
International Journal of User-System Interaction 12(4) 2019, 225-241 © MatrixRom

Performance Analysis in Implementation of a
Dodgeball Agent for Video Games

Bianca-Cerasela-Zelia Blaga, Dorian Gorgan
Technical University of Cluj-Napoca
Computer Science Department
Cluj-Napoca, Romania
E-mail: zelia.blaga@cs.utcluj.ro, dorian.gorgan@cs.utcluj.ro

Abstract. Over the last few years, there has been an amazing growth in the video game
industry, as great improvements have been made to the fields of graphics and engines. The
development of artificial intelligence has enabled developers to create complex non-player
characters (NPCs) that enhance the virtual worlds. In this paper, we present the
implementation of a dodgeball agent using a recent toolkit called Unity Machine Learning
Agents. We explore the capabilities of this technology and test its performance, while
analyzing the ways in which it can be used to enrich a computer game.

Keywords: Artificial Intelligence, machine learning, non-player characters, video games.

1. Introduction
The video game industry has seen a shift from being exclusive to children to
being part of the commercial industry. This domain has suffered changes in
the game business and has brought innovations in the hardware for playing
games, in interaction devices, in the available software tools, and in designing
the products, as Overmars (2012) states in his book “A Brief History of
Computer Games”.

Gaming has a variety of applications in fields such as education, medicine,
or military. Minecraft (Duncan, 2011) and Portal (Shute, 2015) are suggested
by Smith (2010) as platforms for teachers to use in their classroom.
Physicians can benefit from digital games by learning faster to accurately
recognize trauma in patients, thus increasing their competency level, as
presented by Newman (2002). Popular examples of games that are dedicated
to the medical field are Prognosis (Medical Joyworks LLC, 2019), Medical
School (Kongregate, 2011) and Microbe Invader (Tao, 2013). It has been a
long time since the military started using games such as Janus, Simnet, or
Spearhead, for training, tactics analysis, and mission preparation, work

226 Bianca-Cerasela-Zelia Blaga, Dorian Gorgan

detailed in a report by Smith (2010). Moreover, video games can help
astronauts combat isolation in space, among other methods presented by
Kelly & Kanas (1994).

Nowadays, artificial intelligence is added to video games in order to make
them more sophisticated. Julian Togelius, an associate professor at New
York’s University’s department of computer science and engineering who
specializes in the intersection of video games and AI has summarized the
recent directions in this field: “Typically when you design the game, you want
to design an experience for the player. You want to know what the player will
experience when he gets to that point in the game. And for that, if you’re
going to put an AI there, you want the AI to be predictable. Now if you had
deep neural networks and evolutionary computation in there, it might come
up with something you had never expected. And that is a problem for a
designer.” (The Verge, 2019). Such an example of subtle AI is given by
Spittle (2011) and it is encountered in the game FEAR (First Encounter
Assault Reconnaissance), where enemies talk about the actions they take,
which are actually given by the path planning algorithms that control them.
Players look at this as a realistic scenario, which proves how important the
psychological factor is in perceiving the virtual world.

Shaker et al. (2010) consider that the level of excitement and enjoyability
a user experiences while playing games is given by the various events
encountered during gameplay, by the behaviour of characters, or by the
interaction with game elements. In order to obtain a complex virtual world,
researchers are studying new ways to generate content. These can range from
procedural environment generation to different toolkits like DeepMind
Control Suite (Tassa et al., 2018), OpenAI Gym (Brockman et al., 2016), or
Unity Machine Learning Agents (Johansen et al., 2019).

In this paper, we take a look at a game engine which provides a toolkit for
creating intelligent agents. We design a dodgeball non-player character
(NPC) that can be integrated to give more dynamics to a digital game. In
Section 2, we take a look at the characteristics of NPCs, and the tools that
different game engines provide to create agents using artificial intelligence.
Next, in Section 3, we present some particularities of Unity ML-Agents
toolkit, which is used for the implementation of a dodgeball agent. In Section
4, we analyze the performance of the NPC, and we draw the conclusions of
this work in Section 5, highlighting possible future research ideas.

