Proceedings of ICUSI 2025

Comparison of Python code generated by ChatGPT and
AlphaCodium

Rares Mihai Dinu

University of Craiova
raresmihail8@gmail.com

ABSTRACT

This paper presents a comparative analysis of the
performance of ChatGPT and AlphaCodium in generating
Python code for algorithmic problem-solving, using tasks
sourced from the competitive programming platform
Codeforces. The study evaluates how effectively each
model interprets problem statements, generates correct and
efficient solutions, and handles edge cases and complex
scenarios under the platform's strict time and memory
constraints. Both models were assessed by executing their
generated solutions, which were then evaluated by
Codeforces' judging system. Unlike previous studies that
often rely on closed or controlled environments, this
research leverages an open, reproducible, and objective
testing framework provided by Codeforces to deliver
quantifiable and verifiable results. The findings contribute
to a deeper understanding of the practical capabilities and
limitations of Al-based code generation models in
competitive programming contexts, offering valuable
insights for both academic research and industry
applications.

Author Keywords
Al Code Generation, ChatGPT, AlphaCodium, Competitive
Programming, Python, Codeforces, Algorithmic Problem
Solving, Natural Language Processing, Program Synthesis,
Model Evaluation

ACM Classification Keywords
Computing methodologies - Artificial intelligence - Natural
language processing (1.2.7)

DOI: 10.37789/icusi.2025.14

INTRODUCTION

In recent years, the rapid evolution of artificial intelligence
models has significantly impacted the field of software
development, particularly in the domain of algorithmic
problem-solving and competitive programming. Platforms
such as Codeforces have become key benchmarks for
assessing the capability of both human programmers and
Al-based code generation tools. Through its automated
testing system and well-structured problem classifications,
Codeforces offers an objective, transparent, and
reproducible environment for evaluating solutions under
strict time and memory constraints.

ChatGPT [1], developed by OpenAl, and AlphaCode,
developed by DeepMind, along with its derivative,

Marian Cristian Mihaescu

University of Craiova
cristian.mihaescu@edu.ucv.ro

99

Traian Eugen Rebedea
University Politehnica of

Bucharest
traian.rebedealcs.pub.ro

AlphaCodium [2] have emerged as leading AI models
capable of tackling complex algorithmic challenges.
AlphaCodium's performance, demonstrated by its ranking
in the top 54% of human competitors in a controlled
Codeforces-based evaluation, highlights its potential in this
field. Similarly, ChatGPT, especially in its GPT-4-based
variants, has shown remarkable improvements in
algorithmic reasoning, code generation, and problem-
solving abilities, becoming a widely used tool among
programmers for tasks such as brainstorming, debugging,
and solution development.

Despite their promising capabilities, direct, objective, and
openly verifiable comparisons between these models
remain limited. Existing evaluations often rely on closed
testing environments or provide primarily qualitative
assessments, which can obscure the practical applicability
of such models in real-world scenarios. This paper
addresses this gap by proposing a comparative study based
on the Codeforces platform, using its public, standardised,
and automated evaluation system to ensure accuracy,
fairness, and reproducibility.

The primary objective of this research is to analyse and
compare the performance of ChatGPT and AlphaCodium in
generating Python code solutions for a diverse set of real
algorithmic problems with varying difficulty levels. By
emphasising this two-step acceptance metric, the study
offers a focused and practical perspective on the immediate
and final accuracy of the generated solutions, providing
clear, measurable insights into the models' performance.
The selected problems span various levels of difficulty,
ensuring a comprehensive assessment of the models'
capabilities across a diverse problem set.

By adopting this methodology, the paper aims to provide
practical, quantifiable insights into the strengths and
limitations of these models in competitive programming
contexts. Ultimately, the research contributes to a better
understanding of how artificial intelligence can complement
human efforts in algorithmic problem-solving and software
development, supporting a responsible and informed
integration of these technologies in both educational and
industrial settings.

The project utilises a dataset of algorithmic problems
sourced from the Codeforces platform, carefully selected to
cover a wide range of difficulty levels. This approach
ensures a comprehensive evaluation of both models,

Proceedings of ICUSI 2025

providing meaningful insights into their respective
strengths, weaknesses, and optimal use cases across
different problem complexities.

