
Comparison of Python code generated by ChatGPT and 
AlphaCodium 

Rareș Mihai Dinu 
University of Craiova 

raresmihai18@gmail.com

Marian Cristian Mihăescu 
University of Craiova 

cristian.mihaescu@edu.ucv.ro 

Traian Eugen Rebedea 
University Politehnica of 

Bucharest 
traian.rebedea@cs.pub.ro 

ABSTRACT 
This paper presents a comparative analysis of the 
performance of ChatGPT and AlphaCodium in generating 
Python code for algorithmic problem-solving, using tasks 
sourced from the competitive programming platform 
Codeforces. The study evaluates how effectively each 
model interprets problem statements, generates correct and 
efficient solutions, and handles edge cases and complex 
scenarios under the platform's strict time and memory 
constraints. Both models were assessed by executing their 
generated solutions, which were then evaluated by 
Codeforces' judging system. Unlike previous studies that 
often rely on closed or controlled environments, this 
research leverages an open, reproducible, and objective 
testing framework provided by Codeforces to deliver 
quantifiable and verifiable results. The findings contribute 
to a deeper understanding of the practical capabilities and 
limitations of AI-based code generation models in 
competitive programming contexts, offering valuable 
insights for both academic research and industry 
applications. 

Author Keywords 
AI Code Generation, ChatGPT, AlphaCodium, Competitive 
Programming, Python, Codeforces, Algorithmic Problem 
Solving, Natural Language Processing, Program Synthesis, 
Model Evaluation 

ACM Classification Keywords 
Computing methodologies - Artificial intelligence - Natural 
language processing (I.2.7)   

DOI: 10.37789/icusi.2025.14 

INTRODUCTION 
In recent years, the rapid evolution of artificial intelligence 
models has significantly impacted the field of software 
development, particularly in the domain of algorithmic 
problem-solving and competitive programming. Platforms 
such as Codeforces have become key benchmarks for 
assessing the capability of both human programmers and 
AI-based code generation tools. Through its automated 
testing system and well-structured problem classifications, 
Codeforces offers an objective, transparent, and 
reproducible environment for evaluating solutions under 
strict time and memory constraints. 

ChatGPT [1], developed by OpenAI, and AlphaCode, 
developed by DeepMind, along with its derivative, 

AlphaCodium [2] have emerged as leading AI models 
capable of tackling complex algorithmic challenges. 
AlphaCodium's performance, demonstrated by its ranking 
in the top 54% of human competitors in a controlled 
Codeforces-based evaluation, highlights its potential in this 
field. Similarly, ChatGPT, especially in its GPT-4-based 
variants, has shown remarkable improvements in 
algorithmic reasoning, code generation, and problem-
solving abilities, becoming a widely used tool among 
programmers for tasks such as brainstorming, debugging, 
and solution development. 

Despite their promising capabilities, direct, objective, and 
openly verifiable comparisons between these models 
remain limited. Existing evaluations often rely on closed 
testing environments or provide primarily qualitative 
assessments, which can obscure the practical applicability 
of such models in real-world scenarios. This paper 
addresses this gap by proposing a comparative study based 
on the Codeforces platform, using its public, standardised, 
and automated evaluation system to ensure accuracy, 
fairness, and reproducibility. 

The primary objective of this research is to analyse and 
compare the performance of ChatGPT and AlphaCodium in 
generating Python code solutions for a diverse set of real 
algorithmic problems with varying difficulty levels. By 
emphasising this two-step acceptance metric, the study 
offers a focused and practical perspective on the immediate 
and final accuracy of the generated solutions, providing 
clear, measurable insights into the models' performance. 
The selected problems span various levels of difficulty, 
ensuring a comprehensive assessment of the models' 
capabilities across a diverse problem set. 

By adopting this methodology, the paper aims to provide 
practical, quantifiable insights into the strengths and 
limitations of these models in competitive programming 
contexts. Ultimately, the research contributes to a better 
understanding of how artificial intelligence can complement 
human efforts in algorithmic problem-solving and software 
development, supporting a responsible and informed 
integration of these technologies in both educational and 
industrial settings. 

The project utilises a dataset of algorithmic problems 
sourced from the Codeforces platform, carefully selected to 
cover a wide range of difficulty levels. This approach 
ensures a comprehensive evaluation of both models, 

Proceedings of ICUSI 2025

99



providing meaningful insights into their respective 
strengths, weaknesses, and optimal use cases across 
different problem complexities. 