Performance Analysis in Implementation of a Dodgeball Agent for Video Games 227

2. Related work
Non-Player Characters (NPCs) are defined by Warpefelt (2016) as:
“characters within a computer game that are controlled by the computer,
rather than the player”. They can be represented, for example, by monsters,
vehicles, animals, or plants, and can play different roles. Propp (2010) gives
a list of action spheres for traditional folktales prototypical characters:

• villain – the opponent of the hero,
• donor – provides the hero with a magic agent (possibly as a reward),
• helper – transports, rescues, or assists the hero,
• princess – the person the hero is trying to “acquire” through

marriage or something similar,
• the princess’s father – gatekeeper for the marriage, provides a quest,
• dispatcher – sends the hero on a quest,
• hero – can be either a seeker (goes on a quest or completes a task to

fulfill the requirements of the donor and/or the father. Marries the
princess.) or victim (as above, but does not go on a quest),

• false hero – tries to steal the glory from the hero.
Additionally, NPCs can also play different roles, like providing services,

guarding places, getting killed for loot, supplying background information
(history, lore), or just making the place look busy as Bartle (2004) states.
These typologies are present in many games, such as Mario Series (Togelius
et al., 2009), Bioshock Infinite (Lizardi, 2014), Skyrim (Puente & Tosca,
2013), or Dota 2 (Drachen et al., 2014).

Sagredo-Olivenza et al. (2017) consider that machine learning represents
a method to avoid conditional logic for NPCs. It enables the creation of
complex worlds that mimic the real environment for a more immersive
gameplay. Algorithms are created that model behavior based on predictions
that are made from past events to create actions in the future. Typically, this
process consists of the following steps: gathering a dataset that is
representative for the problem that must be learned, converting the dataset in
numerical form, creating a model (neural network, logistic regression,
random forests, etc.) and training it in order to minimize the loss function,
inserting new data and training again until the best possible results are
achieved, and collecting the predictions and inserting them in the game.

Unity provides a toolkit called ML-Agents (Johansen et al., 2019) that
contains a framework for creating intelligent agents for computer games. One

228 Bianca-Cerasela-Zelia Blaga, Dorian Gorgan

example is represented by Marathon Environments (Booth, 2019), which is a
field of research dedicated to video game researchers who are interested in
applying bleeding edge robotics into the domain of locomotion and AI for
digital gaming. It is based on previous work done by DeepMind Control Suite
(Tassa et al., 2018) and OpenAI Gym (Brockman et al., 2016), and re-
implements the classic set of Continuous Control benchmarks typically seen
in Deep Reinforcement Learning literature. Marathon Environments was
released alongside Unity ML-Agents v0.5 and includes four continuous
control environments: Walker, Hopper, Humanoid, and Ant. All
environments have a single ML-Agent brain, with continuous observations
and actions.

Holden et al. (2017) present a neural network that generates new frames
of animation in order to provide more realistic movements to avatars that look
similar to humans. These learn to walk, climb, or even jump over obstacles,
while maintaining their balance. Stere & Trăușan-Matu (2017) used artificial
intelligence techniques to generate musical accompaniment, while Toma et
al. (2017) created a game for vocabulary acquisition, proving the large variety
of topics agents can cover.

A Recurrent Neural Network has been trained to play Mario Kart (Lei et
al., 2019), by learning to predict what controller inputs a player would use in
any given situation, rather than having the goal to win. This is a method that
works well for games that can be represented by a time series, such as a
racing, and for agents that get as input visual information. In Unreal Engine,
Belle et al. (2019) explain that artificial intelligence can be created by using
behavior trees. These are systems that determine which behavior an agent
should perform given the scenario. For example, whether it should fight or
run away depending on its health amount. Manzoor et al. (2018) present a
digital game called Hysteria, which is a third person shooter game.

In the next sections, we will focus on Unity as the primary game engine,
describe the tools that it provides to developers and implement our own agent.
We have chosen this framework because it is new and there is little research
in the literature showcasing various scenarios in which the agents can be used.
Compared to other game engines, Unity requires less resources than Unreal
Engine 4, as explained in a study by Nilsson (2019) that analyzes the battery
consumption of a mobile phone when running video games developed with
these tools.

