
International Journal of User-System Interaction 14(1) 2021, 1-29 © MatrixRom

GISATIE: A User Interface Adaptation Life-Cycle

Víctor López-Jaquero1, Vivian Genaro Motti2, Francisco
Montero1, and Pascual González López1
1Laboratory of User Interaction and Software Engineering (LoUISE), Computer Science
Dept., University of Castilla-La Mancha, Campus Universitario, 02071 Albacete, Spain
2Dept. of Information Sciences and Technology (IST), Volgenau School of Engineering,
George Mason Univ., Engineering Building, Rm. 5350, Fairfax Campus, USA
E-mail: VictorManuel.Lopez@uclm.es, fmontero@dsi.uclm.es, vmotti@gmu.edu,
Pascual.Gonzalez@uclm.es

Abstract. Adapting the User Interface of an interactive application consists in modifying its
different elements according to various levels of granularity. Adaptation aims at addressing
specific needs, wishes, and requirements either of a particular user or a group of users. While
user interface adaptation has been extensively studied, in particular for context awareness,
one of the most widely used adaptation life cycles is Dieterich’s survey of adaptation
techniques. This survey considers only the execution part of the adaptation lifecycle and
involves only one actor, user or system, in each adaptation stage. To overcome these
shortcomings, we introduce GISATIE, a user interface adaptation life-cycle specifying which
agents are involved in each adaptation stage: goals, initiative, specification, application,
transition, interpretation, and evaluation.

Keywords: user interface adaptation, adaptation life-cycle, adaptation process, profile

DOI: 10.37789/ijusi.2021.14.1.1

1. Introduction
Adapting the User Interface (UI) consists in modifying its different
components according to various levels of granularity, ranging from low level
(e.g., changing the color of a highlighted UI element) to high level (e.g.,
reformatting the layout of a dialog box). Adaptation aims at addressing
specific needs, as well as wishes and requirements either of a particular user
or a group of users. Adaptation can be classified according to two categories
depending on who controls it (Benyon and Murray, 1993): adaptability
occurs when the end user adapts the UI, while adaptivity occurs when the
system has the capability to adapt the UI. Mixed-initiative adaptation
(Horvitz, 1990) exists when both, the end user and the system, cooperate

2
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

towards achieving the UI adaptation. Adaptivity, although more expensive to
develop, demonstrates some benefits (Lavie and Meyer, 2010) and it is used
in a wide range of domains of human activity, such as ambient intelligence
(Escribano et al., 2008), automotive systems (Rogers et al., 2000), electronic
commerce (Sherman et al., 2003), algorithmics (Kerren and Stasko, 2002),
and information systems (Dieterich et al., 1993).

The main shortcomings of adaptivity are (Lavie and Meyer, 2010; Bunt et
al., 2004): the end user disruption caused by an unexpected behavior for the
end user and the cognitive perturbation when the end user, confronted with a
new UI, must reconcile with this UI by imagining the correspondence
between the UI before and after adaptation. Between these two UIs, there is
usually nothing but a big gap, which reinforces the cognitive perturbation.
Cognitive psychology (Gardiner and Christie, 1987) refers to this
phenomenon as a cognitive “destabilization”, meaning that any user is de-
stabilized when confronted with anything unexpected, unprecedented, or
unpredicted contents. The end user remains in this stage of cognitive
destabilization until a “restabilization” restores a relation between the past
and the newly presented contents. The end user does not suffer from these
shortcomings in adaptability since the user remains in control and therefore
knows what is subject to adaptation, as opposed to adaptivity where the
system is in control and the end user may not know what the system is doing
and why. To address this challenge, animated transitions (Dessart et al., 2011;
Huhtala et al., 2009; Huhtala et al., 2010; Schlienger, 2007) can show how
the adaptivity has been conducted, what has been adapted, and even why. In
this sense, using mixed-initiative during the adaptation can help also in
making better decisions by letting the user decide in conflicting situations
where the adaptation engine is not sure about how to proceed.

The current progressive migration of interactive applications from desktop
computers to mobile devices changes the interaction habits of the users. A
new cohort of neophytes is becoming more attracted by the abilities of
interactive applications to support many daily tasks, such as buying flight or
theater tickets. Simultaneously, the complexity level of the applications and
the amount of information available are quickly increasing. To this end,
adaptation techniques that adjust the application features according to the
context information should be devised (Schlee & Vanderdonckt, 2004), for
which many adaptation techniques are applicable (Firmenich et al., 2011;
Calvary et al., 2003; Langley, 1999; Norman, 1986).

