Proceedings of ICUSI 2025

Interactive Tool for Sign Language Alphabet Acquisition

Rebeca Costache
Faculty of Computer Science, “Alexandru loan
Cuza” University

General Berthelot, No. 16, Iasi, Romania
rebeca.costachel@student.uaic.ro

ABSTRACT

Sign language education remains inadequately supported by
existing interactive learning platforms, often lacking
inclusive and engaging experiences. This paper presents a
human-centered application aimed at addressing this
problem by employing the Kinect, Microsoft’s gesture-based
sensor, to facilitate immersive sign language instruction.
Furthermore, integrating the Kinect with Machine Learning
(ML) algorithms can boost the pedagogical progression in
sign language acquisition, as learning is most efficient when
theory is combined with active practice. In the development
process of this application, various models were trained on
three different datasets in order to obtain the best
performance in learning and predicting the American Sign
Language (ASL) alphabet. By integrating Human-Computer
Interaction (HCI), this application represents the first step in
supporting not only members of the Deaf and Hard of
Hearing (DHH) communities, but also individuals from
broader linguistic, educational, and professional
backgrounds who seek to learn sign language for
communication and education, or to advocate for Deaf rights
and accessibility.

Author Keywords

Gesture-based interaction; Kinect; neural networks;
educational technology; American Sign Language; human-
computer interaction.

ACM Classification Keywords

1.5.1 Models: Neural nets.

K.3.1 Computer Uses in Education: Computer-assisted
instruction (CAI).

General Terms
Human Factors; Languages; Performance.

DOI: 10.37789/icusi.2025.2

INTRODUCTION

Language deprivation refers to the condition of a child that
lacks full access to a natural language during critical years of
development. Unfortunately, this phenomenon is often
present in DHH children who present delayed skills in their
first language [4]. Unlike most children who acquire
language naturally thorough constant exposure, DHH
children face a mismatch between their perceptual abilities
and their environment, leading to difficulties in social
development and cognitive delays. The solution described in
this paper to the phenomenon of language deprivation among
DHH communities is the development of Sign Textify: an

Adrian Iftene
Faculty of Computer Science, “Alexandru loan
Cuza” University

General Berthelot, No. 16, Iasi, Romania
adiftene@info.uaic.ro

interactive tool designed to teach users the American Sign
Language alphabet by providing a well-rounded and
comprehensive learning experience. The tool offers users the
flexibility to engage in both practice and assessment modes.

In the practice mode, users are guided with visual references
displaying the correct hand positions for each letter and are
asked to attempt to replicate the sign. Upon successful
execution, the application moves on to the next letter in
alphabetical order. In the assessment mode, the users must
sign letters without any hints. The letters appear in
randomized order to prevent reliance on muscle memory,
ensuring a more robust learning experience. Throughout both
modes, the tool renders the frames captured by the Kinect
sensor [15] on a window in order to give real-time feedback
to users. Being able to see themselves in the window like
they would in a mirror allows them to self-correct, while also
speeding up the educational process.

Many papers, articles, and people talk about the benefits
DHH people have if the gaps in communication could be
eliminated [5, 7, 9, 14]. Effective communication channels
promote accessibility, foster inclusivity and equal
opportunities, and remove obstacles that prevent the deaf
from engaging with the broader community. Although all
these are true, this perspective idealizes hearing individuals,
implying that non-hearing people must integrate into hearing
communities rather than creating mutual inclusion and
understanding. What if we shift our perspective and explore
the advantages of being able to communicate with the DHH
community? Rather than focusing on inclusion as a one-
sided effort, we can recognize that learning sign language
and creating meaningful connections enrich both hearing and
non-hearing people alike.

PREVIOUS APPROACHES

Before proposing a new solution to the challenges described
in the previous section, it is essential to understand the
landscape of existing attempts. Over the years, developers
and engineers have explored various methods to bridge the
communication gap between sign language users and non-
signers. Despite decades of research, no existing system has
fully succeeded in making sign language translation
seamless, accurate, and accessible, highlighting the need for
further innovation. This section reviews the most prominent
attempts in easing the process of learning and translation of
sign language into natural language, to discover their
outcome related to the problem in question, to select the most
effective solutions and to avoid less optimal ones.