Alongside the results obtained, this paper covers the data
preparation stage for each model. Within the same concept,
the problem data is written in a manner that is accessible for
both approaches, resulting in minimal to no alterations to
the testing environment.

RELATED WORK

The domain of automated code generation using large
language models has advanced significantly in recent years,
driven by the increasing capabilities of transformer-based
architectures and the availability of large-scale code
datasets. Numerous studies have explored the application of
these models in both general-purpose programming and
competitive programming contexts, with a particular focus
on assessing their problem-solving efficiency, accuracy,
and semantic understanding of code. This section reviews a
selection of relevant works that provide essential
background for understanding the performance and
evaluation of models such as ChatGPT and AlphaCodium
in the context of competitive programming tasks. The
selected literature highlights key methodologies, evaluation
frameworks, and model-specific advantages or limitations
that collectively contribute to the current state of research in
automated programming. By situating the present study
within this body of work, a clearer perspective emerges
regarding the comparative strengths, weaknesses, and
practical implications of deploying such models in real-
world coding environments.

Li et al. [3] present the performance of AlphaCode, a
language model developed explicitly for solving
competition-level programming problems. The system is
evaluated on the Codeforces platform, which, at the time of
writing, is one of the most widely used competitive
programming environments. Using a combination of
transformer-based architectures and sampling strategies,
AlphaCode achieved a performance ranking within the top
54% of Codeforces users. The paper emphasises that
AlphaCode's success relies on generating a large set of
candidate solutions followed by a filtering mechanism
based on test cases. Despite the promising results, the
authors acknowledge the scalability limitations of the
approach due to computational costs. Moreover, the
underlying methodology is highly dependent on the
diversity of the sampled solutions, which remains a
challenge in problems with larger search spaces.

Liu et al. [4] extensively evaluate the correctness of code
generated by large language models, including ChatGPT,
through the introduction of the EvalPlus framework. The
core of their work lies in improving the traditional
evaluation settings by supplementing existing public test
cases with additional, more challenging ones, thus
mitigating the incompleteness of the HumanEval dataset.
By leveraging extensive mutation-based test generation, the

100

authors demonstrate that the pass@k metric, commonly

used in code generation evaluation, is significantly
overestimated under previous benchmarks. Despite
achieving faster computational times, ChatGPT's

performance deteriorates when subjected to the enhanced
test suites proposed by EvalPlus. Liu et al. highlight that the
superficial validation used in prior work might have
overrepresented the models' true problem-solving
capabilities.

Zhou et al. [5] introduce CodeBERTScore, a novel metric
designed for evaluating code generation through the
semantic alignment between predicted and reference code.
The method builds upon the CodeBERT model, specifically
pre-trained on source code, which ensures the semantic
granularity necessary for cross-language code comparisons.
Unlike traditional string-matching metrics,
CodeBERTScore emphasises the importance of capturing
functional equivalence rather than exact syntactic matches.
By conducting experiments across several datasets,
including HumanEval and MBPP, the authors demonstrate
that their metric correlates more strongly with functional
correctness and human preference than previous metrics
such as BLEU or exact match. Despite this improvement,
Zhou et al. note that the metric's reliability is contingent on
the representational quality of the pre-trained code models,
which might vary across programming languages.

Tong and Zhang [6] develop CodeJudge, a framework
designed to evaluate code generated by large language
models without requiring traditional test cases. The key
innovation in their work is the semantic similarity
evaluation pipeline, which leverages pre-trained language
models to compare the model-generated solution against a
reference at a deeper functional level. By using both natural
language and code-based embeddings, the authors provide
an alternative to functional testing that is particularly
valuable in scenarios where test cases are incomplete or
unavailable. The study demonstrates that CodeJudge can
predict functional correctness with a high degree of
correlation to traditional testing. Still, the authors also
acknowledge the sensitivity of their framework to the
variability in code representations and the inherent
limitations of relying on pretrained embedding spaces.

Siam et al. [7] conduct a comparative study evaluating
multiple Al programming assistants, including ChatGPT,
AlphaCode, Gemini, and GitHub Copilot. The study
systematically benchmarks these models across widely used
datasets such as HumanEval and APPS, focusing on their
ability to generate syntactically correct and functionally
accurate code under standard conditions. According to the
reported results, AlphaCode consistently outperforms
ChatGPT and Copilot in terms of solution accuracy,
particularly in complex competitive programming
scenarios. The paper emphasises the trade-offs between
model responsiveness and solution correctness, with
ChatGPT providing faster responses at the cost of lower

Proceedings of ICUSI 2025

accuracy. Siam et al. highlight the complementary nature of
the models, suggesting that the choice of tool should
depend on whether rapid prototyping or high-stakes
competitive problem solving is the primary goal.