GISATIE: A User Interface Adaptation Life-Cycle 3

Nowadays, one the most widely used understanding of the adaptation life-
cycle comes from Dieterich’s survey on adaptation techniques (Dieterich et
al., 1993). Despite being produced in 1993, this taxonomy suffers from
several shortcomings: it is constrained to a single entity (e.g., the user and the
system) in each stage of the adaptation life-cycle, it does not handle explicit
collaboration during the different adaptation stages and it is restricted only to
the execution part of the adaptation. Furthermore, some of the most relevant
issues in the adaptation, such as how the adaptation is specified, were left out
of the framework (Motti and Vanderdonckt, 2013). In particular, Dieterich’s
taxonomy is incomplete with respect to the seven stages of Norman’s Theory
of Action (Norman, 1986). This theory describes how a user interacts with an
interactive application from the very beginning, from forming an intention to
reach a goal, until the end, when evaluating the results from the actions taken
to achieve that goal.

This paper revisits Dieterich’s taxonomy by defining stages based on the
mental model proposed by Norman (1986). These stages aim at improving
the user involvement in the adaptation life-cycle and foster a detailed
description of how the adaptation life-cycle is carried out. By doing so, we
aim at covering the whole adaptation life-cycle, and not just the execution
part of adaptation. This life-cycle is complemented with an adaptation profile
that serves as a quick reference to document the coverage and actors involved
at each stage of the adaptation life-cycle. To illustrate the stages of our life-
cycle, a multi-agent system will be used as a running example, together with
some other examples at some specific stages of the adaptation life-cycle.

This paper discusses some related work for user interface adaptation in
Section 2, with a special focus on frameworks and taxonomies for adaptation.
This related work section includes also some multi-agent systems closely
related to our own one, which is used as a running example throughout the
paper. Then, GISATIE, the adaptation life-cycle is presented in Section 3, and
illustrated with some examples. Some conclusions and future work are
reported in Section 4.

2. Related Work
This section discusses those adaptation classifications, taxonomies and
frameworks that were used as the foundation of our contribution, together
with some relevant multi-agent system aimed at providing adaptation support.

4
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

2.1. Adaptation Classifications, Taxonomies, and Frameworks
Characterizing adaptation is not an easy task, and unfortunately in many
systems, there is not such a clear underlying framework for the design of the
adaptation capabilities. Throughout the years several approaches for
describing and classifying adaptation have been proposed. This section is not
intended to make an extensive review of those techniques supporting UI
adaptation, but instead it compares the expressivity of any classification
scheme that could serve for expressing UI adaptation life-cycle, such as
classifications, taxonomies, and frameworks. A review of those adaptation
classifications, taxonomies, and frameworks were used as the foundation of
our contribution is presented in a chronological order.

Browne’s classification for user adaptation (1986)
Pioneering work started with a Command Language Grammar (CLG) for
specifying an adaptive UI (Browne et al., 1986). They concluded that the
major strength of CLG for this purpose was its support to the Principle of
Separation of Concerns, starting with a conceptual model of the adaptive UIs
and enforcing this model throughout the rest of the development life cycle.
Although this enforcing was made explicit, it was not obvious how to easily
propagate all the specifications aspects contained in the CLG specifications
into the final code. In particular, they indi-cated that CLG has very limited
facilities for expressing the presentation and behavior of a UI, thus raising the
need for improving the CLG expressivity in this respect.

Cockton’s Parametrization strategy for Adaptation (1987)
Cockton (1987) presents an argumentation regarding how to achieve, in the
UI, the required flexibility to provide adaptation facilities. This flexibility is
provided in terms of parametrization. All UI constructs should be as
parametrized as possible, so the behavior of each construct can be
personalized as much as possible too. This parametrization is not just
applicable to the UI elements, but also to those control classes that rule the
functional behavior. Cockton also provides some ideas regarding how actual
adaptation can be carried out. He proposes three options. The first one is
enabling, which consists in having in a single dialog several interaction paths
available, and therefore the different paths can be chosen by enabling and
disabling the different options that lead to a path, according to changes in the

GISATIE: A User Interface Adaptation Life-Cycle 5

context of use. The second one is switching, which provides several different
dialogs for a single task, and the adaptation engine switches from one version
to another according to the changes in the context of use. Finally, the third
option is reconfiguring, which allows reconfiguration of several parameters
of the UI interaction. Thus, the UI is adapted by adjusting the values for these
parameters. Regarding the life-cycle, a two-stage approach includes:
diagnosis, in which the system guesses the needs and skills of the user based
on recorded data and a treatment to find a remedy for the detected situation.