Performance Analysis in Implementation of a Dodgeball Agent for Video Games 229

3. Implementation of a dodgeball agent
The machine learning methodology that we use is reinforcement learning. It
has the following particularities: the agent learns an optimal policy (also
called behavior) by trial and error, it needs feedback on its action, and its
actions affect the future state it receives. The tools used are: game engine
Unity 2018.2.1, Unity ML-Agents 0.6.0, Anaconda 5.1.0, Python 3.6, and
Tensorflow 1.4.0.

We have divided the project into the following elements:
• world – 2D canvas limited in four directions (up, down, left, right)

by a border,
• agent – duck that senses its environment (gets feedback through

sensors),
• enemies – volleyballs that have different movement rules,
• goal – the duck has to avoid collision with the borders and the balls

for as long as possible,
• reward – for each time step, the score increases,
• punishments – if collision happens, the score decreases and the

training is reset.
These components can be see in Figure 1, where the duck agent is placed

in the middle of the game space, between the 4 borders of the playing area,
and the enemies are spawned from 3 different locations on the right border.
The ratio between the game area, the duck and the volleyball sizes is 650:4:1.

Figure 1. Simple game setup – the duck agent starts at the center of the screen, while the balls

spawn at 3 locations on the right border.

230 Bianca-Cerasela-Zelia Blaga, Dorian Gorgan

3.1. Unity ML-Agents toolkit
Unity Machine Learning Agents (ML-Agents) is an open-source Unity plugin
that enables games and simulations to serve as environments for training
intelligent agents. The learning environment, also seen in Figure 2, is
composed of an Academy which is coordinated by a Python script written in
Tensorflow – a framework for training deep learning models, including
agents.

An academy is composed of one or more brains. The brain encapsulates
the decision-making process, and controls the agents, which play two roles in
this model. They are used both for observation of the environment, and they
perform actions that bring the agent closer to the desired goal.

Every agent must be assigned a brain, but you can use the same brain with
more than one agent. There are four types of brains: external – decisions are
made using the Python API, internal – decisions are made using an embedded
pre-trained model, player – decisions are made using real input, and heuristic
– decisions are made using hard-coded behavior.

There also exist multiple training modes: single-agent – single brain with
single agent, simultaneous single-agent – single brain and multiple agents,
adversarial self-play – two agents with a single brain and opposite rewards,
and cooperative multi-agent – single/multiple brain and multiple agents and
same rewards.

Some examples of training modes are reinforcement learning, curriculum
learning, and imitation learning. Sutton & Barto (2018) consider that

Figure 2. Unity ML-Agents framework components (Juliani, 2019)

Performance Analysis in Implementation of a Dodgeball Agent for Video Games 231

Reinforcement learning (RL) is a type of machine learning where agents learn
how to behave in an environment to maximize their performance at a task.
Thus, an agent interacts at each time step by receiving a state or observation
of its environment and acting on it. It also gets feedback on its action by a
reward. This type of learning can usually be modeled as a Markov Decision
Process (MDP) or Partially Observable MDP (POMDP). They help define
the relationships between the agent’s observations, actions and reward or
punishment functions. Furthermore, they can update the reward function and
indicate when the agent has reached a terminal state. Observations are
gathered from the environment through various sensors that compute, for
example, the distance to objects, the intersection with a desired point, etc.

3.2. Project Creation and Specifications
After installing the necessary tools with their respective versions, we create a
new Unity project. In Project Settings, go to Edit – Project
Settings – Player, and in the Inspector panel –
Resolution and Presentation, check the box for Run in
Background. Additionally, in the Inspector Panel – Other
Settings, add the tag ENABLE_TENSORFLOW in the Scripting
Define Symbols area and set the Scripting Runtime Version
to .NET 4.6. These are very important steps to run the training in the
learning environment.

The next step is to download the ML-Agents and import the package in
the Unity project. Inside it, make a new folder called Dodgeball and create
a 2D Project Scene, in which we create a BallSpawner, that has
attached a script to it for randomly spawning volleyballs. Another important
aspect is the spawn logic. There are two possibilities to generate the enemies.
The first one is to have static points on the borders from where the balls are
generated linearly. The second one would be to have random starting points
on the borders, with collision logic added to the balls when hitting a planar
surface. Thus, we would only spawn a limited number of such enemies, which
would ignore collision with each other, as this would only complicate matters
and it is not our objective. In total, we have 6 game scenarios, as shown in
Figure 3.