Alongside the results obtained, this paper covers the data 
preparation stage for each model. Within the same concept, 
the problem data is written in a manner that is accessible for 
both approaches, resulting in minimal to no alterations to 
the testing environment. 

RELATED WORK 
The domain of automated code generation using large 
language models has advanced significantly in recent years, 
driven by the increasing capabilities of transformer-based 
architectures and the availability of large-scale code 
datasets. Numerous studies have explored the application of 
these models in both general-purpose programming and 
competitive programming contexts, with a particular focus 
on assessing their problem-solving efficiency, accuracy, 
and semantic understanding of code. This section reviews a 
selection of relevant works that provide essential 
background for understanding the performance and 
evaluation of models such as ChatGPT and AlphaCodium 
in the context of competitive programming tasks. The 
selected literature highlights key methodologies, evaluation 
frameworks, and model-specific advantages or limitations 
that collectively contribute to the current state of research in 
automated programming. By situating the present study 
within this body of work, a clearer perspective emerges 
regarding the comparative strengths, weaknesses, and 
practical implications of deploying such models in real-
world coding environments. 

Li et al. [3] present the performance of AlphaCode, a 
language model developed explicitly for solving 
competition-level programming problems. The system is 
evaluated on the Codeforces platform, which, at the time of 
writing, is one of the most widely used competitive 
programming environments. Using a combination of 
transformer-based architectures and sampling strategies, 
AlphaCode achieved a performance ranking within the top 
54% of Codeforces users. The paper emphasises that 
AlphaCode's success relies on generating a large set of 
candidate solutions followed by a filtering mechanism 
based on test cases. Despite the promising results, the 
authors acknowledge the scalability limitations of the 
approach due to computational costs. Moreover, the 
underlying methodology is highly dependent on the 
diversity of the sampled solutions, which remains a 
challenge in problems with larger search spaces. 

Liu et al. [4] extensively evaluate the correctness of code 
generated by large language models, including ChatGPT, 
through the introduction of the EvalPlus framework. The 
core of their work lies in improving the traditional 
evaluation settings by supplementing existing public test 
cases with additional, more challenging ones, thus 
mitigating the incompleteness of the HumanEval dataset. 
By leveraging extensive mutation-based test generation, the 

authors demonstrate that the pass@k metric, commonly 
used in code generation evaluation, is significantly 
overestimated under previous benchmarks. Despite 
achieving faster computational times, ChatGPT's 
performance deteriorates when subjected to the enhanced 
test suites proposed by EvalPlus. Liu et al. highlight that the 
superficial validation used in prior work might have 
overrepresented the models' true problem-solving 
capabilities. 

Zhou et al. [5] introduce CodeBERTScore, a novel metric 
designed for evaluating code generation through the 
semantic alignment between predicted and reference code. 
The method builds upon the CodeBERT model, specifically 
pre-trained on source code, which ensures the semantic 
granularity necessary for cross-language code comparisons. 
Unlike traditional string-matching metrics, 
CodeBERTScore emphasises the importance of capturing 
functional equivalence rather than exact syntactic matches. 
By conducting experiments across several datasets, 
including HumanEval and MBPP, the authors demonstrate 
that their metric correlates more strongly with functional 
correctness and human preference than previous metrics 
such as BLEU or exact match. Despite this improvement, 
Zhou et al. note that the metric's reliability is contingent on 
the representational quality of the pre-trained code models, 
which might vary across programming languages. 

Tong and Zhang [6] develop CodeJudge, a framework 
designed to evaluate code generated by large language 
models without requiring traditional test cases. The key 
innovation in their work is the semantic similarity 
evaluation pipeline, which leverages pre-trained language 
models to compare the model-generated solution against a 
reference at a deeper functional level. By using both natural 
language and code-based embeddings, the authors provide 
an alternative to functional testing that is particularly 
valuable in scenarios where test cases are incomplete or 
unavailable. The study demonstrates that CodeJudge can 
predict functional correctness with a high degree of 
correlation to traditional testing. Still, the authors also 
acknowledge the sensitivity of their framework to the 
variability in code representations and the inherent 
limitations of relying on pretrained embedding spaces. 