Proceedings of ICUSI 2025

Rocket Sign Language [12]

The platform provides videos demonstrating ASL signs,
which users can slow down, speed up, or rewind to perfect
their signing skills over 7 learning modules, each module
consisting of 7 lessons (see Figure 1). It offers a structured
course with lifetime access, allowing learners to revisit
lessons anytime. At the end of every lesson, an evaluation
assesses how many words the user has retained. Each
evaluation earns points, which are recorded on a leaderboard
showcasing the scores achieved by users over the past 24
hours. Additionally, the platform features a streak count to
encourage consistent learning, and it covers essential aspects
of Deaf culture and etiquette to ensure learners can
communicate respectfully and effectively within the
community. Rocket Sign Language offers several
advantages that contribute to its accessibility and
functionality. It provides structured lesson plans for learning
thirteen spoken languages in addition to ASL. Each language
includes its own set of learning tools. For ASL, the main tool
is a dictionary that links each word to a corresponding video
demonstration of its sign. Furthermore, the platform supports
mobile access, enhancing its convenience for learners on the
go. However, certain limitations affect its pedagogical
effectiveness. The app lacks a dedicated practice tab that
allows for independent skill rehearsal separate from guided
lessons. Additionally, it does not feature real-time evaluation
of signing accuracy, relying instead on self-assessment,
which may hinder immediate correction and learning
feedback.

Lingvano [8]

The platform offers an engaging and interactive approach to
learning, making sign language accessible to everyone,
regardless of prior experience. One of the most unique
aspects of Lingvano is the “mirror” feature. The idea behind
this feature is that when the user is shown a new sign, they
can choose to open their laptop camera, in order to see
themselves perform the new sign. The image of the new sign
is placed next to this mirror, allowing users to refine their
gestures in real-time by trying to mimic the sign in the photo
and autocorrecting their hand position.

Single Motion (sM)

1.

Figure 1. Dashboard of the Rocket Sign Language web
application.

Furthermore, this application prioritizes hands-on learning
through well-organized dialogue exercises (see Figure 2).

™

i\

Figure 2. Dialogue of Chapter 1, Lesson 5 on Lingvano web
application.

Instead of just learning individual signs, users experience
conversations that reflect real-world interactions, making the
learning process feel more authentic. Similar to Rocket Sign
Language, the platform provides insights into Deaf culture
and etiquette, ensuring that learners gain a well-rounded
understanding of how to communicate effectively and
respectfully. As additional advantages, Lingvano is gamified
to encourage interaction and motivation and it
accommodates three sign languages (American, English, and
Australian), making it more broadly accessible than other
similar applications. Learners also benefit from an integrated
dictionary, a free trial period with flexible billing options,
and a mobile app for portability. However, another similarity
between Lingvano and Rocket Sign Language is the
drawback of not having a real-time automated evaluation of
signing accuracy, which means users must rely on self-
assessment, without immediate corrective feedback given
directly from the platform.

Sign School [13]

The website features a Sign of the Day, which introduces
users to new vocabulary daily, and a Fingerspelling Game
for practicing handshapes, depicted in Figure 3. The platform
delivers ASL grammar lessons designed to support learners
across a range of proficiency levels, from beginner to
advanced, ensuring a comprehensive understanding of
sentence structure and communication nuances. One of its
standout features is the ability to customize learning paths,
allowing users to progress at their own pace. Whether used
for casual learning, academic purposes, or professional
development, Sign School provides a flexible and engaging
way to study ASL without requiring formal enrollment. As a
not logged-in user, it allows access to three different
dictionaries (one with all the signs, one ordered by topic, and
one ordered by handshapes), whereas a logged-in user can
customize his/her dictionaries (personal and favorites
dictionaries). In each lesson, the user has access to “Topics”,
which enables creating a custom learning path, “Grammar”
explanations, and “Tools” such as the fingerspelling game
and the dictionaries. Additionally, the dashboard of the
application contains a series of metrics indicating the activity
on this platform: the current and record streak, fingerspelling

Proceedings of ICUSI 2025

accuracy and score, lesson accuracy, and the user’s level
based on points earned.