232 Bianca-Cerasela-Zelia Blaga, Dorian Gorgan

For the academy part, which is attached to the duck object, we add logic
in the Brain C# script. As inputs, we have the four borders, the force applied
to our agent to get it to move, the agent’s position, and a Boolean variable
for the crashing logic. The state that we collect in the agent’s brain is related
to the distances to the objects from the scene, be it borders or balls. In the
method AgentStep, we control the agent’s movement in the scene. It takes
as input the actions that come from the brain and performs according to them.

The bounce collision logic is modelled by attaching the correct materials
to the borders and balls, and using a RaycastHit2D physics component.
This takes into account the surface normal of the hit and reflects the ball.

a) Scenario 1 – 3 right spawning points b) Scenario 2 – 2 left and 2 right

spawning points

c) Scenario 3 – 4 corner spawning points d) Scenario 4 – 3 top and 2 bottom

spawning spoints

e) Scenario 5 – 4 random spawning

points on edges, with no collision logic
f) Scenario 6 – 4 random spawning
points on edges, with collision logic

Figure 3. Spawning logic for the enemies (volleyballs)

Performance Analysis in Implementation of a Dodgeball Agent for Video Games 233

There are two ways for the agent to sense its environment (Figure 4):
Raycast – which is 4 directional (up, down, left and right),
Circlecast – which is represented by rays that are at 20 degrees apart
on a circle (18 rays in total).

After setting the Brain Type as External, we train the agent with
different numbers of steps for each type of scenario and sensor. We first want
to test how well can the agent dodge the balls when these are generated
linearly, using first the Raycast sensor, then the Circlecast sensor. We expect
the latter to perform better, given its larger number of sensing rays. Then, we
want to see how many seconds can the agent survive in the environment,
depending on how many balls are spawned. These scenarios are deterministic,
as the generation logic does not change. Therefore, the last two scenarios aim
to test the performance of the duck agent when the balls display a more
complex logic, being spawned at random locations and even with collision
properties.

4. Results
In order to evaluate the performance of the agent, we have altered several
parameters of the game components. We tried having different numbers of
volleyballs in the environment, as well as various spawning points and
collision logic. We also changed the number of training steps for the duck
agent, to observe when an optimal performance is achieved.

a) Raycast sensor b) Circlecast sensor rays
Figure 4. The two types of sensors used in our game implementation

234 Bianca-Cerasela-Zelia Blaga, Dorian Gorgan

4.1. Results analysis for scenarios 1 – 5 with Raycast sensor

From the charts presented in Figure 5, we can observe that in 4 out of 5
scenarios, the best performance is encountered when the number of seconds

a) Scenario 1 – 3 right spawning points b) Scenario 2 – 2 left and 2 right spawning

points

c) Scenario 3 – 4 corner spawning points d) Scenario 4 – 3 top and 2 bottom

spawning spoints

e) Scenario 5 – 4 random spawning points on edges, with no collision logic

Figure 5. Charts showing the runtimes in seconds for scenarios from 1 to 5, using Raycast sensor,
with varying numbers of seconds between ball spawn (2 to 10)

0

5

10

15

20

25

30

35

0 200000 400000 600000 800000 1000000

SE
CO
N
DS

NUMBER OF TRAINING STEPS

SCENARIO 4 - RAYCAST SENSOR

2 4 6 8 10Number of seconds
between each ball spawn

Performance Analysis in Implementation of a Dodgeball Agent for Video Games 235

between the spawning of the balls is 10. Surprisingly, for Scenario 4, the
agent performs better when the spawning time is 8 seconds, as it is able to
better generalize a strategy in this case. When the balls are spawned almost
continuously, the duck agent performs the worst, having a low survivability
time.

For scenarios 1, 3 and 5, we notice that the training stabilizes after 500 000
steps, while for the other two, this happens after 750 000 steps. Therefore we
can say that it is sufficient to train the agent for half a million steps, as
increasing this number will not bring much improvement in the surviving
time in the game environment.