Siam et al. [7] conduct a comparative study evaluating 
multiple AI programming assistants, including ChatGPT, 
AlphaCode, Gemini, and GitHub Copilot. The study 
systematically benchmarks these models across widely used 
datasets such as HumanEval and APPS, focusing on their 
ability to generate syntactically correct and functionally 
accurate code under standard conditions. According to the 
reported results, AlphaCode consistently outperforms 
ChatGPT and Copilot in terms of solution accuracy, 
particularly in complex competitive programming 
scenarios. The paper emphasises the trade-offs between 
model responsiveness and solution correctness, with 
ChatGPT providing faster responses at the cost of lower 

Proceedings of ICUSI 2025

100



accuracy. Siam et al. highlight the complementary nature of 
the models, suggesting that the choice of tool should 
depend on whether rapid prototyping or high-stakes 
competitive problem solving is the primary goal. 

Yetiştiren et al. [8] conduct an empirical study evaluating 
the code quality of AI-assisted programming tools, 
specifically GitHub Copilot, Amazon CodeWhisperer, and 
ChatGPT. Their analysis, based on the HumanEval dataset, 
assesses multiple dimensions of generated code, including 
correctness, reliability, maintainability, and security. The 
results highlight that while all models exhibit potential as 
programming assistants, significant differences exist in the 
trade-offs between solution accuracy and code quality. This 
study is particularly relevant as it broadens the comparative 
scope beyond pairwise evaluations, offering a multi-tool 
perspective that situates ChatGPT's performance within the 
broader ecosystem of AI coding assistants. 

Yan et al. [9] focus on understanding how ChatGPT's code 
generation abilities vary across tasks of different difficulty 
levels. By systematically categorising problems into low, 
medium, and high complexity tiers, the authors demonstrate 
that ChatGPT performs considerably better on simpler 
tasks, while its accuracy and reliability decline as problem 
difficulty increases. This observation closely aligns with the 
findings of the present study, reinforcing the importance of 
difficulty-based analysis when evaluating AI code 
generation models. Moreover, their work provides 
additional evidence that task complexity is a critical factor 
in determining the practical applicability of such models in 
real-world problem-solving contexts. 

PROPOSED APPROACH 
The primary objective of the present system is to perform a 
comparative evaluation of the results obtained by 
AlphaCodium and ChatGPT. The study aims to draw 
precise, quantifiable conclusions regarding the models' 
ability to solve algorithmic problems and their respective 
acceptance rates within the Codeforces competitive 
programming platform. 

The core goal of this project is straightforward: to 
determine the most effective approach for solving 
competitive programming problems. The system follows an 
intuitive and user-guided process. The user selects a 
problem from Codeforces and provides its link to the 
system. The problem information is then automatically 
converted into a format compatible with both approaches, 
AlphaCodium and ChatGPT. The user chooses one of the 
two models, which subsequently generates a solution for 
the selected problem. To validate the solution, the user 
manually submits it to the Codeforces judging system, 
where the solution's correctness is objectively assessed. 

The Dataset 
The dataset employed in this study is a curated collection of 
399 competitive programming problems sourced from the 

Codeforces platform, a widely recognised online judge 
specialising in algorithmic problem-solving and 
competitive programming contests. The problems selected 
cover a broad spectrum of difficulty levels, ranging from 
800 to 2500, which aligns with the Codeforces rating 
system, where lower values denote introductory tasks and 
higher values correspond to highly challenging problems. 

This dataset represents a subset extracted from the publicly 
available "Codeforces Competitive Programming Dataset1" 
hosted on Kaggle. The selection ensures a representative 
sample that encompasses a diverse array of problem types 
and difficulty distributions commonly encountered in 
competitive programming environments. 

The dataset was systematically classified based on the 
Codeforces difficulty rating, which allowed for the 
segmentation of the problems into three distinct categories, 
each characterised by specific algorithmic and cognitive 
requirements. With that low (with scores between 800 to 
1100), medium (1200-1700) and high (1800-2500) 
difficulty problems were assigned. 

Figure 1. Problem difficulty distribution 

The dataset exhibits a higher concentration of problems at 
lower difficulty levels, which reflects the general 
composition of publicly available competitive programming 
repositories such as Codeforces. Lower-rated problems are 
more abundant, as they serve as introductory exercises 
designed to engage a wider pool of participants, including 
beginners. Conversely, high-difficulty problems are 
deliberately fewer, since they target advanced competitors 
and are intended to appear less frequently in contests. This 
natural imbalance ensures that the dataset remains 
representative of the problem distribution encountered in 
real-world competitive programming environments, while 
also facilitating a more comprehensive evaluation of model 
performance across accessible tasks. 