QSignS(hoo\ Dashboard

Fingerspelling Game

Score 0

Highscore 0
Replays 3

Figure 3. Interactive fingerspelling game screen from Sign
School.

The application empowers teachers to design custom lessons
tailored to their students’ needs and enables users to select
difficulty levels appropriate to their skill. Similar to
Lingvano, Sign School includes a mirrored camera feature
for self-monitoring. Users can also share sign lessons with
other users, encouraging collaborative learning. Additional
features include a spelling-focused practice hub, full mobile
access, and no cost to use. Consistent with the other
applications described in this section, one significant
drawback is the absence of real-time accuracy evaluation,
leaving users to depend solely on self-assessment without
immediate corrective feedback coming in an automated
manner from the platform.

Pocket Sign [11]

The gamified platform allows access to an abundance of
learning resources. With new lessons released each week, the
user can gain points after each lesson, which can then be used
to buy special “superpowers” such as retrying a sign,
skipping a sign, or activating a tool that reveals the correct
answer. Additional resources include a dictionary that maps
words to their sign language representations through short
videos, and fingerspelling games which need access to the
laptop camera to check if the user is signing correctly (see
Figure 4).

Figure 4. Fingerspelling game of the Pocket Sign web
application.

If a sign is recognized as correct, the game automatically
advances to the next item; if not, it remains on the current
sign until the user performs it accurately. As advantages, the
application offers a free introductory lesson along with the
option for a 14-day free trial, making it accessible for new
users. It includes complimentary fingerspelling games that
help reinforce learning through interactive practice. Notably,

these games provide real-time evaluation of signing
accuracy, allowing users to receive immediate feedback and
adjust their performance accordingly. Nevertheless, the
platform would benefit significantly from enhancements to
its user interface and user experience design to make it more
visually appealing and intuitive.

SIGN TEXTIFY

The solution described in this paper to the lack of educational
resources for learning sign languages application is Sign
Textify. It is designed as two mini-games, allowing users to
choose between a practice session and an assessment session.
In practice mode, the user is prompted to sign the letters of
the American alphabet, starting with A and finishing with Z,
and is provided with a support image that presents the
corresponding sign. If the user correctly signs the letter, the
application proceeds to the following letter, displaying a
"well done" message on the screen for a few seconds. If the
sign is not correctly performed, the application waits until
the user gets it right. Additionally, the user is given as an
escape route a skip button, because each student has their
own learning pace, and assigning responsibility for the pace
to the student fosters autonomy. In the assessment part, the
letters of the alphabet are shuffled, and no aid is offered
except the skip button. This allows the user to assess how
well they have learned.

System Context

Sign Textify is designed as a server-client application to
provide both translation capabilities and an interactive
learning experience. As illustrated in Figure 5, the system is
composed of three main components: the server, the client,
and the Kinect sensor, each of which will be described in
detail in the following subsections. The user’s first
interaction in Sign Textify is with the Kinect sensor, as the
signs will be performed in front of it. The .NET client
continuously waits for color feed from the sensor and sends
it to the Python Server for processing. The server is
responsible for extracting hand and finger position
coordinates, and if the pattern of these coordinates is
recognized, it displays the resulting letter on the screen. The
user can see the outcome in real-time and adjust the positions
of the hands and fingers to either try again or sign the next
required sign. If the user gets stuck, the interface features a
skip button that allows them to jump to the following letter,
as depicted in Figure 6.

Kinect

The Kinect for Xbox 360, as shown in Figure 7, also known
as Kinect version 1, is a motion-sensing device developed by
Microsoft that enables interaction through body movements
and voice commands. Equipped with depth sensors, skeletal
tracking, gesture recognition, and voice control, it allows
users to interact with applications hands-free. In software
development, Kinect has been employed for human-
computer interaction, virtual reality, robotics, and machine
vision [1, 2, 3, 6, 10].

