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ABSTRACT 
Sign language education remains inadequately supported by 
existing interactive learning platforms, often lacking 
inclusive and engaging experiences. This paper presents a 
human-centered application aimed at addressing this 
problem by employing the Kinect, Microsoft’s gesture-based 
sensor, to facilitate immersive sign language instruction. 
Furthermore, integrating the Kinect with Machine Learning 
(ML) algorithms can boost the pedagogical progression in 
sign language acquisition, as learning is most efficient when 
theory is combined with active practice. In the development 
process of this application, various models were trained on 
three different datasets in order to obtain the best 
performance in learning and predicting the American Sign 
Language (ASL) alphabet. By integrating Human-Computer 
Interaction (HCI), this application represents the first step in 
supporting not only members of the Deaf and Hard of 
Hearing (DHH) communities, but also individuals from 
broader linguistic, educational, and professional 
backgrounds who seek to learn sign language for 
communication and education, or to advocate for Deaf rights 
and accessibility.
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INTRODUCTION 
Language deprivation refers to the condition of a child that 
lacks full access to a natural language during critical years of 
development. Unfortunately, this phenomenon is often 
present in DHH children who present delayed skills in their 
first language [4]. Unlike most children who acquire 
language naturally thorough constant exposure, DHH 
children face a mismatch between their perceptual abilities 
and their environment, leading to difficulties in social 
development and cognitive delays. The solution described in 
this paper to the phenomenon of language deprivation among 
DHH communities is the development of Sign Textify: an 

interactive tool designed to teach users the American Sign 
Language alphabet by providing a well-rounded and 
comprehensive learning experience. The tool offers users the 
flexibility to engage in both practice and assessment modes.  

In the practice mode, users are guided with visual references 
displaying the correct hand positions for each letter and are 
asked to attempt to replicate the sign. Upon successful 
execution, the application moves on to the next letter in 
alphabetical order. In the assessment mode, the users must 
sign letters without any hints. The letters appear in 
randomized order to prevent reliance on muscle memory, 
ensuring a more robust learning experience. Throughout both 
modes, the tool renders the frames captured by the Kinect 
sensor [15] on a window in order to give real-time feedback 
to users. Being able to see themselves in the window like 
they would in a mirror allows them to self-correct, while also 
speeding up the educational process.  

Many papers, articles, and people talk about the benefits 
DHH people have if the gaps in communication could be 
eliminated [5, 7, 9, 14]. Effective communication channels 
promote accessibility, foster inclusivity and equal 
opportunities, and remove obstacles that prevent the deaf 
from engaging with the broader community. Although all 
these are true, this perspective idealizes hearing individuals, 
implying that non-hearing people must integrate into hearing 
communities rather than creating mutual inclusion and 
understanding. What if we shift our perspective and explore 
the advantages of being able to communicate with the DHH 
community? Rather than focusing on inclusion as a one-
sided effort, we can recognize that learning sign language 
and creating meaningful connections enrich both hearing and 
non-hearing people alike. 
PREVIOUS APPROACHES 
Before proposing a new solution to the challenges described 
in the previous section, it is essential to understand the 
landscape of existing attempts. Over the years, developers 
and engineers have explored various methods to bridge the 
communication gap between sign language users and non-
signers. Despite decades of research, no existing system has 
fully succeeded in making sign language translation 
seamless, accurate, and accessible, highlighting the need for 
further innovation. This section reviews the most prominent 
attempts in easing the process of learning and translation of 
sign language into natural language, to discover their 
outcome related to the problem in question, to select the most 
effective solutions and to avoid less optimal ones. 
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Rocket Sign Language [12] 
The platform provides videos demonstrating ASL signs, 
which users can slow down, speed up, or rewind to perfect 
their signing skills over 7 learning modules, each module 
consisting of 7 lessons (see Figure 1). It offers a structured 
course with lifetime access, allowing learners to revisit 
lessons anytime. At the end of every lesson, an evaluation 
assesses how many words the user has retained. Each 
evaluation earns points, which are recorded on a leaderboard 
showcasing the scores achieved by users over the past 24 
hours. Additionally, the platform features a streak count to 
encourage consistent learning, and it covers essential aspects 
of Deaf culture and etiquette to ensure learners can 
communicate respectfully and effectively within the 
community. Rocket Sign Language offers several 
advantages that contribute to its accessibility and 
functionality. It provides structured lesson plans for learning 
thirteen spoken languages in addition to ASL. Each language 
includes its own set of learning tools. For ASL, the main tool 
is a dictionary that links each word to a corresponding video 
demonstration of its sign. Furthermore, the platform supports 
mobile access, enhancing its convenience for learners on the 
go. However, certain limitations affect its pedagogical 
effectiveness. The app lacks a dedicated practice tab that 
allows for independent skill rehearsal separate from guided 
lessons. Additionally, it does not feature real-time evaluation 
of signing accuracy, relying instead on self-assessment, 
which may hinder immediate correction and learning 
feedback. 