Yetistiren et al. [8] conduct an empirical study evaluating
the code quality of Al-assisted programming tools,
specifically GitHub Copilot, Amazon CodeWhisperer, and
ChatGPT. Their analysis, based on the HumanEval dataset,
assesses multiple dimensions of generated code, including
correctness, reliability, maintainability, and security. The
results highlight that while all models exhibit potential as
programming assistants, significant differences exist in the
trade-offs between solution accuracy and code quality. This
study is particularly relevant as it broadens the comparative
scope beyond pairwise evaluations, offering a multi-tool
perspective that situates ChatGPT's performance within the
broader ecosystem of Al coding assistants.

Yan et al. [9] focus on understanding how ChatGPT's code
generation abilities vary across tasks of different difficulty
levels. By systematically categorising problems into low,
medium, and high complexity tiers, the authors demonstrate
that ChatGPT performs considerably better on simpler
tasks, while its accuracy and reliability decline as problem
difficulty increases. This observation closely aligns with the
findings of the present study, reinforcing the importance of
difficulty-based analysis when evaluating Al code
generation models. Moreover, their work provides
additional evidence that task complexity is a critical factor
in determining the practical applicability of such models in
real-world problem-solving contexts.

PROPOSED APPROACH

The primary objective of the present system is to perform a
comparative evaluation of the results obtained by
AlphaCodium and ChatGPT. The study aims to draw
precise, quantifiable conclusions regarding the models'
ability to solve algorithmic problems and their respective
acceptance rates within the Codeforces competitive
programming platform.

The core goal of this project is straightforward: to
determine the most effective approach for solving
competitive programming problems. The system follows an
intuitive and user-guided process. The user selects a
problem from Codeforces and provides its link to the
system. The problem information is then automatically
converted into a format compatible with both approaches,
AlphaCodium and ChatGPT. The user chooses one of the
two models, which subsequently generates a solution for
the selected problem. To validate the solution, the user
manually submits it to the Codeforces judging system,
where the solution's correctness is objectively assessed.

The Dataset
The dataset employed in this study is a curated collection of
399 competitive programming problems sourced from the

101

Codeforces platform, a widely recognised online judge
specialising in algorithmic problem-solving and
competitive programming contests. The problems selected
cover a broad spectrum of difficulty levels, ranging from
800 to 2500, which aligns with the Codeforces rating
system, where lower values denote introductory tasks and
higher values correspond to highly challenging problems.

This dataset represents a subset extracted from the publicly
available "Codeforces Competitive Programming Dataset!"
hosted on Kaggle. The selection ensures a representative
sample that encompasses a diverse array of problem types
and difficulty distributions commonly encountered in
competitive programming environments.

The dataset was systematically classified based on the
Codeforces difficulty rating, which allowed for the
segmentation of the problems into three distinct categories,
each characterised by specific algorithmic and cognitive
requirements. With that low (with scores between 800 to
1100), medium (1200-1700) and high (1800-2500)
difficulty problems were assigned.

100

82
80

60

40 0 2 0m % o3 0% 0023 0 B n BB

20 7

, A HHNE alEEE_ "

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500
Figure 1. Problem difficulty distribution

The dataset exhibits a higher concentration of problems at
lower difficulty levels, which reflects the general
composition of publicly available competitive programming
repositories such as Codeforces. Lower-rated problems are
more abundant, as they serve as introductory exercises
designed to engage a wider pool of participants, including
beginners. Conversely, high-difficulty problems are
deliberately fewer, since they target advanced competitors
and are intended to appear less frequently in contests. This
natural imbalance ensures that the dataset remains
representative of the problem distribution encountered in
real-world competitive programming environments, while
also facilitating a more comprehensive evaluation of model
performance across accessible tasks.

The dataset comprises 399 JSON files, each encapsulating
the complete information required for the accurate
understanding and resolution of a specific problem. The
dataset's directory structure is systematic, with each file
named using the pattern "my problems Xjson", where X
denotes the sequential index of the problem, ranging from 1
to 399.

