler error messages:

What can help novices?. In Proceedings of the 39th SIGCSE Technical Symposium
on Computer Science Education. 168–172.

[16] C. Parnin. 2011. Subvocalization - Toward hearing the inner thoughts of develop-
ers. In Proceedings of the IEEE International Conference on Program Comprehension
(ICPC). 197–200.

[17] E. Roberts. 2001. An overview of MiniJava. In Proceedings of the 32nd SIGCSE
Technical Symposium on Computer Science Education, Vol. 33. 1–5.

[18] V. J. Traver. 2010. On compiler error messages: What they say and what they
mean. Advances in Human-Computer Interaction 2010 (2010), 1–26.

Proceedings of ICUSI 2025

41