Lingvano [8] 
The platform offers an engaging and interactive approach to 
learning, making sign language accessible to everyone, 
regardless of prior experience. One of the most unique 
aspects of Lingvano is the “mirror” feature. The idea behind 
this feature is that when the user is shown a new sign, they 
can choose to open their laptop camera, in order to see 
themselves perform the new sign. The image of the new sign 
is placed next to this mirror, allowing users to refine their 
gestures in real-time by trying to mimic the sign in the photo 
and autocorrecting their hand position.  

Figure 1. Dashboard of the Rocket Sign Language web 
application. 

Furthermore, this application prioritizes hands-on learning 
through well-organized dialogue exercises (see Figure 2). 

Figure 2. Dialogue of Chapter 1, Lesson 5 on Lingvano web 
application. 

Instead of just learning individual signs, users experience 
conversations that reflect real-world interactions, making the 
learning process feel more authentic. Similar to Rocket Sign 
Language, the platform provides insights into Deaf culture 
and etiquette, ensuring that learners gain a well-rounded 
understanding of how to communicate effectively and 
respectfully. As additional advantages, Lingvano is gamified 
to encourage interaction and motivation and it 
accommodates three sign languages (American, English, and 
Australian), making it more broadly accessible than other 
similar applications. Learners also benefit from an integrated 
dictionary, a free trial period with flexible billing options, 
and a mobile app for portability. However, another similarity 
between Lingvano and Rocket Sign Language is the 
drawback of not having a real-time automated evaluation of 
signing accuracy, which means users must rely on self-
assessment, without immediate corrective feedback given 
directly from the platform.  

Sign School [13] 
The website features a Sign of the Day, which introduces 
users to new vocabulary daily, and a Fingerspelling Game 
for practicing handshapes, depicted in Figure 3. The platform 
delivers ASL grammar lessons designed to support learners 
across a range of proficiency levels, from beginner to 
advanced, ensuring a comprehensive understanding of 
sentence structure and communication nuances. One of its 
standout features is the ability to customize learning paths, 
allowing users to progress at their own pace. Whether used 
for casual learning, academic purposes, or professional 
development, Sign School provides a flexible and engaging 
way to study ASL without requiring formal enrollment. As a 
not logged-in user, it allows access to three different 
dictionaries (one with all the signs, one ordered by topic, and 
one ordered by handshapes), whereas a logged-in user can 
customize his/her dictionaries (personal and favorites 
dictionaries). In each lesson, the user has access to “Topics”, 
which enables creating a custom learning path, “Grammar” 
explanations, and “Tools” such as the fingerspelling game 
and the dictionaries. Additionally, the dashboard of the 
application contains a series of metrics indicating the activity 
on this platform: the current and record streak, fingerspelling 
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accuracy and score, lesson accuracy, and the user’s level 
based on points earned. 

Figure 3. Interactive fingerspelling game screen from Sign 
School. 