Proceedings of ICUSI 2025

Server

displays the
predicted letter

User | Sign Textify

[Person] } [Software System]

Person who wants to learn
ASL alphabet

in front of the Kinect

[Container: Python]

Responsible with capturing
landmarks, giving them as input to the
NN and displaying the predicted label.

performs a sign gesture

Client
[Container: .NET Framework 4, C#]

sends RGB feed
[TCP] Responsible with Kinect integration,
and sending RGB feed from Kinect to
Server.

continuously retrieves
RGB feed

Kinect XBOX 360

[Microsoft Sensor]

Used for its RGB feed.

Figure 5. Context diagram to showcase main interactions between the user and the software system.

In Sign Textify, the Kinect is used as a camera. Initially chosen
for its skeleton tracking library, the Kinect did not prove to be
as helpful as intended. It was clear that the library lacks the
expressiveness required to accurately distinguish between
different signs. This limitation arises from the fact that it
tracks only two key points on each hand: the wrist and the
hand as a whole (see Figure 8).

8.4 Sign Textify - practice session = o X

igr; A

Figure 6. Window of a practice session in Sign Textify,
prompting the user to sign letter A.

Figure 7. Kinect Xbox 360 sensor from Microsoft.

Client

The primary purpose of the client is to connect to the Kinect
sensor and capture RGB frames, which are then delivered to
the server for processing. The client is a C# console
application that streams color frames from the Kinect sensor
to a remote server. Upon startup, the application initializes

the Kinect sensor, then it attempts to establish a
Transmission Control Protocol (TCP) connection to a server,
and once connected, the application listens for new color
frames from the Kinect. For each frame, the client captures
the raw image data, compresses it into JPEG (Joint
Photographic Experts Group) format, and transmits it to the
server, enabling efficient network usage and faster data
transfer while maintaining reasonable image quality. For an
application that aims to translate signs into letters in real-
time, speed is crucial to minimize latency. The application
uses a custom communication protocol to transmit image data
from the client to the server. Each message sent consists of a
5-byte header followed by the payload (the compressed image
data). The first byte indicates the data type, where a value of 1
represents a Red Green Blue (RGB) frame and a value of 2
means an infrared depth frame. The next 4 bytes specify the
size of the payload in bytes that allows the server to know
exactly how many bytes to read for the image data that
follows.

Head

Shoulder Center

Shoulder Right Shoulder Left

Elbow Right Elbow Left

Wrist Right

Hand Right

Knee Right Knee Left

Ankle Left
Foot Left

Ankle Right
Foot Right

Figure 8. The joints of the skeleton tracking system from the
Kinect.

Proceedings of ICUSI 2025

Server

The server plays a crucial role in processing frames received
from the client. Its primary responsibilities include detecting
the presence of a hand in each frame, extracting 21 key
landmarks of the palm using Media Pipe, and running
inference on those extracted coordinates. Based on the
analysis, the server then generates and displays a bounding
box around the detected hand, presents the precise
coordinates of the identified landmarks, and provides the
inference result in the form of a label. The Hand Tracking
module has the function of drawing the bounding box of the
hand, the connections between the landmarks, and the
predicted label on a given frame (see Figure 6). This is done
using OpenCV functions for rendering rectangles and putting
text on the window, and Media Pipe for drawing the
connecting lines between the points of all the landmarks. Each
frame is processed by another function from this module,
which converts the image to RGB format, processes the image
using the Hands class from Media Pipe, and returns an array
of tuples consisting of the x, y, and z coordinates if a hand is
recognized in the picture; otherwise, it returns nothing. The
next important module of the server is the Inference module
that manages interactions with the model, including loading
the model, normalizing landmarks to fit the requested size and
type for its input, and predicting labels. All trained models
were stored in Open Neural Network Exchange (ONNX)
format, an open standard for the representation of deep
learning or machine learning models. The normalization of
landmarks involves converting the coordinates from a flat
array into a 2-dimensional NumPy array (one row and multiple
columns), to feed it as input to the model. After this step, the
normalized coordinates are sent to the model, and the
predicted label is forwarded to the main loop of the
application, which determines whether the user has correctly
signed the current letter.