Norcio and Stanley Survey (1989)
This survey defines adaptation as a process based mainly on the knowledge
of (Norcio & Stanley, 1989): the user, the interaction scheme, the task and
the system. Although models can be used to specify this knowledge, this is
considered a complex task. For instance, the users have different profiles,
wishes, and requirements, they comprehend and process information in
different ways. Although the main challenge in 1989 was still the lack of
technology to support the UI adaptation, some issues highlighted remain still
open nowadays, such as: systems are developed for the average user (usually
able-bodied in a stable environment with a desktop), which historically has
been forcing users to adapt themselves to the system, while the opposite
should occur; the increasing availability of computers and consequently of
novice users; the potential loss of control by the users caused by
inconsistencies and incoherencies in an adaptive application and the costs and
complexity naturally added to implement and provide adaptation.

Totterdell et al.’s classification for user adaptation (1990)
Adaptation techniques (Totterdell et al., 1990) are inspired by the different
variants in adaptation explored by using Prisoner’s Dilemma. The
classification is made in terms of the level of adaptivity they present, that is,
the amount of control that a system has in negotiating a change: designed
systems, adaptable/tailorable, adaptive, self-regulating, self-mediating and
self-modifying. This work interprets UI design as an adaptation problem to
construct artifacts that are well adapted to their environment. These levels
also reflect how some design decisions, usually made by the designer, are
progressively transferred to the system as we progress in the level of the
taxonomy. Three actors are considered: the designer, the user and the system.

6
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

Dieterich’s taxonomy for user adaptation (1993)
Dieterich’s taxonomy (Dieterich et al., 1993) of UI adaptations has always
been considered as a seminal reference for classifying different types of UI
adaptation configurations and techniques. This work sorted more than 200
papers dealing with various forms of UI adaptation and summarized them
into four stages needed to perform any form of adaptation. The initiative stage
involves the user or the system to suggest its intention to perform an
adaptation. The proposal stage states that, if a need for adaptation arises,
proposals of adaptation should be made that could be applied successfully
given the current situation. In the decision stage, as several proposals could
emerge from the previous stage, which adaptation proposal best fits the needs
for adaptation should be decided. The execution stage will actually execute
the adaptation chosen at decision stage. The authors classify every system
with adaptation capabilities according to the actors involved at each stage.

Oppermann’s survey (1994)
The control given to the user regarding the timing and the contents of the
adaptation should be emphasized (Oppermann, 1994). Adaptation can be
achieved in a shared initiative, shared decision-making, or shared execution
between the user and the system, i.e., by combining adaptivity and
adaptability, a combination is more promising than using adaptivity and
adaptability alone. Adaptation should convey its rationale to the end user
(e.g., with a tutorial), the selection and definition of adaptation opportunities,
an overview of performed adaptations, and the possibility of subsequent
changes in the concluded adaptations. Adaptation comprises three stages:
afferential (the gathering of the context information, user interaction),
inferential (the processing and inference of this information), and eferential
(the implementation and presentation of the adaptation to the end user).

Brusilovsky (1996)
Brusilovsky (1996) conducted some work on adaptive hypermedia, which is
one particular form of adaptation, but not the only one. This work focuses on
adaptive hypermedia, and also does not cover the web techniques entirely.
The work reports an extensive review of adaptivity techniques for web
applications. While this extensive effort classifyies and structures techniques,
it is not explicitly based on a notion of the context of use, defined as user,

GISATIE: A User Interface Adaptation Life-Cycle 7

platform, and environment (Calvary et al., 2003). The adaptation is analyzed
concerning “adaptation of what with respect to what”, but the context of use
is not fully exploited in this way. Furthermore, other dimensions of adaptation
(e.g., when, how, with which constraints) are not extensively researched, thus
raising the need for a multi-dimensional framework for adaptation.

Lorenz’s Methodology of Adaptive Systems (2000)
The Methodology of Adaptive Systems (Lorenz et al., 2000) introduces a
point of view about adaptation quite different from Dieterich, although it is
aimed at context-aware systems only. Three stages are identified similarly to
Lorenz (2000). The first one is afference where the user behavior is observed.
Then, the system records how the user acts and reacts and gather information
regarding user data, such as physiological characteristics, references, interest,
personality knowledge and expertise or user similarities and differences. The
next stage is inference, where the data gathered by the previous stage is
analyzed according to model assumptions on user needs, heuristics or
ontology models (Furtado et al., 2001) of the application domain. Finally, the
efference stage executes the adaptation activity decided in the inference stage.

Brusilovsky’s taxonomy (2001) and extension (2006)
Brusilovsky (2001) presented a new taxonomy that classifies adaptive hyper-
media systems, considering adaptation of two major aspects: presentation
(e.g., multimedia presentation, text presentation and modality) and navi-

gation (e.g., direct guidance, link sorting, link hiding, link annotation, link
generation and map adaptation). This taxonomy supports classifying some
adaptive systems. Thus, Hanisch et al. (2006) extended this taxonomy to
accommodate also multimedia components. As web technologies evolve, not
only text fragments or links can be adapted, but also movie clips, 3D graphics,
and so on. The adaptation methods and techniques were extended and also
classified by component types: models, views, controllers, widgets, graphic
items, movie clips, scripts and strategies.