The application empowers teachers to design custom lessons 
tailored to their students’ needs and enables users to select 
difficulty levels appropriate to their skill. Similar to 
Lingvano, Sign School includes a mirrored camera feature 
for self-monitoring. Users can also share sign lessons with 
other users, encouraging collaborative learning. Additional 
features include a spelling-focused practice hub, full mobile 
access, and no cost to use. Consistent with the other 
applications described in this section, one significant 
drawback is the absence of real-time accuracy evaluation, 
leaving users to depend solely on self-assessment without 
immediate corrective feedback coming in an automated 
manner from the platform. 

Pocket Sign [11] 
The gamified platform allows access to an abundance of 
learning resources. With new lessons released each week, the 
user can gain points after each lesson, which can then be used 
to buy special “superpowers” such as retrying a sign, 
skipping a sign, or activating a tool that reveals the correct 
answer. Additional resources include a dictionary that maps 
words to their sign language representations through short 
videos, and fingerspelling games which need access to the 
laptop camera to check if the user is signing correctly (see 
Figure 4).  

Figure 4. Fingerspelling game of the Pocket Sign web 
application. 

If a sign is recognized as correct, the game automatically 
advances to the next item; if not, it remains on the current 
sign until the user performs it accurately. As advantages, the 
application offers a free introductory lesson along with the 
option for a 14-day free trial, making it accessible for new 
users. It includes complimentary fingerspelling games that 
help reinforce learning through interactive practice. Notably, 

these games provide real-time evaluation of signing 
accuracy, allowing users to receive immediate feedback and 
adjust their performance accordingly. Nevertheless, the 
platform would benefit significantly from enhancements to 
its user interface and user experience design to make it more 
visually appealing and intuitive. 

SIGN TEXTIFY 
The solution described in this paper to the lack of educational 
resources for learning sign languages application is Sign 
Textify. It is designed as two mini-games, allowing users to 
choose between a practice session and an assessment session. 
In practice mode, the user is prompted to sign the letters of 
the American alphabet, starting with A and finishing with Z, 
and is provided with a support image that presents the 
corresponding sign. If the user correctly signs the letter, the 
application proceeds to the following letter, displaying a 
"well done" message on the screen for a few seconds. If the 
sign is not correctly performed, the application waits until 
the user gets it right. Additionally, the user is given as an 
escape route a skip button, because each student has their 
own learning pace, and assigning responsibility for the pace 
to the student fosters autonomy. In the assessment part, the 
letters of the alphabet are shuffled, and no aid is offered 
except the skip button. This allows the user to assess how 
well they have learned. 

System Context 
Sign Textify is designed as a server-client application to 
provide both translation capabilities and an interactive 
learning experience. As illustrated in Figure 5, the system is 
composed of three main components: the server, the client, 
and the Kinect sensor, each of which will be described in 
detail in the following subsections. The user’s first 
interaction in Sign Textify is with the Kinect sensor, as the 
signs will be performed in front of it. The .NET client 
continuously waits for color feed from the sensor and sends 
it to the Python Server for processing. The server is 
responsible for extracting hand and finger position 
coordinates, and if the pattern of these coordinates is 
recognized, it displays the resulting letter on the screen. The 
user can see the outcome in real-time and adjust the positions 
of the hands and fingers to either try again or sign the next 
required sign. If the user gets stuck, the interface features a 
skip button that allows them to jump to the following letter, 
as depicted in Figure 6.  

Kinect 
The Kinect for Xbox 360, as shown in Figure 7, also known 
as Kinect version 1, is a motion-sensing device developed by 
Microsoft that enables interaction through body movements 
and voice commands. Equipped with depth sensors, skeletal 
tracking, gesture recognition, and voice control, it allows 
users to interact with applications hands-free. In software 
development, Kinect has been employed for human-
computer interaction, virtual reality, robotics, and machine 
vision [1, 2, 3, 6, 10]. 
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Figure 5.  Context diagram to showcase main interactions between the user and the software system.

In Sign Textify, the Kinect is used as a camera. Initially chosen 
for its skeleton tracking library, the Kinect did not prove to be 
as helpful as intended. It was clear that the library lacks the 
expressiveness required to accurately distinguish between 
different signs. This limitation arises from the fact that it 
tracks only two key points on each hand: the wrist and the 
hand as a whole (see Figure 8).  