Datasets

For training the neural network of the application, data was
taken from an ASL Alphabet dataset on Kaggle, which is
composed of both training and test batches. The training
dataset is an extensive collection of labeled images
representing all letters of the alphabet: 3000 images per sign,

a) Original train data

Label 1 Count 1 Label2 Count2 Label 3 Count3
A 3000 J 3000 space 3000
B 3000 K 3000 T 3000

C 3000 L 3000

c

3000

D 3000 M 3000 3000

s <

del 3000 N 3000 3000
E 3000 [¢] 3000 X 3000
F 3000 P 3000 Y 3000
G 3000 Q 3000 z 3000
H 3000 R 3000

I 3000 S 3000

29 signs (including signs for “space”, “delete”, and
“nothing”), which means a total of 87,000 color images of
hands signing each letter. Each letter has its folder,
containing thousands of images captured under various
lighting conditions, backgrounds, and hand orientations to
offer a diverse range of options. For test, the dataset has one
image per letter, resulting in exactly 29 images. To create the
most efficient model and minimize training time, the
“nothing” label was ignored, as it was not necessary for this
application. Thus, the final model predicts a total of 28
different possible labels, and the dataset used is composed of
84,000 images. A new dataset was created consisting of
coordinate arrays of the 21 3-dimensional landmarks
extracted using Media Pipe. This new dataset was stored
using Hierarchical Data Format version 5 (HDF5), a method
for storing large amounts of data in a single file. HDFS files
can contain multidimensional arrays, tables, images, and
metadata, all organized in a hierarchical structure similar to
folders and files in a filesystem, enabling fast loading and
easy access during model training and evaluation.

Due to preprocessing, the dataset suffered a loss in the
number of training and test images, as Media Pipe’s model
failed in recognizing the hand in all images. In other words,
the training dataset is a matrix with only 63,673 rows (out of
84,000 total number of images) and 63 columns (3
coordinates for each of the 21 landmarks). To gain a better
understanding of how many images were lost after
preprocessing, a script was created to generate a markdown
file containing statistics on the data. Firstly, Figure 9 shows
a comparison between the original number of training images
and the final number of successfully preprocessed images.
Extracting the landmarks resulted in the loss of exactly
20,327 train instances. This means that approximately
75.80% of the original train dataset remained after
preprocessing. The statistics revealed that the test set was not
as fortunate: only 51.85% of the original test dataset was
kept. Secondly, for greater precision, the script also
generated statistics for each letter, including the number of
lost instances after preprocessing and the percentage of the
original data that remained for that letter (see Figure 10).

b) Preprocessed train json data

Label1 Count1 Label2 Count2 Label 3 Count3
A 2187 J 2578 space 1625
B 2207 K 2700 T 2349
C 1988 L 2527 u 2516
D 2463 M 1565 v 2548
del 1701 N 1276 w 2456
E 2308 o 2265 X 2158
F 2876 P 2042 Y 2585

G 2440 2093 z 2351

» 0

H 2393 2541

| 2384

n

2551

Figure 9. The number of original train data for each letter (a) and preprocessed train data for each letter (b).

Proceedings of ICUSI 2025

a) Label: A

* Original train data: 3000

* Preprocessed train json data: 2187

* Number of missing preprocessed train json data for this label: 813
* Percentage of preprocessed train json data: 72.90%

b) Label: B

® Original train data: 3000

* Preprocessed train json data: 2207

* Number of missing preprocessed train json data for this label: 793
* Percentage of preprocessed train json data: 73.57%

Figure 10. The results of preprocessing for label A (a) and label B (b).

