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Abstract. Over the last few years, there has been an amazing growth in the video game 
industry, as great improvements have been made to the fields of graphics and engines. The 
development of artificial intelligence has enabled developers to create complex non-player 
characters (NPCs) that enhance the virtual worlds. In this paper, we present the 
implementation of a dodgeball agent using a recent toolkit called Unity Machine Learning 
Agents. We explore the capabilities of this technology and test its performance, while 
analyzing the ways in which it can be used to enrich a computer game.  
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1. Introduction 
The video game industry has seen a shift from being exclusive to children to 
being part of the commercial industry. This domain has suffered changes in 
the game business and has brought innovations in the hardware for playing 
games, in interaction devices, in the available software tools, and in designing 
the products, as Overmars (2012) states in his book “A Brief History of 
Computer Games”. 

Gaming has a variety of applications in fields such as education, medicine, 
or military. Minecraft (Duncan, 2011) and Portal (Shute, 2015) are suggested 
by Smith (2010) as platforms for teachers to use in their classroom. 
Physicians can benefit from digital games by learning faster to accurately 
recognize trauma in patients, thus increasing their competency level, as 
presented by Newman (2002). Popular examples of games that are dedicated 
to the medical field are Prognosis (Medical Joyworks LLC, 2019), Medical 
School (Kongregate, 2011) and Microbe Invader (Tao, 2013). It has been a 
long time since the military started using games such as Janus, Simnet, or 
Spearhead, for training, tactics analysis, and mission preparation, work 
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detailed in a report by Smith (2010). Moreover, video games can help 
astronauts combat isolation in space, among other methods presented by 
Kelly & Kanas (1994). 

Nowadays, artificial intelligence is added to video games in order to make 
them more sophisticated. Julian Togelius, an associate professor at New 
York’s University’s department of computer science and engineering who 
specializes in the intersection of video games and AI has summarized the 
recent directions in this field: “Typically when you design the game, you want 
to design an experience for the player. You want to know what the player will 
experience when he gets to that point in the game. And for that, if you’re 
going to put an AI there, you want the AI to be predictable. Now if you had 
deep neural networks and evolutionary computation in there, it might come 
up with something you had never expected. And that is a problem for a 
designer.” (The Verge, 2019). Such an example of subtle AI is given by 
Spittle (2011) and it is encountered in the game FEAR (First Encounter 
Assault Reconnaissance), where enemies talk about the actions they take, 
which are actually given by the path planning algorithms that control them. 
Players look at this as a realistic scenario, which proves how important the 
psychological factor is in perceiving the virtual world. 

Shaker et al. (2010) consider that the level of excitement and enjoyability 
a user experiences while playing games is given by the various events 
encountered during gameplay, by the behaviour of characters, or by the 
interaction with game elements. In order to obtain a complex virtual world, 
researchers are studying new ways to generate content. These can range from 
procedural environment generation to different toolkits like DeepMind 
Control Suite (Tassa et al., 2018), OpenAI Gym (Brockman et al., 2016), or 
Unity Machine Learning Agents (Johansen et al., 2019).  

In this paper, we take a look at a game engine which provides a toolkit for 
creating intelligent agents. We design a dodgeball non-player character 
(NPC) that can be integrated to give more dynamics to a digital game. In 
Section 2, we take a look at the characteristics of NPCs, and the tools that 
different game engines provide to create agents using artificial intelligence. 
Next, in Section 3, we present some particularities of Unity ML-Agents 
toolkit, which is used for the implementation of a dodgeball agent. In Section 
4, we analyze the performance of the NPC, and we draw the conclusions of 
this work in Section 5, highlighting possible future research ideas. 
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2. Related work 
Non-Player Characters (NPCs) are defined by Warpefelt (2016) as: 
“characters within a computer game that are controlled by the computer, 
rather than the player”. They can be represented, for example, by monsters, 
vehicles, animals, or plants, and can play different roles. Propp (2010) gives 
a list of action spheres for traditional folktales prototypical characters: 