The dataset comprises 399 JSON files, each encapsulating 
the complete information required for the accurate 
understanding and resolution of a specific problem. The 
dataset's directory structure is systematic, with each file 
named using the pattern "my_problems_X.json", where X 
denotes the sequential index of the problem, ranging from 1 
to 399. 

1 Codeforces Competitive Programming Dataset, 
https://www.kaggle.com/datasets/dinuiongeorge/codeforces
-competitive-programming-dataset, last accessed on
29.06.2025

Proceedings of ICUSI 2025

101



Each JSON file adheres to a standardised structure, 
consisting of the following key fields: 

• name: Specifies the official problem title as published on
Codeforces.

• description: Provides a comprehensive textual 
specification of the problem.

• public_tests: Contains an array of publicly available test
cases intended for preliminary validation. Each element
in this array includes:

o input: The input data for the test.

o is_valid_test: A flag indicating the validity of the test
case.

o output: The expected output for the given input.

The problems were systematically collected and processed 
to ensure compatibility with the AlphaCodium system's 
input format. An additional step in the data preparation 
process involved web scraping techniques, where relevant 
problem statements and associated data were extracted 
directly from the Codeforces platform by parsing HTML 
elements. 

One notable challenge encountered during the dataset 
preparation involved the representation of mathematical 
expressions, which are frequently embedded in the original 
problem statements. These expressions can range from 
simple inequalities (e.g., x ≤ y) to complex summations or 
combinatorial formulas (e.g., ∑i=1xian−i). 

Given the limitations of the JSON format in representing 
complex mathematical notation, the adoption of LaTeX 
syntax was selected as an appropriate solution. LaTeX 
provides a standardised, machine-readable format for 
mathematical expressions, ensuring that essential 
mathematical relationships are preserved during data 
processing. 

User Interaction 
The user interaction within this system was primarily 
indirect, being designed around the development of an 
automated pipeline that required minimal human 
intervention during the data acquisition phase. The core of 
the process was the structured parsing and systematic 
processing of competitive programming problems sourced 
from the Codeforces platform. 

The acquisition began with an initial dataset composed of 
direct links to individual problem pages. These URLs 
served as critical access points for retrieving detailed 
problem content from the web. To perform the extraction, 
advanced web scraping techniques were applied, combining 
the functionality of the BeautifulSoup2 library with the 

2 BeautifulSoup, https://beautiful-soup-4.readthedocs.io, 
last accessed on 29.06.2025 

curl_cffi.requests3 module. This configuration allowed 
efficient handling of HTTP requests and ensured 
compatibility with modern, potentially dynamic web 
content. 

After retrieving the HTML content of each problem, the 
data were carefully parsed to extract the essential 
components required for subsequent processing. The 
parsing process isolated key elements such as the problem 
title, full statement, input and output specifications, 
illustrative examples, and supplementary explanatory notes 
that could aid comprehension. Particular attention was 
given to preserving the integrity of the extracted 
information, ensuring that all structural elements and 
semantic details remained intact and unaltered during the 
conversion. 

Following extraction, the collected data were first stored in 
a Google Sheets document and exported in CSV format to 
enable organised visualisation and facilitate manual 
validation when necessary. Each row was structured to 
include the problem identification number, source link, title, 
detailed statement, input and output requirements, 
illustrative examples, explanatory notes, and assigned 
difficulty rating. Once validated, the dataset was 
programmatically converted into JSON files strictly 
conforming to the schema required by the AlphaCodium 
system. These files encapsulated problem metadata, 
segmented descriptions of statements and specifications, 
and corresponding public test cases, thereby ensuring 
structural consistency and compatibility for downstream 
processing. 

AlphaCodium 
For the development environment, Google Colab was 
selected due to its support for the latest Python-based 
technologies and its seamless integration with Google 
Drive, which facilitated efficient storage and management 
of project data and results. 

Following the environment setup, the required Python 
packages were installed based on the provided requirements 
file, which largely specified appropriate version constraints.  

A critical component of the AlphaCodium system was the 
integration of an API key for accessing ChatGPT models 
within the workflow. The acquisition and configuration of 
this API key were straightforward and did not present 
significant technical obstacles.  