Models

Throughout the project's implementation, multiple models
were trained to increase test accuracy and improve overall
performance. The general structure of the fully connected,
feedforward deep neural networks implemented had 63
neurons on the input layer, 128 and 64 neurons on the
following two hidden layers, and 28 neurons as the output
(corresponding to 28 letters, excluding the “nothing” label in
the original dataset). As activation functions, ReLU was used
for the hidden layers and Softmax for the output layer to
produce a probability distribution for all 28 possible labels.
The Adam optimization algorithm was applied to increase
training efficiency, leveraging its adaptive learning rate and
momentum-based approach. The cross-entropy loss function
was chosen for measuring the difference between the
predicted and actual probabilities, ensuring accurate model
adjustments during training. Additionally, a learning rate
scheduling algorithm was used to dynamically adjust the
learning rate when model improvements stagnate. By
decreasing the learning rate when performance hits a plateau,
the model avoids unnecessary oscillations and improves
convergence.

Performance Metrics

It was brought to my attention by Professor Sebastian
Ciobanu that this accuracy is not a reliable metric for
evaluating models trained on unbalanced data, such as the
dataset used for Sign Textify. In scenarios where one class is
significantly more common than others, a model can achieve
high accuracy by favoring the dominant class while
neglecting the minority class. The class with the most
samples in the dataset of coordinates is K, with 2,700
samples, and the class with the fewest samples is N, with
only 1,276 samples (1,424 fewer samples than K). This
proves that the dataset is considerably unbalanced and needs
a weighted form of evaluation. The F1-score provides a more
balanced evaluation, as it considers both precision (how
many predicted positives are correct) and recall (how many
actual positives were correctly identified). Its formula is:

Precision X Recall

F1l=
Precision + Recall
where
. True positives
Precision = — —
True positives + False positives
and

True positives

Recall = — 7
True positives + False negatives

Neural Network Error Analysis

The error analysis conducted on this model revealed four
groups of signs that are very similar to each other. The first
two signs discovered that are similar are T and X, where the
key difference is the position of the thumb: for T, the thumb
is outside the palm, whereas for X, it rests on the fist, as seen
in Figure 11. M and N represent another pair of similar signs
(see Figure 12). The difference between these two signs lies
again in the placement of the thumb: for the letter M, the
thumb is tucked under three fingers (index, middle, and ring),
whereas for the letter N, the thumb must be placed under only
two fingers (index and middle). Letters A and S are both “fist”
shapes (see Figure 13). A is a closed fist with the thumb resting
alongside the curled fingers, visible from the side. S is also a
fist, but the thumb wraps in front of the fingers, similar to how
the thumb lies in the letter X. In both, the thumb makes the
difference. The last cluster consists of 4 signs: R, V, K, and U
(see Figure 14). Letter R is done by crossing the index and
middle fingers, with the thumb wrapped in front of the other
curled fingers. For V, the index and the middle fingers form a
V, with the thumb out of view. For letter K, the fingers spread
into the same V shape, while the thumb reaches up to touch
the middle finger. Lastly, for letter U, the same two fingers are
held straight and together, with the thumb tucked neatly
against the side. Generally, the models trained showed
difficulties in recognizing all the signs in a similar group. The
final network correctly classifies M from the first group, S
from the second, and R, V, and K from the last group.

a)i b)

Figure 11. Images from the original test dataset representing
letters T (a) and X (b).

Figure 12. Images from the original test dataset representing
letters M (a) and N (b).

10

Proceedings of ICUSI 2025

a) b) ﬁ

Figure 13. Images from the original test dataset representing
letters A (a) and S (b).

J

T

Figure 14. Images from the original test dataset representing
letters R (a), V (b), K (¢), and U (d).