• villain – the opponent of the hero, 
• donor – provides the hero with a magic agent (possibly as a reward), 
• helper – transports, rescues, or assists the hero, 
• princess – the person the hero is trying to “acquire” through 

marriage or something similar, 
• the princess’s father – gatekeeper for the marriage, provides a quest, 
• dispatcher – sends the hero on a quest, 
• hero – can be either a seeker (goes on a quest or completes a task to 

fulfill the requirements of the donor and/or the father. Marries the 
princess.) or victim (as above, but does not go on a quest), 

• false hero – tries to steal the glory from the hero. 
Additionally, NPCs can also play different roles, like providing services, 

guarding places, getting killed for loot, supplying background information 
(history, lore), or just making the place look busy as Bartle (2004) states. 
These typologies are present in many games, such as Mario Series (Togelius 
et al., 2009), Bioshock Infinite (Lizardi, 2014), Skyrim (Puente & Tosca, 
2013), or Dota 2 (Drachen et al., 2014). 

Sagredo-Olivenza et al. (2017) consider that machine learning represents 
a method to avoid conditional logic for NPCs. It enables the creation of 
complex worlds that mimic the real environment for a more immersive 
gameplay. Algorithms are created that model behavior based on predictions 
that are made from past events to create actions in the future. Typically, this 
process consists of the following steps: gathering a dataset that is 
representative for the problem that must be learned, converting the dataset in 
numerical form, creating a model (neural network, logistic regression, 
random forests, etc.) and training it in order to minimize the loss function, 
inserting new data and training again until the best possible results are 
achieved, and collecting the predictions and inserting them in the game. 

Unity provides a toolkit called ML-Agents (Johansen et al., 2019) that 
contains a framework for creating intelligent agents for computer games. One 
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example is represented by Marathon Environments (Booth, 2019), which is a 
field of research dedicated to video game researchers who are interested in 
applying bleeding edge robotics into the domain of locomotion and AI for 
digital gaming. It is based on previous work done by DeepMind Control Suite 
(Tassa et al., 2018) and OpenAI Gym (Brockman et al., 2016), and re-
implements the classic set of Continuous Control benchmarks typically seen 
in Deep Reinforcement Learning literature. Marathon Environments was 
released alongside Unity ML-Agents v0.5 and includes four continuous 
control environments: Walker, Hopper, Humanoid, and Ant. All 
environments have a single ML-Agent brain, with continuous observations 
and actions. 

Holden et al. (2017) present a neural network that generates new frames 
of animation in order to provide more realistic movements to avatars that look 
similar to humans. These learn to walk, climb, or even jump over obstacles, 
while maintaining their balance. Stere & Trăușan-Matu (2017) used artificial 
intelligence techniques to generate musical accompaniment, while Toma et 
al. (2017) created a game for vocabulary acquisition, proving the large variety 
of topics agents can cover. 

A Recurrent Neural Network has been trained to play Mario Kart (Lei et 
al., 2019), by learning to predict what controller inputs a player would use in 
any given situation, rather than having the goal to win. This is a method that 
works well for games that can be represented by a time series, such as a 
racing, and for agents that get as input visual information. In Unreal Engine, 
Belle et al. (2019) explain that artificial intelligence can be created by using 
behavior trees. These are systems that determine which behavior an agent 
should perform given the scenario. For example, whether it should fight or 
run away depending on its health amount. Manzoor et al. (2018) present a 
digital game called Hysteria, which is a third person shooter game. 

In the next sections, we will focus on Unity as the primary game engine, 
describe the tools that it provides to developers and implement our own agent. 
We have chosen this framework because it is new and there is little research 
in the literature showcasing various scenarios in which the agents can be used. 
Compared to other game engines, Unity requires less resources than Unreal 
Engine 4, as explained in a study by Nilsson (2019) that analyzes the battery 
consumption of a mobile phone when running video games developed with 
these tools. 
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3. Implementation of a dodgeball agent 
The machine learning methodology that we use is reinforcement learning. It 
has the following particularities: the agent learns an optimal policy (also 
called behavior) by trial and error, it needs feedback on its action, and its 
actions affect the future state it receives. The tools used are: game engine 
Unity 2018.2.1, Unity ML-Agents 0.6.0, Anaconda 5.1.0, Python 3.6, and 
Tensorflow 1.4.0. 