AlphaCodium employs a multi-stage workflow that 
emulates human problem-solving strategies while 
leveraging the efficiency of artificial intelligence. The 
process begins with a self-reflection phase, where the 
system analyses the problem, identifies requirements, and 

3 curl_cffi, https://github.com/lexiforest/curl_cffi, last 
accessed on 29.06.2025 

Proceedings of ICUSI 2025

102



considers algorithmic paradigms and constraints. This 
reasoning step establishes a foundation before code 
generation, ensuring that comprehension precedes 
implementation. A subsequent validation phase then checks 
the logical consistency of the analysis before advancing to 
solution development. 

Once validated, AlphaCodium generates several candidate 
implementations and evaluates them based on correctness, 
clarity, and likelihood of success. The most promising 
solution is selected and further tested with automatically 
generated edge cases derived from structural analysis. This 
approach increases robustness by revealing hidden flaws 
and supports iterative refinement, approximating the 
adaptive reasoning employed by human programmers. 
Once the solution is generated, it is evaluated against the 
public (user-provided) test cases. In the event of test 
failures, AlphaCodium autonomously initiates a repair 
cycle, which involves re-analysing the problem, adjusting 
the solution, and re-executing the relevant tests. 

Even though AlphaCodium may not consistently achieve 
full test pass rates, the process highlights essential strategies 
for enhancing AI-assisted programming systems. These 
include repeated iterative refinement, continuous self-
evaluation, feedback integration from test executions, and 
adaptive solution regeneration. 

ChatGPT 
ChatGPT 4o-mini model was employed as the primary 
language model for data processing and code generation. 
The selection of this specific model was strategically 
motivated by its optimal balance between computational 
efficiency and generative capability. Empirical observations 
confirmed that 4o-mini is capable of producing precise, 
contextually appropriate solutions tailored to the 
specifications of competitive programming tasks. 

The interaction with the model was systematically 
structured. Each task was submitted via a standardised 
prompt format, phrased as: 

"Solve the following problem. Only write the Python code." 

This prompt was dynamically completed with task-specific 
content extracted from the corresponding JSON files. The 
decision to employ a concise and directive prompt structure 
was critical in constraining the model's output exclusively 
to Python code, deliberately excluding explanatory text, 
comments, or non-executable content. This controlled 
interaction paradigm ensured syntactic purity and 
eliminated ambiguity in the model's response, facilitating 
seamless downstream processing. 

Upon receiving the AI-generated response, only the Python 
code was extracted and stored for subsequent stages, 
including automated testing or additional analysis, as 
required by the evaluation framework. The workflow was 
fully automated (from prompt construction to solution 
storage and validation), enabling high-throughput 

processing, reducing manual intervention, and ensuring 
consistent handling across tasks. This integration, supported 
by structured data extraction from JSON files and uniform 
prompt templates, established efficient coupling between 
the generation engine and the processing infrastructure, 
thereby ensuring operational consistency, repeatability, and 
reliability throughout the entire pipeline. 

The 4o-mini model also contributed significantly to the 
efficiency and accuracy of the workflow. Despite being a 
compact version within the GPT-4 model family, 4o-mini 
consistently generated functional, context-relevant code, 
particularly suited for educational and competitive 
programming scenarios. 

By enforcing the exclusion of non-code elements from the 
model's output, the approach substantially reduced the risk 
of parsing errors and interpretative inconsistencies. This 
precision was particularly advantageous for compatibility 
with automated testing pipelines, where input streams are 
expected to consist solely of executable code segments. 

EXPERIMENTAL RESULTS 
This section will cover both the methods used to test the 
two generation methods and the obtained results. 

Testing 
The testing phase was designed to rigorously evaluate the 
solutions generated by ChatGPT and AlphaCodium, both 
selected for their demonstrated ability to interpret natural 
language and autonomously produce functional code for 
competitive programming tasks. After solution generation, 
each code fragment was executed within a controlled local 
environment using the official test cases extracted from the 
corresponding JSON files. This process ensured a 
systematic assessment of functional correctness by 
comparing the program outputs with the expected results 
defined in the problem specifications. Outcomes were 
classified into four categories, with solutions passing all test 
cases labelled as correct and those failing categorised as 
incorrect. Correct local solutions underwent an additional 
verification step, where they were manually submitted to 
the Codeforces platform. This procedure, though time-
intensive, confirmed robustness against hidden test cases 
and provided a reliable benchmark of model accuracy under 
real-world competitive programming conditions. 