In addition to revealing these similarities between specific
handshape groups, the error analysis also showed a limitation
in the dataset that significantly impacted the model's
performance. The model demonstrated poor generalization
when recognizing signs executed with the right hand. This
limitation was attributed to a bias in the dataset: all training
(and testing) images featured left-hand signs exclusively. As a
result, the model lacked samples of right-hand configurations,
leading to misclassifications and reduced accuracy in
scenarios involving right-handed signs. The last discovery
revealed by this error analysis was another bias in the dataset,
which involved the interaction with the sensor. The labels
predicted for signs performed closer to the Kinect changed as
the hand moved further away from it. In other words, the
model’s performance is sensitive to the distance between the
Kinect and the hand. A distance of about 50 centimeters
ensured maximum accuracy in predicting letters, while any
distance greater than 70 centimeters resulted in wrong
predictions. The reason behind this issue is that the training
dataset contains images taken at approximately the same
distance from the camera. Before addressing the biases and
problems revealed by the error analysis, two models were
developed using conventional machine learning algorithms to
verify the correctness of the neural network implementation
and rule out any potential coding errors. The first model
employed was an AdaBoost (Adaptive Boosting) classifier,
which produced results similar to those of the neural network.
To further validate the consistency of the data, an ID3
(Iterative Dichotomiser 3) decision tree was trained and
achieved perfect accuracy on the training set. These outcomes
indicate that there were no inconsistencies in the dataset and
no errors in the implementation of the neural network,
reinforcing the conclusion that the model’s performance issues
were primarily due to the biases revealed by the error analysis.

11

Augmentation Methods

To remove the biases, two data augmentation methods were
used: one targeted the left-hand bias by introducing mirrored
right-hand images, and the other addressed class imbalance
by augmenting samples from letters that were frequently
misclassified. Firstly, adding flipped versions of the training
and testing images resulted in a lower overall performance,
correctly recognizing even fewer signs. One potential
explanation for this decline in accuracy is that the dataset size
nearly doubled while the architecture and capacity of the
network remained unchanged. Although the test accuracy
appeared greater, due to the lower training accuracy, the
performance did not improve. Secondly, to add more images
of the incorrectly classified letters, a WPF (Windows
Presentation Foundation) application using the .NET
Framework 4.7.2 was created. This type of application is
widely used for rich user interfaces (Uls) in Visual Studio,
as it uses XAML (eXtensible Application Markup
Language) for Ul layout and C# for logic. In the context of
Sign Textify, this application was used to automate the
process of taking photos for the dataset augmentation using
the Kinect sensor as the camera. The interface prompts the
user to choose the letter that s/he wants to augment, the
number of images s/he wants to augment with, and the path
where the images will be stored. The experiment consisted
of augmenting letters A, N, T, U, and Z with 250 images
each. After preprocessing, N was again the letter with the
fewest samples: only 138 out of 250 images. This model
successfully recognized 4 out of 5 augmented signs (A, T, U,
and Z). However, this improvement came at the cost of other
letters: it failed to recognize B, H, N, P, R, V, W, and X. This
resulted in an overall decrease in performance (only 20/28
letters correctly predicted), suggesting that the updated
model may has unintentionally biased it towards the
augmented letters. The model continued to struggle with the
letter N. It means that this letter remains the most challenging
sign for the models to learn. The plotted training and testing
F1 scores of the model trained on this augmented dataset are
shown in Figure 15. In the end, the final model of Sign Textify
achieved a test F1 score of 0.8095, meaning that 24 letters
were correctly predicted. The four letters the model does not
recognize are A, N, T, and U.

USE CASES

This section outlines key use cases where the ASL alphabet
learning application can be effectively applied across
educational, professional, and accessibility-focused
domains.

Educational Settings - Educators introducing ASL in
elementary or middle school settings often begin with the
alphabet. The application can support interactive and
engaging activities that promote fingerspelling literacy and
inclusivity at a foundational level.

Proceedings of ICUSI 2025

Train and Test Accuracy

—e— Train Accuracy
Test Accuracy

65

Accuracy (%)
@ @ o
3 & 8

IS
&

2 4 6 8 10
Epochs

Figure 15. Training and testing F1 scores for the model trained
on the dataset with letters A, N, T, U, and Z augmented.

Independent Learning and Practice - Family members of
Deaf individuals can use the app to learn the ASL alphabet
as a stepping stone toward basic interaction. Even limited
knowledge of fingerspelling empowers loved ones to
communicate names, objects, and personal expressions more
meaningfully.

Cognitive and Motor Skill Development - For children and
adults developing fine motor skills or learning hand-eye
coordination, practicing the ASL alphabet offers both
cognitive challenge and physical engagement. It’s also used
in therapy for individuals with developmental delays or
motor disorders.