4.2. Results analysis for scenarios 1 – 5 with Circlecast sensor
When the Circlecast sensor is used, we can notice from the graphs presented
in Figure 6 that the agent is performing the best when the time between the
generation of the enemies increases gradually. The best results are obtained
when there is a 10 seconds delay, while the worst for 2 seconds delay. As the
scenarios increase in difficulty, the agent can not improve its performance
after a certain number of training epochs. Therefore, we notice that the
performance stabilizes after 500 000 steps in the last 3 scenarios, while, for
the first two, more training steps are necessary.

4.3. Results analysis for scenario 6 with Raycast and Circlecast
sensors

For the last use case, we analyze the performance of the duck agent for
scenario 6, where the balls have collision properties and are spawned
randomly. Comparing the charts from Figure 7 and Figure 8, we notice that
the agent is able to survive more, regardless of the time it takes for balls to be
spawned. On average, the survival time is tripled when using the Circlecast
sensor as compared to the Raycast one. We can also see that in the first case,
increasing the number of training steps brings only small improvements in
the performance, while in the second case, training for more epochs shows
some increase in the agent’s performance.

236 Bianca-Cerasela-Zelia Blaga, Dorian Gorgan

a) Scenario 1 – 3 right spawning points b) Scenario 2 – 2 left and 2 right spawning

points

c) Scenario 3 – 4 corner spawning points d) Scenario 4 – 3 top and 2 bottom

spawning spoints

e) Scenario 5 – 4 random spawning points on edges, with no collision logic

Figure 6. Charts showing the runtimes in seconds for scenarios from 1 to 5, using Circlecast
sensor, with varying numbers of seconds between ball spawn (2 to 10)

0

20

40

60

80

100

120

140

0 200000 400000 600000 800000 1000000

SE
CO
N
DS

NUMBER OF TRAINING STEPS

SCENARIO 1 - CIRCLECAST SENSOR

2 4 6 8 10Number of seconds
between each ball spawn

0

20

40

60

80

100

120

0 200000 400000 600000 800000 1000000

SE
CO
N
DS

NUMBER OF TRAINING STEPS

SCENARIO 2 - CIRCLECAST SENSOR

2 4 6 8 10Number of seconds
between each ball spawn

0

10

20

30

40

50

60

70

80

90

0 200000 400000 600000 800000 1000000

SE
CO
N
DS

NUMBER OF TRAINING STEPS

SCENARIO 3 - CIRCLECAST SENSOR

2 4 6 8 10Number of seconds
between each ball spawn

0

20

40

60

80

100

120

140

0 200000 400000 600000 800000 1000000

SE
CO
N
DS

NUMBER OF TRAINING STEPS

SCENARIO 4 - CIRCLECAST SENSOR

2 4 6 8 10Number of seconds
between each ball spawn

0

10

20

30

40

50

60

70

80

90

0 200000 400000 600000 800000 1000000

SE
CO
N
DS

NUMBER OF TRAINING STEPS

SCENARIO 5 - CIRCLECAST SENSOR

2 4 6 8 10Number of seconds
between each ball spawn

Performance Analysis in Implementation of a Dodgeball Agent for Video Games 237

Figure 7. Chart showing the runtimes in seconds for scenario 6, using Raycast sensor, with

varying numbers of seconds between ball spawn (2 to 10)

Figure 8. Chart showing the runtimes in seconds for scenario 6, using Circlecast sensor, with

varying numbers of seconds between ball spawn (2 to 10)

0

5

10

15

20

25

30

35

40

45

0 200000 400000 600000 800000 1000000

SE
CO
N
DS

NUMBER OF TRAINING STEPS

SCENARIO 6 - RAYCAST SENSOR

2 4 6 8 10Number of seconds
between each ball spawn

0

20

40

60

80

100

120

140

0 200000 400000 600000 800000 1000000

SE
CO
N
DS

NUMBER OF TRAINING STEPS

SCENARIO 6 - CIRCLECAST SENSOR

2 4 6 8 10Number of seconds
between each ball spawn

238 Bianca-Cerasela-Zelia Blaga, Dorian Gorgan

4.4. Discussion

In Table 1, we have summarized the best survival times of the duck agent in
the 6 game scenarios, for various spawning times between the enemy
volleyballs (from 2 to 10 seconds). We have highlighted the first and second
best results, and we notice these are encountered for cases when 𝑆 = 10 or
𝑆 = 8 seconds, meaning that the agent can better adapt to a less aggressive
type of environment. Exceptions occur for scenarios 1, 5 and 6, when
sometimes this interval is not that important.