Figure 6. Window of a practice session in Sign Textify, 
prompting the user to sign letter A. 

Figure 7. Kinect Xbox 360 sensor from Microsoft. 

Client 
The primary purpose of the client is to connect to the Kinect 
sensor and capture RGB frames, which are then delivered to 
the server for processing. The client is a C# console 
application that streams color frames from the Kinect sensor 
to a remote server. Upon startup, the application initializes 

the Kinect sensor, then it attempts to establish a 
Transmission Control Protocol (TCP) connection to a server, 
and once connected, the application listens for new color 
frames from the Kinect. For each frame, the client captures 
the raw image data, compresses it into JPEG (Joint 
Photographic Experts Group) format, and transmits it to the 
server, enabling efficient network usage and faster data 
transfer while maintaining reasonable image quality. For an 
application that aims to translate signs into letters in real-
time, speed is crucial to minimize latency. The application 
uses a custom communication protocol to transmit image data 
from the client to the server. Each message sent consists of a 
5-byte header followed by the payload (the compressed image
data). The first byte indicates the data type, where a value of 1
represents a Red Green Blue (RGB) frame and a value of 2
means an infrared depth frame. The next 4 bytes specify the
size of the payload in bytes that allows the server to know
exactly how many bytes to read for the image data that
follows.

Figure 8. The joints of the skeleton tracking system from the 
Kinect. 
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Server 
The server plays a crucial role in processing frames received 
from the client. Its primary responsibilities include detecting 
the presence of a hand in each frame, extracting 21 key 
landmarks of the palm using Media Pipe, and running 
inference on those extracted coordinates. Based on the 
analysis, the server then generates and displays a bounding 
box around the detected hand, presents the precise 
coordinates of the identified landmarks, and provides the 
inference result in the form of a label. The Hand Tracking 
module has the function of drawing the bounding box of the 
hand, the connections between the landmarks, and the 
predicted label on a given frame (see Figure 6). This is done 
using OpenCV functions for rendering rectangles and putting 
text on the window, and Media Pipe for drawing the 
connecting lines between the points of all the landmarks. Each 
frame is processed by another function from this module, 
which converts the image to RGB format, processes the image 
using the Hands class from Media Pipe, and returns an array 
of tuples consisting of the x, y, and z coordinates if a hand is 
recognized in the picture; otherwise, it returns nothing. The 
next important module of the server is the Inference module 
that manages interactions with the model, including loading 
the model, normalizing landmarks to fit the requested size and 
type for its input, and predicting labels. All trained models 
were stored in Open Neural Network Exchange (ONNX) 
format, an open standard for the representation of deep 
learning or machine learning models. The normalization of 
landmarks involves converting the coordinates from a flat 
array into a 2-dimensional NumPy array (one row and multiple 
columns), to feed it as input to the model. After this step, the 
normalized coordinates are sent to the model, and the 
predicted label is forwarded to the main loop of the 
application, which determines whether the user has correctly 
signed the current letter. 

Datasets 
For training the neural network of the application, data was 
taken from an ASL Alphabet dataset on Kaggle, which is 
composed of both training and test batches. The training 
dataset is an extensive collection of labeled images 
representing all letters of the alphabet: 3000 images per sign, 

29 signs (including signs for “space”, “delete”, and 
“nothing”), which means a total of 87,000 color images of 
hands signing each letter. Each letter has its folder, 
containing thousands of images captured under various 
lighting conditions, backgrounds, and hand orientations to 
offer a diverse range of options. For test, the dataset has one 
image per letter, resulting in exactly 29 images. To create the 
most efficient model and minimize training time, the 
“nothing” label was ignored, as it was not necessary for this 
application. Thus, the final model predicts a total of 28 
different possible labels, and the dataset used is composed of 
84,000 images. A new dataset was created consisting of 
coordinate arrays of the 21 3-dimensional landmarks 
extracted using Media Pipe. This new dataset was stored 
using Hierarchical Data Format version 5 (HDF5), a method 
for storing large amounts of data in a single file. HDF5 files 
can contain multidimensional arrays, tables, images, and 
metadata, all organized in a hierarchical structure similar to 
folders and files in a filesystem, enabling fast loading and 
easy access during model training and evaluation. 