Throughout this pipeline, several technical challenges were 
encountered that influenced performance. A primary 
limitation for AlphaCodium was sensitivity to token 
constraints, which often caused incomplete outputs for 
complex problems with lengthy statements. Both models 
also exhibited formatting inconsistencies, such as incorrect 
indentation, unsupported characters, or missing structural 
components, occasionally producing outputs that mixed 
code with natural language explanations. These issues 
frequently rendered the code non-executable, though 
rerunning the models on the same input sometimes yielded 

Proceedings of ICUSI 2025

103



valid outputs, highlighting the variability inherent in their 
generative processes. 

Results – AlphaCodium 
The results obtained from AlphaCodium's performance 
across the dataset of 399 competitive programming 
problems reveal several critical trends and limitations. Out 
of the total problems, AlphaCodium failed to generate any 
solution for 56 instances, effectively reducing the number 
of attempted problems to 343. The inability to produce 
output for a significant portion of the dataset is a direct 
consequence of the token limitations imposed by the 
model's API, as previously discussed. This constraint was 
particularly evident for problems of higher complexity, 
where the length of the problem statements and the 
accompanying explanations often exceeded the model's 
token processing capacity, leading to systematic failures in 
code generation. 

The evaluation of AlphaCodium considered two 
performance thresholds: passing the initial public test case 
and achieving full correctness by passing all official 
Codeforces tests. The first threshold served as an early 
indicator of the model's capacity to capture the fundamental 
structure of a problem, while the second represented 
complete validation of the solution. AlphaCodium achieved 
its strongest results on low-difficulty problems, with pass 
rates on the first public test ranging from roughly 50% to 
25%, highest at the lower end of the spectrum. For medium-
difficulty tasks, performance stabilised around 25%, 
suggesting that the model was able to generate partial but 
viable solutions with a degree of consistency across this 
range. 

At higher difficulty levels (above 1800), AlphaCodium's 
performance became far less stable, with success rates 
fluctuating significantly as complexity increased. These 
inconsistencies appear linked to the combined effects of 
longer problem statements, more intricate constraints, and 
architectural limitations in processing extensive contextual 
information. Nonetheless, even when full correctness was 
not achieved, the ability to pass initial public tests indicated 
that the model often captured elements of the correct 
reasoning path. This partial alignment suggests that 
AlphaCodium's solutions, while incomplete, may only 
require refinement or additional guidance to reach full 
correctness 

The final evaluation of AlphaCodium's performance, based 
on the successful completion of all test cases on the 
Codeforces platform, reveals a marked decline in accuracy 
as problem difficulty increases. For lower difficulty levels 
(800-1100), the model achieved relatively high success 
rates, with correct solutions in approximately 45-50% of the 
cases. However, as problem complexity grew, 
AlphaCodium's effectiveness decreased rapidly. In the 
medium difficulty range (1200-1700), success rates fell to 

between 10% and 25%, indicating difficulties in handling 
problems that require advanced algorithmic reasoning. 

Figure 2. AlphaCodium results – first test (top) vs. all tests 
(bottom) 

At higher difficulty levels (1800 and above), 
AlphaCodium's performance became negligible, with only 
two problems solved correctly across all attempts, and no 
successful solutions for problems rated 2000 or higher. This 
highlights clear limitations in the model's capacity to solve 
expert-level tasks. 

The average runtime per problem was between four and six 
minutes, suggesting a substantial computational effort. 
However, this processing time was generally insufficient to 
produce correct solutions for complex problems, likely due 
to the increased logical depth and solution space 
exploration required. 

For the final passing rates, AlphaCodium abstained 28.57% 
for the first public test threshold, while 19.79% was scored 
for the overall success rate. 

ChatGPT – Results 
Similar to the methodology applied to AlphaCodium, 
ChatGPT was evaluated using the same testing framework, 
which involved passing both the initial public test and the 
comprehensive validation set on the Codeforces platform. 
Unlike AlphaCodium, ChatGPT successfully processed the 
entire dataset without encountering token limit issues. This 
robustness is primarily due to the model's streamlined 
communication protocol, where only the problem 
description was transmitted in a single API call, thereby 
avoiding overloading the communication channel. 
Consequently, ChatGPT demonstrated significantly faster 
response times, averaging approximately 10 seconds per 
problem. 