W3C Authoring techniques for device independence (2004)
This W3C recommendation gathered a series of adaptation techniques, but
mainly for adaptation with respect to the computing platform (device and web
browser). While this dimension represents an important constraint in
conducting adaptation, it is certainly not the only one. The structure of the

8
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

document composed by types of techniques could be expanded into more
refined categories and sub-categories, with more links to existing techniques.

McKinley’s Taxonomy for Compositional Adaptation (2004)
McKinley (2004) proposes a taxonomy for compositional adaptation of
software. Compositional adaptation results in the exchange of algorithmic or
structural parts of the system with ones that improve a program’s fit to its
current environment. This kind of adaptation is based on the separation of
concerns between the functional behavior and the cross-cutting concerns, the
computational reflection that provides a vehicle to query the different aspects
of a system, the component-based design practices that enable the develop-
ment of the different parts of a system separately and the middleware that
usually provides the compositional capabilities.

McKinley’s taxonomy uses three dimensions to describe those systems
supporting compositional adaptation: 1) how to compose, 2) when to comp-
ose and 3) where to compose. The first dimension describes how composition
is implemented. This dimension can be carried out by different entities
(composers): a human (software developer, administrator), a component
loader, a run-time system or a meta-object. When to compose dimension
describes when the adaptive behavior is composed with the functionality. It
can be either static or dynamic. If this dimension is carried out at development
time, compile or link time, or load-time, it is said to be static. On the other
hand, if it is made at run-time, dynamic composition appears. Where to
compose dimension describes where in the system the adaptation code is
inserted. The most common approach is to place the code in the middleware,
although extensible systems have also been used. Although this taxonomy is
applicable to any software as a whole, and not just its UI, we believe that the
characterization of the various dimensions (i.e., how, when, where) is par-
ticularly constructive for UI adaptation.

Arhippainen’s Design Space for adaptation (2009)
Arhippainen (2009) defines a design space for adaptation according to the
triple: target, means and time. The target refers to with regard to what the
adaptation is performed, e.g., to the users, to the environment, or to the
platform aspects. The means refers to the software components involved,
such as: task models or rendering techniques. And the time defines a static or

GISATIE: A User Interface Adaptation Life-Cycle 9

dynamic adaptation (between sessions or occurring during run-time).
Although this definition is precise, it is too limited, once it does not include
important aspects like what is being adapted, or how.

Gomez’s survey of adaptation techniques (2009)
Many different research communities have been proposing approaches to
implement adaptation (Gomez et al., 2009), and Hypermedia System and
Intelligent Tutoring Systems in particular. The task of adaptation breaks
down to a mediation between resource provision and re-source demand. In
doing so, it is necessary to obtain some representation of them, either directly
or through intermediate models that can be further processed to achieve this
information. Correspondingly, major differences in adaptation approaches
manifest themselves in the employed sources, the way they are represented
and the techniques used to derive the user demand from them. Therefore, that
survey was structured according to these model-related aspects.

Paramythis et al.’s framework (2010)
The authors proposed a framework serving as a guide for layered evaluation
of adaptive interactive systems (Paramythis et al., 2010). This approach
decomposes the system into layers, i.e., collect input data, interpret the
collected data, model the current state of the ”world”, decide upon adaptation
and apply adaptation, that can be evaluated independently using a set of
formative methods. The authors then addressed the when, why, how
questions for web sites and hypermedia systems, but not for any type of UI.

Abrahão et al.’s reference framework (2021)
A conceptual reference framework is defined for intelligent user interface

adaptation containing a set of conceptual adaptation properties that are useful
for model-based UI adaptation. The objective of this set of properties is to
understand anymethod, to compare various methods and to generate new
ideas for adaptation. This framework is decomposed into four parts: the
context of use, the software system, the intelligent UI adaptor, and the
external sources. This framework mainly serves as a reference for structuring
components in the software architecture of an intelligent system equipped
with an intelligent UI adaptation. It discusses a set of questions for any UI:
who, what, why, how, to what, when, where (Motti & Vanderdonckt, 2013).

10
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

2.2 Discussion
Current taxonomies and frameworks for adaptation are incomplete and suffer
from several shortcomings. Cockton (1987) provided some ideas regarding
two main aspects of adaptation: how to perform the actual adaptation to
modify the UI and how to provide the required flexibility by parametrization
of UI constructs. However, the process for adaptation proposed by Cockton
covers just the detection of the needs for adaptation and the execution, but
very relevant stages, such as the selection of the appropriate adaptation for a
given situation were left out of the process. Norcio et al. (1989) introduced
some relevant issues found in adaptation, such as the fact that most
applications are designed for the aver-age user, forcing the user to adapt to
the application. The work of Browne et al. (1986) provided very interesting
insights regarding the use of an underlying formal foundation for adaptation.
Nevertheless, CLG lacks expressivity for the UI behavior and presentation.