' Codeforces Competitive Programming Dataset,

https://www.kaggle.com/datasets/dinuiongeorge/codeforces

-competitive-programming-dataset, last accessed on
29.06.2025

Proceedings of ICUSI 2025

Each JSON file adheres to a standardised structure,
consisting of the following key fields:

e name: Specifies the official problem title as published on
Codeforces.

e description: Provides a textual

specification of the problem.

comprehensive

e public_tests: Contains an array of publicly available test
cases intended for preliminary validation. Each element
in this array includes:

o input: The input data for the test.

o is_valid test: A flag indicating the validity of the test
case.

o output: The expected output for the given input.

The problems were systematically collected and processed
to ensure compatibility with the AlphaCodium system's
input format. An additional step in the data preparation
process involved web scraping techniques, where relevant
problem statements and associated data were extracted
directly from the Codeforces platform by parsing HTML
elements.

One notable challenge encountered during the dataset
preparation involved the representation of mathematical
expressions, which are frequently embedded in the original
problem statements. These expressions can range from
simple inequalities (e.g., x <) to complex summations or
combinatorial formulas (e.g., Y,=x'a" ™).

Given the limitations of the JSON format in representing
complex mathematical notation, the adoption of LaTeX
syntax was selected as an appropriate solution. LaTeX
provides a standardised, machine-readable format for
mathematical expressions, ensuring that essential
mathematical relationships are preserved during data
processing.

User Interaction

The user interaction within this system was primarily
indirect, being designed around the development of an
automated pipeline that required minimal human
intervention during the data acquisition phase. The core of
the process was the structured parsing and systematic
processing of competitive programming problems sourced
from the Codeforces platform.

The acquisition began with an initial dataset composed of
direct links to individual problem pages. These URLs
served as critical access points for retrieving detailed
problem content from the web. To perform the extraction,
advanced web scraping techniques were applied, combining
the functionality of the BeautifulSoup? library with the

2 BeautifulSoup, https://beautiful-soup-4.readthedocs.io

last accessed on 29.06.2025

102

curl_cffirequests’ module. This configuration allowed
efficient handling of HTTP requests and ensured
compatibility with modern, potentially dynamic web
content.

After retrieving the HTML content of each problem, the
data were carefully parsed to extract the essential
components required for subsequent processing. The
parsing process isolated key elements such as the problem
title, full statement, input and output specifications,
illustrative examples, and supplementary explanatory notes
that could aid comprehension. Particular attention was
given to preserving the integrity of the extracted
information, ensuring that all structural elements and
semantic details remained intact and unaltered during the
conversion.

Following extraction, the collected data were first stored in
a Google Sheets document and exported in CSV format to
enable organised visualisation and facilitate manual
validation when necessary. Each row was structured to
include the problem identification number, source link, title,
detailed statement, input and output requirements,
illustrative examples, explanatory notes, and assigned
difficulty rating. Once validated, the dataset was
programmatically converted into JSON files strictly
conforming to the schema required by the AlphaCodium
system. These files encapsulated problem metadata,
segmented descriptions of statements and specifications,
and corresponding public test cases, thereby ensuring
structural consistency and compatibility for downstream
processing.

AlphaCodium

For the development environment, Google Colab was
selected due to its support for the latest Python-based
technologies and its seamless integration with Google
Drive, which facilitated efficient storage and management
of project data and results.

Following the environment setup, the required Python
packages were installed based on the provided requirements
file, which largely specified appropriate version constraints.

A critical component of the AlphaCodium system was the
integration of an API key for accessing ChatGPT models
within the workflow. The acquisition and configuration of
this APl key were straightforward and did not present
significant technical obstacles.

AlphaCodium employs a multi-stage workflow that
emulates human problem-solving strategies while
leveraging the efficiency of artificial intelligence. The
process begins with a self-reflection phase, where the
system analyses the problem, identifies requirements, and

3

curl cffi, https:/github.com/lexiforest/curl cffi, last

accessed on 29.06.2025

Proceedings of ICUSI 2025

considers algorithmic paradigms and constraints. This
reasoning step establishes a foundation before code
generation, ensuring that comprehension precedes
implementation. A subsequent validation phase then checks
the logical consistency of the analysis before advancing to
solution development.