ChatGPT's performance on the initial public test, used as a 
preliminary indicator of conceptual understanding, showed 
favorable results for low-difficulty problems. In this range, 
success rates varied between 25% and 40%, aligning with 
expectations for entry-level tasks that demand limited 
contextual reasoning. For medium-difficulty problems, the 
model maintained a relatively stable accuracy of around 
20%, with slight improvements near the upper boundary of 

Proceedings of ICUSI 2025

104



this interval. However, as problem complexity increased, its 
effectiveness declined sharply. In the high-difficulty range, 
success rates did not exceed 20% and dropped to zero for 
the most challenging problems, reflecting the model's 
limitations in addressing tasks that require advanced 
algorithmic reasoning. 

A closer analysis of the distribution confirms this trend, 
with accuracy strongly correlated to problem difficulty. At 
the lowest tier, ChatGPT solved 35 of 82 problems rated 
800, corresponding to an accuracy of roughly 43%. 
Performance decreased with increasing complexity, with 
only 7 of 20 problems solved at a rating of 900, and just 4 
and 5 correct solutions at ratings of 1000 and 1100, 
respectively. These findings indicate that while ChatGPT 
demonstrates efficiency in producing rapid responses, its 
accuracy is not guaranteed, even for relatively simple 
problems, and deteriorates substantially as problem 
complexity increases. 

Figure 3. ChatGPT results – first test (top) vs. all tests (bottom) 

As the difficulty increases, the model's performance 
deteriorates markedly. At a score of 1200, only 4 out of 26 
problems were solved correctly, and at 1300, just 3 out of 
23. For problems rated at 1400 and 1500, the success rate
drops to minimal levels: only 1 out of 15 problems at 1400
and 3 out of 26 at 1500 were resolved correctly. These
outcomes suggest that ChatGPT faces progressively greater
challenges in generating accurate solutions as the logical
and algorithmic requirements of the tasks become more
intricate.

In the case of high-difficulty problems, the model's 
performance is nearly negligible. Only two problems were 
solved correctly, while the remaining attempts were 
unsuccessful. This result clearly underscores a major 
limitation of ChatGPT in addressing problems that require 
deep comprehension and advanced problem-solving 
strategies. It highlights the model's significant difficulties in 
handling tasks with high algorithmic complexity. 

In the end, ChatGPT managed to score 24.06% for the first 
threshold, while 16.54% was marked for the second. 

Comparing results 
The following diagram presents the final acceptance rates 
of both models across varying levels of problem difficulty. 
Consistent with the trends observed in the previous 
illustrations, AlphaCodium generally outperforms ChatGPT 
or, at minimum, achieves comparable results. An exception 
is observed in the lower difficulty range (1000 - 1100), 
where ChatGPT attains higher success rates, whereas 
AlphaCodium demonstrates superior performance across 
the remaining difficulty levels. 

Figure 4. AlphaCodium vs. ChatGPT – accepted solutions 

To gain deeper insights into the underlying problem-solving 
processes of the models, the following table summarises the 
outcome of each generated solution. The table indicates 
whether a problem was solved correctly, incorrectly, or 
failed due to issues such as memory or time limit 
constraints. 

Output 
status 

AlphaCodium 
(GPT-4o mini) 

ChatGPT 
(GPT-4o mini) 

First test All tests First test All tests 
Passed 114 79 96 66 
Failed 278 305 297 320 
Time lim. 7 14 6 12 
Mem. lim. 0 1 0 1 

Table 1. Problem output status 

The comparative results indicate that AlphaCodium 
achieves higher pass rates than ChatGPT at both evaluation 
stages. While both models exhibit a substantial number of 
failed attempts, ChatGPT records slightly higher failure 
counts across both stages. Time-limit and memory-limit 
errors occur infrequently in both models, though 
AlphaCodium shows marginally higher susceptibility to 
time-limit issues. Overall, these findings suggest that 
AlphaCodium demonstrates a modest advantage in 
generating correct solutions, albeit at the cost of a slightly 
higher incidence of execution-time constraints. 

FUTURE WORK 
Building upon the findings of the present study, several 
directions for future research can be identified. Firstly, the 
experimental framework will be extended to incorporate 
more recent and larger-scale models, such as GPT-4 and its 
successors, in order to evaluate the extent to which 
architectural advancements and expanded training corpora 
improve performance in competitive programming 

Proceedings of ICUSI 2025

105



contexts. This extension will provide a more comprehensive 
understanding of the state of the art in AI-driven code 
generation. 

Needless to say, future experiments will incorporate 
human-generated solutions alongside those produced by the 
models. This addition will enable a more organic and 
realistic benchmark, situating AI performance within the 
broader spectrum of human problem-solving abilities and 
offering valuable insights into complementarities between 
human and machine-generated approaches. 