Dieterich’s taxonomy only considers two entities (i.e., the user and the
system) in each stage of the adaptation life-cycle, it does not handle explicit
collaboration and it is restricted to the execution part of the adaptation only.
Furthermore, some of the most relevant issues in the adaptation life-cycle
such as how the adaptation is specified were left out of the framework. In
Totterdel’s work (1990) one extra actor responsible for adaptation (i.e., the
designer, the system and the user) is considered, but no explanation on how
they can collaborate to carry out an adaptation life-cycle stage is provided.
They proposed also a taxonomy for adaptive systems. Nevertheless, it relies
only on the amount of control the system has on adaptation. On the other
hand, the methodology for adaptive systems proposed by Lorenz et al. (2000)
introduc-es a framework mostly aimed at context-aware systems, and it also
suffers from those short-comings identified for Dieterich’s framework.
Again, relevant issues in adaptation, such as how the adaptations should be
specified or how do they comply with the original intend of the adaptation
life-cycle are left out of the framework. Similarly to Lorenz et al. (2000),
Oppermann’s (1994) adaptation life-cycle only covers some stages of the
adaptation life-cycle. However, very important stages, such as the evaluation
of the adaptation or how the adaptations are specified are not considered.

Compositional adaptation, as proposed by McKinley et al. (2004),
provides some interesting insights in the characterization parameters that any
adaptation framework should consider. More concretely, it illustrates how the

GISATIE: A User Interface Adaptation Life-Cycle 11

actual adaptation should be applied, describing how the changes required in
the application for the adaptation should be included, at what time (compile-
time, load-time, development time, etc.), and finally it points out where in the
original application code the adapted code should be placed. Unfortunately,
this work is aimed at general software adaptation rather than UI adaptation.
Time component of adaptation is considered in Arhippainen’s (2009) work.

Regarding what can be adapted, the taxonomy proposed by Brusilovsky
(2001) and its extension (Hanisch et al., 2006) provide a foundation for the
adaptation designer to know what can be actually adapted. In this sense, the
W3C Authoring Techniques for Device Independence contribute also to help
in answering the what question in adaptation.

Furthermore, all these approaches are incomplete with respect to the seven
stages of Norman’s theory of action (Norman, 1986). This theory describes
how a user interacts with an application from the very beginning, when the
user is forming his intention to reach a goal, until the end, when the results
from the actions taken to achieve the goal are evaluated. The adapta-tion
process should cover all seven stages of Norman’s theory of action, covering
aspects of adaptation so important such as evaluation or the transition from
the original system to the adapted one (López-Jaquero et al., 2007).

Otherwise, an incomplete adaptation life-cycle will happen, thus ignoring
very relevant issues in adaptation. Finally, the actors involved at each stage
must be properly described to characterize any system with user adaptation
facilities. How these actors collaborate to achieve an adaptation stage should
be also considered to describe the adaptation stages in a life-cycle.

2.3 Related Multi-Agent Systems in Adaptation
Next, four relevant multi-agent systems aimed at providing adaptation
capabilities are dis-cussed. Multi-agent systems have been already used to
provide adaptation capabilities. The next section reviews four of them. This
review is focused on multi-agent systems designed for adaptation.

MASHA (2006)
MASHA (Rosaci et al., 2006) introduces a MAS aimed at supporting
adaptivity in web sites. MASHA aims mainly at supporting recommendation
when browsing the web. Nevertheless, it also supports adaptation to the
device the user is currently using. Adaptivity is based on the information
collected by a client agent running in the different user’s devices. The

12
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

interests that a user have in a concept help in the recommendation task as
well. Moreover, in the rec-ommendation task, collaborative filtering is
employed; therefore the profiles of other users are also used during this
recommendation task. There are three agent types: 1) MASHA client, which
collects the information about the user; 2) MASHA server, which builds the
profile out of the information provided by MASHA client type, and lastly, 3)
MASHA adapter, which adapts a website according to the user profile and
the device he is currently using. This agent delivers to the user concept
instances whose representations are compatible with the device size.

Benaboud and Sahnoun (2006)
Benaboud and Sahnoun (2006) proposed another multi-agent system that uses
three models to drive the adaptation, namely a system model, a user model
and a presentation model. The adaptation life-cycle considered in this
approach includes three stages: 1) user characteristics inference, 2) filtering
and selection of the appropriate information resources and 3) organization of
the presentation of the resources in the available space. This approach
presents some limitations regarding our definition of an adaptation life-cycle.
First, the adaptation life-cycle is focused on the execution part of adaptation,
all the evaluation part is left out. Moreover, only the user is considered in the
context of use. This approach is not aimed at supporting generic adaptation,
but it is aimed at adapting just the way in which the resources are presented.