Once validated, AlphaCodium generates several candidate
implementations and evaluates them based on correctness,
clarity, and likelihood of success. The most promising
solution is selected and further tested with automatically
generated edge cases derived from structural analysis. This
approach increases robustness by revealing hidden flaws
and supports iterative refinement, approximating the
adaptive reasoning employed by human programmers.
Once the solution is generated, it is evaluated against the
public (user-provided) test cases. In the event of test
failures, AlphaCodium autonomously initiates a repair
cycle, which involves re-analysing the problem, adjusting
the solution, and re-executing the relevant tests.

Even though AlphaCodium may not consistently achieve
full test pass rates, the process highlights essential strategies
for enhancing Al-assisted programming systems. These
include repeated iterative refinement, continuous self-
evaluation, feedback integration from test executions, and
adaptive solution regeneration.

ChatGPT

ChatGPT 4o0-mini model was employed as the primary
language model for data processing and code generation.
The selection of this specific model was strategically
motivated by its optimal balance between computational
efficiency and generative capability. Empirical observations
confirmed that 40-mini is capable of producing precise,

contextually appropriate solutions tailored to the
specifications of competitive programming tasks.
The interaction with the model was systematically

structured. Each task was submitted via a standardised
prompt format, phrased as:

"Solve the following problem. Only write the Python code."

This prompt was dynamically completed with task-specific
content extracted from the corresponding JSON files. The
decision to employ a concise and directive prompt structure
was critical in constraining the model's output exclusively
to Python code, deliberately excluding explanatory text,
comments, or non-executable content. This controlled
interaction paradigm ensured syntactic purity and
eliminated ambiguity in the model's response, facilitating
seamless downstream processing.

Upon receiving the Al-generated response, only the Python
code was extracted and stored for subsequent stages,
including automated testing or additional analysis, as
required by the evaluation framework. The workflow was
fully automated (from prompt construction to solution
storage and validation), enabling high-throughput

103

processing, reducing manual intervention, and ensuring
consistent handling across tasks. This integration, supported
by structured data extraction from JSON files and uniform
prompt templates, established efficient coupling between
the generation engine and the processing infrastructure,
thereby ensuring operational consistency, repeatability, and
reliability throughout the entire pipeline.

The 40-mini model also contributed significantly to the
efficiency and accuracy of the workflow. Despite being a
compact version within the GPT-4 model family, 40-mini
consistently generated functional, context-relevant code,
particularly suited for educational and competitive
programming scenarios.

By enforcing the exclusion of non-code elements from the
model's output, the approach substantially reduced the risk
of parsing errors and interpretative inconsistencies. This
precision was particularly advantageous for compatibility
with automated testing pipelines, where input streams are
expected to consist solely of executable code segments.

EXPERIMENTAL RESULTS
This section will cover both the methods used to test the
two generation methods and the obtained results.

Testing

The testing phase was designed to rigorously evaluate the
solutions generated by ChatGPT and AlphaCodium, both
selected for their demonstrated ability to interpret natural
language and autonomously produce functional code for
competitive programming tasks. After solution generation,
each code fragment was executed within a controlled local
environment using the official test cases extracted from the
corresponding JSON files. This process ensured a
systematic assessment of functional correctness by
comparing the program outputs with the expected results
defined in the problem specifications. Outcomes were
classified into four categories, with solutions passing all test
cases labelled as correct and those failing categorised as
incorrect. Correct local solutions underwent an additional
verification step, where they were manually submitted to
the Codeforces platform. This procedure, though time-
intensive, confirmed robustness against hidden test cases
and provided a reliable benchmark of model accuracy under
real-world competitive programming conditions.

Throughout this pipeline, several technical challenges were
encountered that influenced performance. A primary
limitation for AlphaCodium was sensitivity to token
constraints, which often caused incomplete outputs for
complex problems with lengthy statements. Both models
also exhibited formatting inconsistencies, such as incorrect
indentation, unsupported characters, or missing structural
components, occasionally producing outputs that mixed
code with natural language explanations. These issues
frequently rendered the code non-executable, though
rerunning the models on the same input sometimes yielded

Proceedings of ICUSI 2025

valid outputs, highlighting the variability inherent in their
generative processes.