Due to preprocessing, the dataset suffered a loss in the 
number of training and test images, as Media Pipe’s model 
failed in recognizing the hand in all images. In other words, 
the training dataset is a matrix with only 63,673 rows (out of 
84,000 total number of images) and 63 columns (3 
coordinates for each of the 21 landmarks). To gain a better 
understanding of how many images were lost after 
preprocessing, a script was created to generate a markdown 
file containing statistics on the data. Firstly, Figure 9 shows 
a comparison between the original number of training images 
and the final number of successfully preprocessed images. 
Extracting the landmarks resulted in the loss of exactly 
20,327 train instances. This means that approximately 
75.80% of the original train dataset remained after 
preprocessing. The statistics revealed that the test set was not 
as fortunate: only 51.85% of the original test dataset was 
kept. Secondly, for greater precision, the script also 
generated statistics for each letter, including the number of 
lost instances after preprocessing and the percentage of the 
original data that remained for that letter (see Figure 10). 

Figure 9. The number of original train data for each letter (a) and preprocessed train data for each letter (b). 
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Figure 10. The results of preprocessing for label A (a) and label B (b). 

Models 
Throughout the project's implementation, multiple models 
were trained to increase test accuracy and improve overall 
performance. The general structure of the fully connected, 
feedforward deep neural networks implemented had 63 
neurons on the input layer, 128 and 64 neurons on the 
following two hidden layers, and 28 neurons as the output 
(corresponding to 28 letters, excluding the “nothing” label in 
the original dataset). As activation functions, ReLU was used 
for the hidden layers and Softmax for the output layer to 
produce a probability distribution for all 28 possible labels. 
The Adam optimization algorithm was applied to increase 
training efficiency, leveraging its adaptive learning rate and 
momentum-based approach. The cross-entropy loss function 
was chosen for measuring the difference between the 
predicted and actual probabilities, ensuring accurate model 
adjustments during training. Additionally, a learning rate 
scheduling algorithm was used to dynamically adjust the 
learning rate when model improvements stagnate. By 
decreasing the learning rate when performance hits a plateau, 
the model avoids unnecessary oscillations and improves 
convergence. 

Performance Metrics 
It was brought to my attention by Professor Sebastian 
Ciobanu that this accuracy is not a reliable metric for 
evaluating models trained on unbalanced data, such as the 
dataset used for Sign Textify. In scenarios where one class is 
significantly more common than others, a model can achieve 
high accuracy by favoring the dominant class while 
neglecting the minority class. The class with the most 
samples in the dataset of coordinates is K, with 2,700 
samples, and the class with the fewest samples is N, with 
only 1,276 samples (1,424 fewer samples than K). This 
proves that the dataset is considerably unbalanced and needs 
a weighted form of evaluation. The F1-score provides a more 
balanced evaluation, as it considers both precision (how 
many predicted positives are correct) and recall (how many 
actual positives were correctly identified). Its formula is: 