ADUS (2007)
Mitrovic et al. (2007) use also a MAS for adaptation, namely ADUS. The
main difference here is the use of mobile agents. Mobile agents travel to client
platforms on behalf of the ad-aptation framework to maximize the portability
of the MAS. The adaptation stages are: 1) adapting an abstract UI definition
to a concrete platform, and 2) monitoring user interaction and communicating
this information to other agents. There are three main agent types in this
approach: 1) visitor agent, which is a mobile agent than brings a service to
the device and generates an appropriate abstract specification for that service,
2) user agent, which collects information from the user and the device he is
using and acts as a proxy for visitor agent and, 3) ADUS agent, which is the
actual entity performing the adaptation of the UI according to the information
gathered by a user agent. XUL language is used for the abstract UI.

GISATIE: A User Interface Adaptation Life-Cycle 13

AB-HCI (2009)
AB-HCI (López-Jaquero et al., 2009) is a MAS aimed at supporting an
adaptation life-cycle based on (Dieterich et al., 1993). To do so, a
representation of the running UI is described in terms of a UI description
language, namely UsiXML (Limbourg et al., 2004). The system is designed
so as to support the execution of generic adaptation rules, to improve the
flexibility of the system. The system receives the information from the
context of use by means of software and hardware sensors in the client device.
The information gathered by means of sensors is sent to AB-HCI regularly
by a back-ground application running on the client device. The MAS then
selects the best adaptation to apply according to the changes in the context of
use reported.

Discussion
Although MASHA provides support for the adaptivity of web sites, it presents
some limitations. First, the adaptation life-cycle does not consider the
evaluation part. There is no support for generic adaptation rules, instead the
adaptations are hardcoded. Thus the flexibility of the system is compromised.
In ADUS some limitations can be identified. First, it focuses on the execution
of the adaptation, and the evaluation of its results is not considered. Second,
the language used for the specification of the abstract UI supports only the
specification of the abstract UI in terms of widgets and layouts. Thus, given
that ADUS does not represent other important UI facets, such as the domain
model and their respective task per widget, it constraints the possible
adaptations to widgets and layouts, excluding their semantics. Lastly, it does
not support the specification of generic adaptation rules. Therefore, the
reusability of the adaptation framework is also compromised. Although AB-
HCI is already a flexible and powerful approach, it supports only partially the
stages of the gulf of execution, and it does not support the gulf of evaluation
at all (see Figure 1). Once the limitations of some of the most closely related
MAS applied to adaptation were identified and presented, our MAS, named
MAYA (Multi-Agent sYstem for Adaptation) will be used as the main
running example with additional examples for some stages.

14
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

Figure 1. GISATIE framework for adaptation stages

3. GISATIE: A User Interface Adaptation Life-Cycle
To overcome some of the current limitations identified in the adaptation
models and taxonomies previously analyzed, an adaptation framework has
been devised. This framework aims at covering all the stages identified in
adaptation, and not just those related with the execution of the adaptation, as
in the approaches previously discussed. This framework is an extension of

GISATIE: A User Interface Adaptation Life-Cycle 15

ISATINE (López-Jaquero et al., 2007) by refining the stages and adding the
agents responsible for conducting each stage.

GISATIE (Goals, Initiative, Specification, Application, Transition,

Interpretation and Evaluation) adaptation framework comprises seven
stages, as a result of the specialization of the seven stages found in Norman’s
mental model of action. These seven stages are illustrated in Error!
Reference source not found.. Norman’s theory of action (1986) and our
GISATIE adaptation framework are both about what end users do within a
cycle of interaction with a UI. Our adaptation framework is also about design,
about how adaptation steps support end users in performing sensory,
cognitive, and physical actions in order to carry out their interactive tasks.

The seven stages of GISATIE can also be classified according to the part of
the adaptation life-cycle where they occur. In this sense, two parts are
identified, namely the gulf of adaptation execution and the gulf of adaptation
evaluation (see Error! Reference source not found.). The first gulf is related
to all the stages in the adaptation life-cycle required to finally execute the
adaptation. On the other hand, the second one encompasses those stages that
lead to finally be able to assess the adaptation that results from the adaptation
execution gulf.