Results — AlphaCodium

The results obtained from AlphaCodium's performance
across the dataset of 399 competitive programming
problems reveal several critical trends and limitations. Out
of the total problems, AlphaCodium failed to generate any
solution for 56 instances, effectively reducing the number
of attempted problems to 343. The inability to produce
output for a significant portion of the dataset is a direct
consequence of the token limitations imposed by the
model's API, as previously discussed. This constraint was
particularly evident for problems of higher complexity,
where the length of the problem statements and the
accompanying explanations often exceeded the model's
token processing capacity, leading to systematic failures in
code generation.

The evaluation of AlphaCodium considered two
performance thresholds: passing the initial public test case
and achieving full correctness by passing all official
Codeforces tests. The first threshold served as an early
indicator of the model's capacity to capture the fundamental
structure of a problem, while the second represented
complete validation of the solution. AlphaCodium achieved
its strongest results on low-difficulty problems, with pass
rates on the first public test ranging from roughly 50% to
25%, highest at the lower end of the spectrum. For medium-
difficulty tasks, performance stabilised around 25%,
suggesting that the model was able to generate partial but
viable solutions with a degree of consistency across this
range.

At higher difficulty levels (above 1800), AlphaCodium's
performance became far less stable, with success rates
fluctuating significantly as complexity increased. These
inconsistencies appear linked to the combined effects of
longer problem statements, more intricate constraints, and
architectural limitations in processing extensive contextual
information. Nonetheless, even when full correctness was
not achieved, the ability to pass initial public tests indicated
that the model often captured elements of the correct
reasoning path. This partial alignment suggests that
AlphaCodium's solutions, while incomplete, may only
require refinement or additional guidance to reach full
correctness

The final evaluation of AlphaCodium's performance, based
on the successful completion of all test cases on the
Codeforces platform, reveals a marked decline in accuracy
as problem difficulty increases. For lower difficulty levels
(800-1100), the model achieved relatively high success
rates, with correct solutions in approximately 45-50% of the
cases. However, as problem complexity grew,
AlphaCodium's effectiveness decreased rapidly. In the
medium difficulty range (1200-1700), success rates fell to

104

between 10% and 25%, indicating difficulties in handling
problems that require advanced algorithmic reasoning.

2 15 26 16 23 20 25 22 23 23 7

100%
80%
60% 1l 13l 17
0%
20%
0%
soo goo 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 uon 2500
100%
80%
60%
0%
20%
0%

21 21 26 23 15 26 16 23 20 25 22 23 23 7
800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100

2200 2300 2400 2500

mPassed wFailed

Figure 2. AlphaCodium results — first test (top) vs. all tests
(bottom)

At higher difficulty levels (1800 and above),
AlphaCodium's performance became negligible, with only
two problems solved correctly across all attempts, and no
successful solutions for problems rated 2000 or higher. This
highlights clear limitations in the model's capacity to solve
expert-level tasks.

The average runtime per problem was between four and six
minutes, suggesting a substantial computational effort.
However, this processing time was generally insufficient to
produce correct solutions for complex problems, likely due
to the increased logical depth and solution space
exploration required.

For the final passing rates, AlphaCodium abstained 28.57%
for the first public test threshold, while 19.79% was scored
for the overall success rate.

ChatGPT — Results

Similar to the methodology applied to AlphaCodium,
ChatGPT was evaluated using the same testing framework,
which involved passing both the initial public test and the
comprehensive validation set on the Codeforces platform.
Unlike AlphaCodium, ChatGPT successfully processed the
entire dataset without encountering token limit issues. This
robustness is primarily due to the model's streamlined
communication protocol, where only the problem
description was transmitted in a single API call, thereby
avoiding overloading the communication channel.
Consequently, ChatGPT demonstrated significantly faster
response times, averaging approximately 10 seconds per
problem.

ChatGPT's performance on the initial public test, used as a
preliminary indicator of conceptual understanding, showed
favorable results for low-difficulty problems. In this range,
success rates varied between 25% and 40%, aligning with
expectations for entry-level tasks that demand limited
contextual reasoning. For medium-difficulty problems, the
model maintained a relatively stable accuracy of around
20%, with slight improvements near the upper boundary of

Proceedings of ICUSI 2025

this interval. However, as problem complexity increased, its
effectiveness declined sharply. In the high-difficulty range,
success rates did not exceed 20% and dropped to zero for
the most challenging problems, reflecting the model's
limitations in addressing tasks that require advanced
algorithmic reasoning.