We have divided the project into the following elements: 
• world – 2D canvas limited in four directions (up, down, left, right) 

by a border, 
• agent – duck that senses its environment (gets feedback through 

sensors), 
• enemies – volleyballs that have different movement rules, 
• goal – the duck has to avoid collision with the borders and the balls 

for as long as possible, 
• reward – for each time step, the score increases, 
• punishments – if collision happens, the score decreases and the 

training is reset. 
These components can be see in Figure 1, where the duck agent is placed 

in the middle of the game space, between the 4 borders of the playing area, 
and the enemies are spawned from 3 different locations on the right border. 
The ratio between the game area, the duck and the volleyball sizes is 650:4:1.  

 
Figure 1. Simple game setup – the duck agent starts at the center of the screen, while the balls 

spawn at 3 locations on the right border. 
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3.1. Unity ML-Agents toolkit 
Unity Machine Learning Agents (ML-Agents) is an open-source Unity plugin 
that enables games and simulations to serve as environments for training 
intelligent agents. The learning environment, also seen in Figure 2, is 
composed of an Academy which is coordinated by a Python script written in 
Tensorflow – a framework for training deep learning models, including 
agents.  

An academy is composed of one or more brains. The brain encapsulates 
the decision-making process, and controls the agents, which play two roles in 
this model. They are used both for observation of the environment, and they 
perform actions that bring the agent closer to the desired goal.  

Every agent must be assigned a brain, but you can use the same brain with 
more than one agent. There are four types of brains: external – decisions are 
made using the Python API, internal – decisions are made using an embedded 
pre-trained model, player – decisions are made using real input, and heuristic 
– decisions are made using hard-coded behavior.  

There also exist multiple training modes: single-agent – single brain with 
single agent, simultaneous single-agent – single brain and multiple agents, 
adversarial self-play – two agents with a single brain and opposite rewards, 
and cooperative multi-agent – single/multiple brain and multiple agents and 
same rewards. 

Some examples of training modes are reinforcement learning, curriculum 
learning, and imitation learning. Sutton & Barto (2018) consider that 

 
Figure 2. Unity ML-Agents framework components (Juliani, 2019) 
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Reinforcement learning (RL) is a type of machine learning where agents learn 
how to behave in an environment to maximize their performance at a task. 
Thus, an agent interacts at each time step by receiving a state or observation 
of its environment and acting on it. It also gets feedback on its action by a 
reward. This type of learning can usually be modeled as a Markov Decision 
Process (MDP) or Partially Observable MDP (POMDP). They help define 
the relationships between the agent’s observations, actions and reward or 
punishment functions. Furthermore, they can update the reward function and 
indicate when the agent has reached a terminal state. Observations are 
gathered from the environment through various sensors that compute, for 
example, the distance to objects, the intersection with a desired point, etc. 

3.2. Project Creation and Specifications 
After installing the necessary tools with their respective versions, we create a 
new Unity project. In Project Settings, go to Edit – Project 
Settings – Player, and in the Inspector panel – 
Resolution and Presentation, check the box for Run in 
Background. Additionally, in the Inspector Panel – Other 
Settings, add the tag ENABLE_TENSORFLOW in the Scripting 
Define Symbols area and set the Scripting Runtime Version 
to .NET 4.6. These are very important steps to run the training in the 
learning environment. 

The next step is to download the ML-Agents and import the package in 
the Unity project. Inside it, make a new folder called Dodgeball and create 
a 2D Project Scene, in which we create a BallSpawner, that has 
attached a script to it for randomly spawning volleyballs. Another important 
aspect is the spawn logic. There are two possibilities to generate the enemies. 
The first one is to have static points on the borders from where the balls are 
generated linearly. The second one would be to have random starting points 
on the borders, with collision logic added to the balls when hitting a planar 
surface. Thus, we would only spawn a limited number of such enemies, which 
would ignore collision with each other, as this would only complicate matters 
and it is not our objective. In total, we have 6 game scenarios, as shown in 
Figure 3.  
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For the academy part, which is attached to the duck object, we add logic 
in the Brain C# script. As inputs, we have the four borders, the force applied 
to our agent to get it to move, the agent’s position, and a Boolean variable 
for the crashing logic. The state that we collect in the agent’s brain is related 
to the distances to the objects from the scene, be it borders or balls. In the 
method AgentStep, we control the agent’s movement in the scene. It takes 
as input the actions that come from the brain and performs according to them.  