In conclusion, we appreciate that the duck agent obtained a satisfactory
performance. We also notice that Unity ML-Agents is a very helpful tool for
using artificial intelligence in video games, as it allows to easily tweak
training parameters like the game configuration or number of training epochs.
To the authors’ knowledge, the work presented in this paper is not found in
any previously published articles and therefore can serve as foundation for
future research in the domain of artificial intelligence.

5. Conclusions
In this paper, we experimented with the toolkit Unity ML-Agents to
implement a dodgeball agent represented by a duck that has to survive in an
environment by avoiding volleyballs. We surveyed the literature to
understand the recent advances in the domain, and we analyzed the results of
our own experiment. The work we carried aimed to test the limits of artificial
intelligence when applied to non-player characters, and we found out that the
framework we used provides the necessary tools for any researcher looking
to develop a large variety of dynamic game components. In the future, it
would be interesting to add another dimension to the agent and make it 3D.
Moreover, experimenting with other game engines would give us insight in
other types of learning methods for a better cross-domain comparison.

Table 1. Best survival times of the duck agent based on game scenario, sensor type and number of
enemy volleyballs (S = seconds, R = Raycast, C = Circlecast)

S Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

R C R C R C R C R C R C
2 28,72 63,05 10,89 18,56 5,96 42,71 9,01 35,89 10,03 27,57 9,01 30,99
4 38,54 56,21 21,55 69,60 9,95 22,98 15,83 57,56 13,33 64,82 25,57 59,86
6 55,18 69,37 23,57 55,76 15,22 49,74 15,52 57,63 16,85 56,79 25,77 110,44
8 51,07 94,12 32,46 77,63 30,91 71,41 30,00 102,98 25,21 62,05 30,04 76,10

10 62,89 114,87 36,59 105,32 45,32 76,71 17,89 123,75 37,15 82,14 40,46 93,55

Performance Analysis in Implementation of a Dodgeball Agent for Video Games 239

References
Bartle, R.A., Designing virtual worlds. New Riders, 2004.
Belle, S., Gittens, C. and Graham, T.N., Programming with Affect: How Behaviour Trees

and a Lightweight Cognitive Architecture Enable the Development of Non-Player
Characters with Emotions. In 2019 IEEE Games, Entertainment, Media Conference
(GEM) (pp. 1-8). 2019.

Booth, J. and Booth, J., Marathon environments: Multi-agent continuous control benchmarks
in a modern video game engine. arXiv preprint arXiv:1902.09097. 2019.

Brockman, G., Cheung, V., Pettersson, L., Schneider, J., Schulman, J., Tang, J. and Zaremba,
W., Openai gym. arXiv preprint arXiv:1606.01540. 2016.

Drachen, A., Yancey, M., Maguire, J., Chu, D., Wang, I.Y., Mahlmann, T., Schubert, M. and
Klabajan, D., Skill-based differences in spatio-temporal team behaviour in defence of the
ancients 2 (dota 2). In 2014 IEEE Games Media Entertainment, 2014.

Duncan, S.C., Minecraft, beyond construction and survival. Well Played: a journal on video
games, value and meaning. 2011.

Holden, D., Komura, T. and Saito, J., Phase-functioned neural networks for character control.
ACM Transactions on Graphics. 2017.

Johansen, M., Pichlmair, M. and Risi, S., Video Game Description Language Environment
for Unity Machine Learning Agents. In 2019 IEEE Conference on Games (CoG) (pp. 1-
8). 2019.

Juliani, A., Unity ML-Agents: A flexible platform for Deep RL research, available online:
https://www.microsoft.com/en-
us/research/uploads/prod/2018/03/FinalAJulianiMSR_2018.pdf, visited: 01.06.2019.