A closer analysis of the distribution confirms this trend,
with accuracy strongly correlated to problem difficulty. At
the lowest tier, ChatGPT solved 35 of 82 problems rated
800, corresponding to an accuracy of roughly 43%.
Performance decreased with increasing complexity, with
only 7 of 20 problems solved at a rating of 900, and just 4
and 5 correct solutions at ratings of 1000 and 1100,
respectively. These findings indicate that while ChatGPT
demonstrates efficiency in producing rapid responses, its
accuracy is not guaranteed, even for relatively simple
problems, and deteriorates substantially as problem
complexity increases.

82 20 21 21 26 123 22

100%
80%
60%
40%
20%

0%

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900

328 7

2100 2200 2300 2400 2500

—
o

-

2000
82 20 21 21 26 23 15 26 23 22 23 23 7

100%

80%
&

60%

40%
20% B

0%

800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

35

=3

mPassed mFailed
Figure 3. ChatGPT results — first test (top) vs. all tests (bottom)

As the difficulty increases, the model's performance
deteriorates markedly. At a score of 1200, only 4 out of 26
problems were solved correctly, and at 1300, just 3 out of
23. For problems rated at 1400 and 1500, the success rate
drops to minimal levels: only 1 out of 15 problems at 1400
and 3 out of 26 at 1500 were resolved correctly. These
outcomes suggest that ChatGPT faces progressively greater
challenges in generating accurate solutions as the logical
and algorithmic requirements of the tasks become more
intricate.

In the case of high-difficulty problems, the model's
performance is nearly negligible. Only two problems were
solved correctly, while the remaining attempts were
unsuccessful. This result clearly underscores a major
limitation of ChatGPT in addressing problems that require
deep comprehension and advanced problem-solving
strategies. It highlights the model's significant difficulties in
handling tasks with high algorithmic complexity.

In the end, ChatGPT managed to score 24.06% for the first
threshold, while 16.54% was marked for the second.

Comparing results

The following diagram presents the final acceptance rates
of both models across varying levels of problem difficulty.
Consistent with the trends observed in the previous
illustrations, AlphaCodium generally outperforms ChatGPT
or, at minimum, achieves comparable results. An exception
is observed in the lower difficulty range (1000 - 1100),
where ChatGPT attains higher success rates, whereas
AlphaCodium demonstrates superior performance across
the remaining difficulty levels.

» AlphaCodium

® ChatGPT

11

900 1000 1100 1200 1300 1400 1500 1600 1700 1800 1900 2000 2100 2200 2300 2400 2500

Figure 4. AlphaCodium vs. ChatGPT — accepted solutions

To gain deeper insights into the underlying problem-solving
processes of the models, the following table summarises the
outcome of each generated solution. The table indicates
whether a problem was solved correctly, incorrectly, or
failed due to issues such as memory or time limit
constraints.

AlphaCodium ChatGPT
Output (GPT-40 mini) (GPT-40 mini)
HENTE First test | All tests | First test | All tests
Passed 114 79 96 66
Failed 278 305 297 320
Time lim. | 7 14 6 12
Mem. lim. | 0 1 0 1

105

Table 1. Problem output status

The comparative results indicate that AlphaCodium
achieves higher pass rates than ChatGPT at both evaluation
stages. While both models exhibit a substantial number of
failed attempts, ChatGPT records slightly higher failure
counts across both stages. Time-limit and memory-limit
errors occur infrequently in both models, though
AlphaCodium shows marginally higher susceptibility to
time-limit issues. Overall, these findings suggest that
AlphaCodium demonstrates a modest advantage in
generating correct solutions, albeit at the cost of a slightly
higher incidence of execution-time constraints.

FUTURE WORK

Building upon the findings of the present study, several
directions for future research can be identified. Firstly, the
experimental framework will be extended to incorporate
more recent and larger-scale models, such as GPT-4 and its
successors, in order to evaluate the extent to which
architectural advancements and expanded training corpora
improve performance in competitive programming

Proceedings of ICUSI 2025

contexts. This extension will provide a more comprehensive
understanding of the state of the art in Al-driven code
generation.

Needless to say, future experiments will incorporate
human-generated solutions alongside those produced by the
models. This addition will enable a more organic and
realistic benchmark, situating Al performance within the
broader spectrum of human problem-solving abilities and
offering valuable insights into complementarities between
human and machine-generated approaches.