!1 =	%&'()*)+,	 × .'(/00%&'()*)+,	 + .'(/00 	× 2 

where 

%&'()*)+, = 	 3&4'	5+*)6)7'*
3&4'	5+*)6)7'* + !/0*'	5+*)6)7'*

and 

.'(/00 = 	 3&4'	5+*)6)7'*
3&4'	5+*)6)7'* + !/0*'	,'8/6)7'*

Neural Network Error Analysis 
The error analysis conducted on this model revealed four 
groups of signs that are very similar to each other. The first 
two signs discovered that are similar are T and X, where the 
key difference is the position of the thumb: for T, the thumb 
is outside the palm, whereas for X, it rests on the fist, as seen 
in Figure 11. M and N represent another pair of similar signs 
(see Figure 12). The difference between these two signs lies 
again in the placement of the thumb: for the letter M, the 
thumb is tucked under three fingers (index, middle, and ring), 
whereas for the letter N, the thumb must be placed under only 
two fingers (index and middle). Letters A and S are both “fist” 
shapes (see Figure 13). A is a closed fist with the thumb resting 
alongside the curled fingers, visible from the side. S is also a 
fist, but the thumb wraps in front of the fingers, similar to how 
the thumb lies in the letter X. In both, the thumb makes the 
difference. The last cluster consists of 4 signs: R, V, K, and U 
(see Figure 14). Letter R is done by crossing the index and 
middle fingers, with the thumb wrapped in front of the other 
curled fingers. For V, the index and the middle fingers form a 
V, with the thumb out of view. For letter K, the fingers spread 
into the same V shape, while the thumb reaches up to touch 
the middle finger. Lastly, for letter U, the same two fingers are 
held straight and together, with the thumb tucked neatly 
against the side. Generally, the models trained showed 
difficulties in recognizing all the signs in a similar group. The 
final network correctly classifies M from the first group, S 
from the second, and R, V, and K from the last group. 

Figure 11. Images from the original test dataset representing 
letters T (a) and X (b). 

Figure 12. Images from the original test dataset representing 
letters M (a) and N (b). 
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Figure 13. Images from the original test dataset representing 
letters A (a) and S (b). 

Figure 14. Images from the original test dataset representing 
letters R (a), V (b), K (c), and U (d). 

In addition to revealing these similarities between specific 
handshape groups, the error analysis also showed a limitation 
in the dataset that significantly impacted the model's 
performance. The model demonstrated poor generalization 
when recognizing signs executed with the right hand. This 
limitation was attributed to a bias in the dataset: all training 
(and testing) images featured left-hand signs exclusively. As a 
result, the model lacked samples of right-hand configurations, 
leading to misclassifications and reduced accuracy in 
scenarios involving right-handed signs. The last discovery 
revealed by this error analysis was another bias in the dataset, 
which involved the interaction with the sensor. The labels 
predicted for signs performed closer to the Kinect changed as 
the hand moved further away from it. In other words, the 
model’s performance is sensitive to the distance between the 
Kinect and the hand. A distance of about 50 centimeters 
ensured maximum accuracy in predicting letters, while any 
distance greater than 70 centimeters resulted in wrong 
predictions. The reason behind this issue is that the training 
dataset contains images taken at approximately the same 
distance from the camera. Before addressing the biases and 
problems revealed by the error analysis, two models were 
developed using conventional machine learning algorithms to 
verify the correctness of the neural network implementation 
and rule out any potential coding errors. The first model 
employed was an AdaBoost (Adaptive Boosting) classifier, 
which produced results similar to those of the neural network. 
To further validate the consistency of the data, an ID3 
(Iterative Dichotomiser 3) decision tree was trained and 
achieved perfect accuracy on the training set. These outcomes 
indicate that there were no inconsistencies in the dataset and 
no errors in the implementation of the neural network, 
reinforcing the conclusion that the model’s performance issues 
were primarily due to the biases revealed by the error analysis. 