The bounce collision logic is modelled by attaching the correct materials 
to the borders and balls, and using a RaycastHit2D physics component. 
This takes into account the surface normal of the hit and reflects the ball. 

  
a) Scenario 1 – 3 right spawning points b) Scenario 2 – 2 left and 2 right 

spawning points 

  
c) Scenario 3 – 4 corner spawning points d)  Scenario 4 – 3 top and 2 bottom 

spawning spoints 

  
e) Scenario 5 – 4 random spawning 

points on edges, with no collision logic 
f) Scenario 6 – 4 random spawning 
points on edges, with collision logic 

Figure 3. Spawning logic for the enemies (volleyballs) 
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There are two ways for the agent to sense its environment (Figure 4): 
Raycast – which is 4 directional (up, down, left and right), 
Circlecast – which is represented by rays that are at 20 degrees apart 
on a circle (18 rays in total). 

After setting the Brain Type as External, we train the agent with 
different numbers of steps for each type of scenario and sensor. We first want 
to test how well can the agent dodge the balls when these are generated 
linearly, using first the Raycast sensor, then the Circlecast sensor. We expect 
the latter to perform better, given its larger number of sensing rays. Then, we 
want to see how many seconds can the agent survive in the environment, 
depending on how many balls are spawned. These scenarios are deterministic, 
as the generation logic does not change. Therefore, the last two scenarios aim 
to test the performance of the duck agent when the balls display a more 
complex logic, being spawned at random locations and even with collision 
properties. 

4. Results 
In order to evaluate the performance of the agent, we have altered several 
parameters of the game components. We tried having different numbers of 
volleyballs in the environment, as well as various spawning points and 
collision logic. We also changed the number of training steps for the duck 
agent, to observe when an optimal performance is achieved. 

  
a) Raycast sensor b) Circlecast sensor rays 
Figure 4. The two types of sensors used in our game implementation 
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4.1. Results analysis for scenarios 1 – 5 with Raycast sensor 

From the charts presented in Figure 5, we can observe that in 4 out of 5 
scenarios, the best performance is encountered when the number of seconds 

  
a) Scenario 1 – 3 right spawning points b) Scenario 2 – 2 left and 2 right spawning 

points 

  
c) Scenario 3 – 4 corner spawning points d)  Scenario 4 – 3 top and 2 bottom 

spawning spoints 

 
e) Scenario 5 – 4 random spawning points on edges, with no collision logic 

Figure 5. Charts showing the runtimes in seconds for scenarios from 1 to 5, using Raycast sensor, 
with varying numbers of seconds between ball spawn (2 to 10) 
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between the spawning of the balls is 10. Surprisingly, for Scenario 4, the 
agent performs better when the spawning time is 8 seconds, as it is able to 
better generalize a strategy in this case. When the balls are spawned almost 
continuously, the duck agent performs the worst, having a low survivability 
time. 

For scenarios 1, 3 and 5, we notice that the training stabilizes after 500 000 
steps, while for the other two, this happens after 750 000 steps. Therefore we 
can say that it is sufficient to train the agent for half a million steps, as 
increasing this number will not bring much improvement in the surviving 
time in the game environment. 

4.2. Results analysis for scenarios 1 – 5 with Circlecast sensor 
When the Circlecast sensor is used, we can notice from the graphs presented 
in Figure 6 that the agent is performing the best when the time between the 
generation of the enemies increases gradually. The best results are obtained 
when there is a 10 seconds delay, while the worst for 2 seconds delay. As the 
scenarios increase in difficulty, the agent can not improve its performance 
after a certain number of training epochs. Therefore, we notice that the 
performance stabilizes after 500 000 steps in the last 3 scenarios, while, for 
the first two, more training steps are necessary. 