Furthermore, a more in-depth diagnostic analysis of model
outputs will be undertaken. Beyond simply classifying
solutions as correct or incorrect, this analysis will aim to
investigate the specific causes of failure, including logical
missteps, algorithmic inefficiencies, and misinterpretations
of problem constraints. Furthermore, the degree of
deviation from the correct solution will be systematically
assessed, thereby providing a finer-grained perspective on
the proximity of erroneous outputs to viable
implementations.

The scope of the evaluation will be broadened to include
additional programming languages beyond Python. This
expansion will test the generalizability of the models'
problem-solving capabilities across diverse syntactic and
semantic environments, ultimately yielding a more holistic
understanding of their applicability to real-world
programming scenarios.

CONCLUSIONS

Following the experiments and the subsequent analysis of
the obtained results, several clear conclusions can be drawn
regarding the performance and applicability of the
evaluated models.

Both AlphaCodium and ChatGPT have demonstrated their
potential as valuable tools for addressing competitive
programming problems. Considering the accuracy rates
achieved during the testing phase, both systems prove to be
viable solutions. Although AlphaCodium achieved
marginally superior results, approximately 3% higher
accuracy compared to ChatGPT, both approaches can be
effectively employed in the problem-solving process. In
terms of operational differences, ChatGPT offers the
advantage of significantly faster response times, making it
suitable for scenarios where prompt feedback is essential.
In contrast, AlphaCodium provides a higher probability of
generating a correct solution, making it preferable when
solution accuracy is prioritised over processing speed.

From a strictly statistical and performance-oriented
perspective, AlphaCodium consistently outperforms
ChatGPT in solving competitive programming tasks.

Despite its limitations in processing a smaller number of
problems due to token constraints, AlphaCodium achieved
higher success rates in the problems it was able to attempt.
With an observed performance advantage of approximately

106

3%, AlphaCodium emerges as the more effective approach
for obtaining correct solutions. However, this improved
accuracy is accompanied by higher computational costs and
longer processing times, suggesting a trade-off between
solution quality and resource efficiency. Ultimately, the
superior results obtained by AlphaCodium justify the
additional investment in both time and computational
resources.

REFERENCES
1. Welsby, P., & Cheung, B. M. (2023). ChatGPT.
Postgraduate Medical Journal, 99(1176), 1047-1048.

2. Ridnik, T., Kredo, D., & Friedman, 1. (2024). Code

generation with alphacodium: From prompt
engineering to flow engineering. arXiv preprint
arXiv:2401.08500.

3. Li, Y., Choi, D., Chung, J., Kushman, N,

Schrittwieser, J., Leblond, R., ... & Vinyals, O. (2022).
Competition-level code generation with alphacode.
Science, 378(6624), 1092-1097.

4. Liu, J., Xia, C. S., Wang, Y., & Zhang, L. (2023). Is
your code generated by chatgpt really correct? rigorous
evaluation of large language models for code
generation. Advances in Neural Information Processing
Systems, 36, 21558-21572.

5. Zhou, S., Alon, U., Agarwal, S., & Neubig, G. (2023).

Codebertscore: Evaluating code generation with
pretrained models of code. arXiv preprint
arXiv:2302.05527.

6. Tong, W., & Zhang, T. (2024). CodeJudge: Evaluating
Code Generation with Large Language Models. arXiv
preprint arXiv:2410.02184.

7. Siam, M. K., Gu, H., & Cheng, J. Q. (2024, October).
Programming with ai: Evaluating chatgpt, gemini,
alphacode, and github copilot for programmers. In
Proceedings of the 3rd International Conference on
Computing Advancements (pp. 346-354).

8. Yetistiren, B., Ozsoy, 1., Ayerdem, M., & Tiiziin, E.
(2023). Evaluating the code quality of ai-assisted code
generation tools: An empirical study on github copilot,
amazon codewhisperer, and chatgpt. arXiv preprint
arXiv:2304.10778.

9. Yan, D., Gao, Z., & Liu, Z. (2023, September). A
closer look at different difficulty levels code generation
abilities of chatgpt. In 2023 38th IEEE/ACM
International Conference on Automated Software
Engineering (ASE) (pp. 1887-1898). IEEE.