Augmentation Methods 
To remove the biases, two data augmentation methods were 
used: one targeted the left-hand bias by introducing mirrored 
right-hand images, and the other addressed class imbalance 
by augmenting samples from letters that were frequently 
misclassified. Firstly, adding flipped versions of the training 
and testing images resulted in a lower overall performance, 
correctly recognizing even fewer signs. One potential 
explanation for this decline in accuracy is that the dataset size 
nearly doubled while the architecture and capacity of the 
network remained unchanged. Although the test accuracy 
appeared greater, due to the lower training accuracy, the 
performance did not improve. Secondly, to add more images 
of the incorrectly classified letters, a WPF (Windows 
Presentation Foundation) application using the .NET 
Framework 4.7.2 was created. This type of application is 
widely used for rich user interfaces (UIs) in Visual Studio, 
as it uses XAML (eXtensible Application Markup 
Language) for UI layout and C# for logic. In the context of 
Sign Textify, this application was used to automate the 
process of taking photos for the dataset augmentation using 
the Kinect sensor as the camera. The interface prompts the 
user to choose the letter that s/he wants to augment, the 
number of images s/he wants to augment with, and the path 
where the images will be stored. The experiment consisted 
of augmenting letters A, N, T, U, and Z with 250 images 
each. After preprocessing, N was again the letter with the 
fewest samples: only 138 out of 250 images. This model 
successfully recognized 4 out of 5 augmented signs (A, T, U, 
and Z). However, this improvement came at the cost of other 
letters: it failed to recognize B, H, N, P, R, V, W, and X. This 
resulted in an overall decrease in performance (only 20/28 
letters correctly predicted), suggesting that the updated 
model may has unintentionally biased it towards the 
augmented letters. The model continued to struggle with the 
letter N. It means that this letter remains the most challenging 
sign for the models to learn. The plotted training and testing 
F1 scores of the model trained on this augmented dataset are 
shown in Figure 15. In the end, the final model of Sign Textify 
achieved a test F1 score of 0.8095, meaning that 24 letters 
were correctly predicted. The four letters the model does not 
recognize are A, N, T, and U. 

USE CASES 
This section outlines key use cases where the ASL alphabet 
learning application can be effectively applied across 
educational, professional, and accessibility-focused 
domains. 

Educational Settings - Educators introducing ASL in 
elementary or middle school settings often begin with the 
alphabet. The application can support interactive and 
engaging activities that promote fingerspelling literacy and 
inclusivity at a foundational level. 
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Figure 15. Training and testing F1 scores for the model trained 
on the dataset with letters A, N, T, U, and Z augmented. 

Independent Learning and Practice - Family members of 
Deaf individuals can use the app to learn the ASL alphabet 
as a stepping stone toward basic interaction. Even limited 
knowledge of fingerspelling empowers loved ones to 
communicate names, objects, and personal expressions more 
meaningfully. 

Cognitive and Motor Skill Development - For children and 
adults developing fine motor skills or learning hand-eye 
coordination, practicing the ASL alphabet offers both 
cognitive challenge and physical engagement. It’s also used 
in therapy for individuals with developmental delays or 
motor disorders. 

Basic Accessibility Training - Customer service 
representatives, retail staff, or healthcare providers can use 
the app for basic accessibility training: memorizing the 
alphabet allows them to fingerspell essential words like 
names, dates, or room numbers if needed. 

Language & Linguistic Studies - Linguistics students or 
language enthusiasts interested in visual languages can use 
the ASL alphabet as an entry point into studying manual 
phonology and non-verbal communication systems. 

Gamified Learning Modules - The ASL alphabet is ideal for 
gamification: apps can include quick matching games, 
gesture challenges, or accuracy-based scoring using camera 
input—perfect for short, motivational learning bursts. 
CONCLUSION 
Research on previous attempts revealed a legitimate need for 
more interactive tools, both for learning and translating sign 
languages. This is why Sign Textify was designed to include 
practice by encouraging users to perform the signs 
themselves actively. To achieve this, several types of models 
have been tested, such as AdaBoost, ID3, and NN. However, 
neural networks proved to be the most appropriate model 
type for the task of sign recognition because of their highly 
customizable architecture. During model validation, two 
augmenting strategies were compared: increasing the 
number of samples to all letters equally and selectively 
augmenting only the misclassified letters. The results 
indicated that the targeted approach produced better 
performance than the indiscriminate augmentation. Tracking 

the hand was one of the most important steps in Sign Textify. 
Various tracking technologies were evaluated for this 
purpose, including Kinect’s Skeleton Tracking, OpenCV, 
and Media Pipe. The Kinect SDK lacked the necessary 
precision, while OpenCV proved overly complex for the 
intended application. Ultimately, Media Pipe was the most 
suitable solution due to its balance between accuracy and 
usability. 
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