Kelly, A.D. and Kanas, N., Leisure time activities in space: a survey of astronauts and
cosmonauts. Acta Astronautica, 32(6), pp.451-457. 1994.

Kongregate, Medical School, 2011.
Lei, J., Chen, S. and Zheng, M., Using Machine Learning to Play the Game Super Mario

Kart. 2019.
Lizardi, R., BioShock: Complex and alternate histories. Game Studies, 2014.
Manzoor, M.I., Kashif, M., Saeed, M.Y. and Campus, P., Applied Artificial Intelligence in

3D-game (HYSTERIA) using UNREAL ENGINE 4. Applied Artificial Intelligence.
2018.

Medical Joyworks LLC, Prognosis: Your Diagnosis, Google Play. 2019.
Newman, J., In search of the videogame player: the lives of Mario. New media & society.

2002.
Nilsson, R., Battery Performance Comparison Of Unreal Engine 4 And Unity Applications

Running On Android. 2019.
Overmars, M., A Brief Histry of Computer Games. Department of Information and

Computing Sciences, Faculty of Science, Utrecht University. 2012.

240 Bianca-Cerasela-Zelia Blaga, Dorian Gorgan

Propp, V., Morphology of the Folktale (Vol. 9). University of Texas Press. 2010.
Puente, H. and Tosca, S., The Social Dimension of Collective Storytelling in Skyrim. In

DiGRA Conference. 2013.
Sagredo-Olivenza, I., Gómez-Martín, P.P., Gómez-Martín, M.A. and González-Calero, P.A.

Combining neural networks for controlling non-player characters in games. In
International Work-Conference on Artificial Neural Networks (pp. 694-705). Springer,
Cham. 2017.

Shaker, N., Yannakakis, G. and Togelius, J., Towards automatic personalized content
generation for platform games. In Sixth Artificial Intelligence and Interactive Digital
Entertainment Conference. 2010.

Shute, V.J., Ventura, M. and Ke, F., The power of play: The effects of Portal 2 and Lumosity
on cognitive and noncognitive skills. Computers & education. 2015.

Smith, R., The long history of gaming in military training. Simulation & Gaming. 2010.
Spittle, S. Did This Game Scare You? Because it Sure as Hell Scared Me! FEAR, the Abject

and the Uncanny. Games and Culture, 6(4), pp.312-326. 2011.
Stere, C.C. and Trăuşan-Matu, Ş.. Generation of musical accompaniment for a poem, using

artificial intelligence techniques. Romanian Journal of Human-Computer Interaction,
10(3), pp.250-270. 2017.

Sutton, R.S. and Barto, A.G., Reinforcement learning: An introduction. MIT press. 2018.
Tao, L., Microbe Invader. 2013.
Tassa, Y., Doron, Y., Muldal, A., Erez, T., Li, Y., Casas, D.D.L., Budden, D., Abdolmaleki,

A., Merel, J., Lefrancq, A. and Lillicrap, T., Deepmind control suite. arXiv preprint
arXiv:1801.00690. 2018.

The Verge, How artificial intelligence will revolutionize the way video games are developed
and played, https://www.theverge.com/2019/3/6/18222203/video-game-ai-future-
procedural-generation-deep-learning, visited: 01.06.2019.

Togelius, J., Karakovskiy, S., Koutník, J. and Schmidhuber, J., Super mario evolution. In
2009 ieee symposium on computational intelligence and games (pp. 156-161). 2009.

Toma, I., Alexandru, C.E., Dascalu, M., Dessus, P. and Trausan-Matu, S., 2017. Semantic
taboo–a serious game for vocabulary acquisition. Romanian Journal of Human-Computer
Interaction, 10(2), pp.147-162. 2017.

Unity Machine Learning Agents Toolkit, https://github.com/Unity-Technologies/ml-agents,
visited: 01.06.2019.

Warpefelt, H., The Non-Player Character: Exploring the believability of NPC presentation
and behavior. Doctoral dissertation, Department of Computer and Systems Sciences,
Stockholm University. 2016.