Furthermore, a more in-depth diagnostic analysis of model 
outputs will be undertaken. Beyond simply classifying 
solutions as correct or incorrect, this analysis will aim to 
investigate the specific causes of failure, including logical 
missteps, algorithmic inefficiencies, and misinterpretations 
of problem constraints. Furthermore, the degree of 
deviation from the correct solution will be systematically 
assessed, thereby providing a finer-grained perspective on 
the proximity of erroneous outputs to viable 
implementations. 

The scope of the evaluation will be broadened to include 
additional programming languages beyond Python. This 
expansion will test the generalizability of the models' 
problem-solving capabilities across diverse syntactic and 
semantic environments, ultimately yielding a more holistic 
understanding of their applicability to real-world 
programming scenarios. 

CONCLUSIONS 
Following the experiments and the subsequent analysis of 
the obtained results, several clear conclusions can be drawn 
regarding the performance and applicability of the 
evaluated models. 

Both AlphaCodium and ChatGPT have demonstrated their 
potential as valuable tools for addressing competitive 
programming problems. Considering the accuracy rates 
achieved during the testing phase, both systems prove to be 
viable solutions. Although AlphaCodium achieved 
marginally superior results, approximately 3% higher 
accuracy compared to ChatGPT, both approaches can be 
effectively employed in the problem-solving process. In 
terms of operational differences, ChatGPT offers the 
advantage of significantly faster response times, making it 
suitable for scenarios where prompt feedback is essential. 
In contrast, AlphaCodium provides a higher probability of 
generating a correct solution, making it preferable when 
solution accuracy is prioritised over processing speed. 

From a strictly statistical and performance-oriented 
perspective, AlphaCodium consistently outperforms 
ChatGPT in solving competitive programming tasks. 
Despite its limitations in processing a smaller number of 
problems due to token constraints, AlphaCodium achieved 
higher success rates in the problems it was able to attempt. 
With an observed performance advantage of approximately 

3%, AlphaCodium emerges as the more effective approach 
for obtaining correct solutions. However, this improved 
accuracy is accompanied by higher computational costs and 
longer processing times, suggesting a trade-off between 
solution quality and resource efficiency. Ultimately, the 
superior results obtained by AlphaCodium justify the 
additional investment in both time and computational 
resources. 

REFERENCES 
1. Welsby, P., & Cheung, B. M. (2023). ChatGPT.

Postgraduate Medical Journal, 99(1176), 1047-1048.

2. Ridnik, T., Kredo, D., & Friedman, I. (2024). Code
generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint
arXiv:2401.08500.

3. Li, Y., Choi, D., Chung, J., Kushman, N.,
Schrittwieser, J., Leblond, R., ... & Vinyals, O. (2022).
Competition-level code generation with alphacode.
Science, 378(6624), 1092-1097.

4. Liu, J., Xia, C. S., Wang, Y., & Zhang, L. (2023). Is
your code generated by chatgpt really correct? rigorous
evaluation of large language models for code
generation. Advances in Neural Information Processing
Systems, 36, 21558-21572.

5. Zhou, S., Alon, U., Agarwal, S., & Neubig, G. (2023).
Codebertscore: Evaluating code generation with
pretrained models of code. arXiv preprint
arXiv:2302.05527.

6. Tong, W., & Zhang, T. (2024). CodeJudge: Evaluating
Code Generation with Large Language Models. arXiv
preprint arXiv:2410.02184.

7. Siam, M. K., Gu, H., & Cheng, J. Q. (2024, October).
Programming with ai: Evaluating chatgpt, gemini,
alphacode, and github copilot for programmers. In
Proceedings of the 3rd International Conference on
Computing Advancements (pp. 346-354).

8. Yetiştiren, B., Özsoy, I., Ayerdem, M., & Tüzün, E.
(2023). Evaluating the code quality of ai-assisted code
generation tools: An empirical study on github copilot,
amazon codewhisperer, and chatgpt. arXiv preprint
arXiv:2304.10778.

9. Yan, D., Gao, Z., & Liu, Z. (2023, September). A
closer look at different difficulty levels code generation
abilities of chatgpt. In 2023 38th IEEE/ACM
International Conference on Automated Software
Engineering (ASE) (pp. 1887-1898). IEEE.

Proceedings of ICUSI 2025

106