Basic Accessibility Training - Customer service
representatives, retail staff, or healthcare providers can use
the app for basic accessibility training: memorizing the
alphabet allows them to fingerspell essential words like
names, dates, or room numbers if needed.

Language & Linguistic Studies - Linguistics students or
language enthusiasts interested in visual languages can use
the ASL alphabet as an entry point into studying manual
phonology and non-verbal communication systems.

Gamified Learning Modules - The ASL alphabet is ideal for
gamification: apps can include quick matching games,
gesture challenges, or accuracy-based scoring using camera
input—perfect for short, motivational learning bursts.

CONCLUSION

Research on previous attempts revealed a legitimate need for
more interactive tools, both for learning and translating sign
languages. This is why Sign Textify was designed to include
practice by encouraging users to perform the signs
themselves actively. To achieve this, several types of models
have been tested, such as AdaBoost, ID3, and NN. However,
neural networks proved to be the most appropriate model
type for the task of sign recognition because of their highly
customizable architecture. During model validation, two
augmenting strategies were compared: increasing the
number of samples to all letters equally and selectively
augmenting only the misclassified letters. The results
indicated that the targeted approach produced better
performance than the indiscriminate augmentation. Tracking

12

the hand was one of the most important steps in Sign Textify.
Various tracking technologies were evaluated for this
purpose, including Kinect’s Skeleton Tracking, OpenCV,
and Media Pipe. The Kinect SDK lacked the necessary
precision, while OpenCV proved overly complex for the
intended application. Ultimately, Media Pipe was the most
suitable solution due to its balance between accuracy and
usability.

REFERENCES

1. Abdelkader, H.E. and El Said, W.K. 2019. An Assistive
System based on Kinect Sensor to Help Students with
Disabilities in Educational Institutions. Int. J. Eng. Res.
Technol. 8, 4 (Apr. 2019), 606-610.

2. Boutsika, E. 2014. Kinect in Education: A Proposal for
Children with Autism. Proc. Comput. Sci. 27 (2014),
123-129.

3. Candra, H., Yuniati, U., and Chai, R. 2024. The
Application of Virtual Reality Using Kinect Sensor in
Biomedical and Healthcare Environment: A Review. In
Proc. 4th ICEBEHI 2023, Springer, Singapore, 15-38.

4. Hall, M.L., Hall, W.C., and Caselli, N.K. 2019. Deaf
children need language, not (just) speech. First
Language 39, 4 (2019), 367-395.

5. Heyko, D. 2021. Supporting d/Deaf and Hard of
Hearing Employees in Their Workplaces Through
Technology, Design, and Community. M.Sc. Thesis.
University of Guelph.

6. Hsu, J. 2011. The Potential of Kinect in Education. Int.
J. Inf. Educ. Technol. 1, 59 (2011), 1-6.

7. Laws, L.J. 2024. The Shared Experiences of Silenced
Struggles of a Deaf and Hard-of-Hearing Community in
North Carolina Seeking Mental Health Services. Liberty
University, School of Behavioral Sciences.

8. Lingvano. 2025. Learn American Sign Language and
start building bridges!

9. Lleras-Muney, A. 2002. The Relationship Between
Education and Adult Mortality in the United States.
National Bureau of Economic Research, paper no. 8986.

10.Lun, R. and Zhao, W. 2018. Kinect Applications in
Healthcare. In Encyclopedia of Information Science and
Technology, Fourth Edition, IGI Global.

11.Pocket Sign. 2025. ASL Sign Language Learning App.
12.Rocket Languages. 2025. Let’s get you signing.
13.SignSchool. 2025. Learn American Sign Language.

14. Stevenson, J., Kreppner, J., Pimperton, H., Worsfold, S.,
and Kennedy, C. 2015. Emotional and behavioural
difficulties in children and adolescents with hearing
impairment: a systematic review and meta-analysis. Eur.
Child Adolesc. Psychiatry 24 (2015), 477-496.

15.Zhang, Z. 2012. Microsoft Kinect Sensor and Its Effect.
IEEE MultiMedia 19, 2 (2012), 4-10.