All seven stages in GISATIE adaptation life-cycle can be carried out by
either one entity or several ones in collaboration. Next, what entities (or
actors) are considered in the framework and how these entities can interact is
described. Three different entities are considered at each stage of GISATIE: the
user (U), a machine or a system (M) and a third-party (T). The entity user
represents any user interacting with the application where the adaptation takes
places. The machine entity represents any hardware platform involved in the
interaction, including PC, mobile devices such as a tablet or a smartphone or
any kind of robot. We are using the broader term Machine rather than System,
since in our framework any autonomous machine can play a role in the
adaptation life-cycle. The entity third-party corresponds to those stakeholders
that can be involved in the interaction, but being external to the couple
machine-user. Notice, that in collaborative systems, there can be several users
interacting with the several machines, or even several users interacting with
a single machine. Each stage can be carried out by either the user, the machine
or a third-party. Nevertheless, it is also possible that any of the stages are
performed coordinately. Five different coordination modalities are allowed:

16
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

1. Negotiation: in this coordination modality, options are presented by
each entity and the final result is negotiated between the entities so as
to reach a consensus. T could serve for this purpose when, for
instance, contradictory output is produced by U and M, or for stating
which entity has priority.

2. Consultancy: when an entity estimates that it does not have
information or responsibility enough to achieve the adaptation stage,
it may request help/support from any other entity to achieve its
purpose. When the results come back to the requesting entity, it
decides the final option, thus keeping the control over the decision.

3. Delegation: this modality is the same as consultancy, but without any
return to the requester. The requested entity takes the decision and
may send a notification.

4. Coopetition: this is a form of collaboration where at least two entities
should compete while cooperating at the same time, because their
knowledge is perhaps complementary. Coopetition is the combination
of cooperation and competition. When two entities are coopetiting
they compete within a single organization to provide a solution for a
specific adaptation state. Nevertheless, they share their knowledge in
order to achieve a better solution.

5. Competition: in this case at least two entities compete to carry out a
task. There is no knowledge sharing among the competitors, since
each entity aims at winning the competition by defeating the rest of
the entities.

The design and implementation of a system with some adaptation

capabilities can be tackled in different ways. Nevertheless, multi-agent
systems present some qualities that can foster a more natural design of the
adaptation capabilities. From the adaptation stages previously discussed, we
can infer that some reasoning capabilities are usually required. i.e., in
Initiative stage for an adaptive system, if the system has to detect a need for
adaptation, there are two main choices: 1) work as a reactive system, where
given a stimulus the system reacts, or 2) carry out an inference process where
stimuli and stored information are used. Another stage in an adaptation life-
cycle, where reasoning capabilities are especially interesting, is the
Specification of Adaptation. In this stage the system has to decide which

GISATIE: A User Interface Adaptation Life-Cycle 17

adaptation will be applied. Therefore, reasoning about what adaptation is
better would be desirable. Another motivation for using MAS in adaptation
is extensibility. MAS can be easily extended to include new functionalities,
i.e. add new adaptation stages to the system. Moreover, most software agent-
based approaches use the BDI model (Beliefs, Desires, Intentions) (Bratman,
1987), which is inspired by human reasoning theories. Since supporting
GISATIE life-cycle implies managing negotiation, consultancy, delegation,
coopetion and competition between the different entities in the adaptation
life-cycle (the user, the machine or a third-party). Multi-agent systems are
especially suitable, since there is already some work done within agents’
research community regarding how the different agents involved in a multi-
agent system collaborate or compete by negotiating, delegating or
consultancy duties. Lastly, another advantage of the in multi-agent systems
is the natural distribution of computation, which supports the integration of
the implemented multi-agent system with existing services seamlessly.

3.1. Goals for Adaptation
The goals that ensure adaptation of UI may be established, maintained and
updated by any of the entities involved (user, machine, or a third-party).
Although the main benefit of adaptation aims at the end user, different aspects
of the context of use can also be considered, such as: the user profile, task(s),
the computational platform (both hardware and software), and the entire
physical and organizational environment in which the task is performed. The
goals can be classified as: self-expressed or machine-expressed (locally or
remotely), according to their location: the user’s mind (U), a local machine
(M), or a remote machine (T). A typical example of machine-expressed goals
is encountered when the machine is in charge of maintaining a certain level
of fault-tolerance depending on varying network or hardware conditions. This
main goal can be further decomposed into sub-goals, like keeping a minimal
amount of information, avoiding any task disruption.

An adaptation goal expresses what is adapted, and to what is adapted.
What is adapted in a UI are (Brusilovsky, 2001) the contents shown (i.e., text,
videos, images), how these contents are presented (i.e., size, colors, what
widgets are used, fonts, layout) and navigation or dialog (i.e., structure of
links, menus). The adaptation can be applied to any characteristic considered
in the context of use, including, but not limited to, user characteristics, user
skills, user knowledge, the software and hardware platform, the physical

18
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

environment attributes or the current task the user is carrying out. For
instance, adapting the contents of a web page to a PDA platform and/or to
maximize its accessibility (to blind users, elder people). Often, adaptation
goals are aimed at preserving some constraints, such as, adapting the
presentation to minimize loading time or power consumption, according to
the lighting conditions or preferred user channel.