4.3. Results analysis for scenario 6 with Raycast and Circlecast 
sensors 

For the last use case, we analyze the performance of the duck agent for 
scenario 6, where the balls have collision properties and are spawned 
randomly. Comparing the charts from Figure 7 and Figure 8, we notice that 
the agent is able to survive more, regardless of the time it takes for balls to be 
spawned. On average, the survival time is tripled when using the Circlecast 
sensor as compared to the Raycast one. We can also see that in the first case, 
increasing the number of training steps brings only small improvements in 
the performance, while in the second case, training for more epochs shows 
some increase in the agent’s performance. 
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a) Scenario 1 – 3 right spawning points b) Scenario 2 – 2 left and 2 right spawning 

points 

  
c) Scenario 3 – 4 corner spawning points d)  Scenario 4 – 3 top and 2 bottom 

spawning spoints 

 
e) Scenario 5 – 4 random spawning points on edges, with no collision logic 

Figure 6. Charts showing the runtimes in seconds for scenarios from 1 to 5, using Circlecast 
sensor, with varying numbers of seconds between ball spawn (2 to 10) 
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Figure 7. Chart showing the runtimes in seconds for scenario 6, using Raycast sensor, with 

varying numbers of seconds between ball spawn (2 to 10) 

 
Figure 8. Chart showing the runtimes in seconds for scenario 6, using Circlecast sensor, with 

varying numbers of seconds between ball spawn (2 to 10) 

 

 

0

5

10

15

20

25

30

35

40

45

0 200000 400000 600000 800000 1000000

SE
CO
N
DS

NUMBER OF TRAINING STEPS

SCENARIO 6 - RAYCAST SENSOR

2 4 6 8 10Number of seconds 
between each ball spawn

0

20

40

60

80

100

120

140

0 200000 400000 600000 800000 1000000

SE
CO
N
DS

NUMBER OF TRAINING STEPS

SCENARIO 6 - CIRCLECAST SENSOR

2 4 6 8 10Number of seconds 
between each ball spawn



238 Bianca-Cerasela-Zelia Blaga, Dorian Gorgan 

 

4.4. Discussion 

In Table 1, we have summarized the best survival times of the duck agent in 
the 6 game scenarios, for various spawning times between the enemy 
volleyballs (from 2 to 10 seconds). We have highlighted the first and second 
best results, and we notice these are encountered for cases when 𝑆 = 10 or 
𝑆 = 8 seconds, meaning that the agent can better adapt to a less aggressive 
type of environment. Exceptions occur for scenarios 1, 5 and 6, when 
sometimes this interval is not that important.  

In conclusion, we appreciate that the duck agent obtained a satisfactory 
performance. We also notice that Unity ML-Agents is a very helpful tool for 
using artificial intelligence in video games, as it allows to easily tweak 
training parameters like the game configuration or number of training epochs. 
To the authors’ knowledge, the work presented in this paper is not found in 
any previously published articles and therefore can serve as foundation for 
future research in the domain of artificial intelligence.  

5. Conclusions 
In this paper, we experimented with the toolkit Unity ML-Agents to 
implement a dodgeball agent represented by a duck that has to survive in an 
environment by avoiding volleyballs. We surveyed the literature to 
understand the recent advances in the domain, and we analyzed the results of 
our own experiment. The work we carried aimed to test the limits of artificial 
intelligence when applied to non-player characters, and we found out that the 
framework we used provides the necessary tools for any researcher looking 
to develop a large variety of dynamic game components. In the future, it 
would be interesting to add another dimension to the agent and make it 3D. 
Moreover, experimenting with other game engines would give us insight in 
other types of learning methods for a better cross-domain comparison. 

Table 1. Best survival times of the duck agent based on game scenario, sensor type and number of 
enemy volleyballs (S = seconds, R = Raycast, C = Circlecast) 

S Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6 

R C R C R C R C R C R C 
2 28,72 63,05 10,89 18,56 5,96 42,71 9,01 35,89 10,03 27,57 9,01 30,99 
4 38,54 56,21 21,55 69,60 9,95 22,98 15,83 57,56 13,33 64,82 25,57 59,86 
6 55,18 69,37 23,57 55,76 15,22 49,74 15,52 57,63 16,85 56,79 25,77 110,44 
8 51,07 94,12 32,46 77,63 30,91 71,41 30,00 102,98 25,21 62,05 30,04 76,10 

10 62,89 114,87 36,59 105,32 45,32 76,71 17,89 123,75 37,15 82,14 40,46 93,55 
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