The goals for UI adaptation represent the motivation to initiate an
adaptation life-cycle. In MAYA, when these goals are in the user’s head, our
system cannot directly achieve them, however the system supports this
process by means of some adaptability facilities implemented. Although, not
every user’s goal can be supported, including support for some of them
already increases user’s trust in the adaptation capabilities of the system.
When the goals are kept by the machine, they should be expressed in terms
of the context of use characteristics considered during the design of the
system and the quality criteria to be preserved. Thus, the goals to be stored
must make use of context of use characteristics that the machine is able to
either query or store and quality criteria to be preserved (i.e., accessibility,
performance, fault-tolerance, continuity, etc.). In MAYA, they are expressed
as a quality trade-off. This quality trade-off specifies the quality criteria that
should be preserved while adapting the UI. For instance, if in the quality
trade-off we specify that continuity and accessibility should be maximized,
then the machine will always choose those adaptations producing a lesser
disruption in continuity and accessibility, unless the user forces the execution
of another adaptation. This quality trade-off is expressed by using i* notation
(Yu, 1997), which was originally designed to specify system goals in early
requirements analysis stage by using a goal-oriented notation.

3.2 Initiative for Adaptation
This second stage describes how the adaptation life-cycle is started. In this
context, three scenarios are possible: the adaptation can be initiated by the
user (explicit initiative), by the machine (that detects a change in the context
of use that requires adaptation) or both jointly (as a decision taken by the
entities in control: U, M or T (broker)). One example of the machine and the
user collaborating in this stage occurs when the machine initiates the
adaptation and the user cancels it. This stage is further refined into
formulation for an adaptation request, detection of an adaptation need, and

GISATIE: A User Interface Adaptation Life-Cycle 19

notification for an adaptation request, depending on their location:
respectively, U, M, or T. In MAYA the adaptation life-cycle can be triggered
by the user, the machine or a third-party. The user is allowed to do it by
clicking on an extra option available in every UI generated by the machine.
Auditory UIs are not currently supported. The machine can also decide that
an adaptation is needed by inferring it from the incoming information from
the context of use. The changes in the context of use are detected by means
of sensors. These sensors can be either software or hardware sensors.
Hardware sensors are built-in or plugged into the hardware platform where
the application is running, while software sensors are programmed, and
included into the applications supported by the MAS, i.e., a software sensor
to detect idle time could be easily included. Therefore, MAYA supports the
initiative stage to be carried out by either the user or the machine.

In MAYA the machine initiates the adaptation as a reaction only to those
changes that are significant. The significance level is perceived differently
according to the context. For example, a reduction of the screen space
available of 20 pixels will probably be not significant enough in a GUI of a
PC, but it can be relevant in a smartphone. This significance of the changes
in the parameters of the context of use can be modeled by means of fuzzy
sets, with the specification of fuzzy rules.

Eisenstein et al. (2000) provide an example of third-party initiative: the UI
is specified by means of XIML, which supports the components of the UI to
be provided by external agents. This third-party triggers an adaptation given
an update in the widget server or according to user preferences to provide a
widget more suitable for the current user.

3.3 Specification of Adaptation
The specification stage is composed of two phases: the proposal and the
decision. After the adaptation is initiated, a set of proposals is defined and
provided. This set may contain none, one or multiple proposals. These
proposals can be elaborated by different entities: the user (U), the machine
(M) or a third-party (T). If the machine is the provider of adaptation proposals
the adaptation rules can be generated by computation, that is, the machine is
able to infer new rules from existing ones or other sources of information.

Once the set of proposals is provided, a decision must be made. The
decision phase consists of two steps: first the proposals must be analyzed and
accepted or rejected, then, in case of acceptance, it is necessary to decide

20
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

among the set of proposals provided, which one (or which ones) is the most
appropriate to be applied.

One possible alternative to perform the decision consists in informing the
machine about the number (or any other identification data) associated with
the proposal chosen. This decision can be made by the user, the machine, a
third-party, or even by any combination of the three aforementioned entities.
In this case, a mechanism is required to define specifically which proposal
among the entities’ decisions will be finally applied. The mechanism can be
implemented with different approaches, such as associating priorities to the
entities or allowing them to vote. For example, in a voting mechanism, each
entity votes for one or more proposals, and the one with more votes is applied
(ties scenarios must be considered).

Another approach to make decisions consists in prioritizing the proposals
according to their compliance to pre-defined criteria, regarding for instance,
software qualities. In this regard, the QOC (Questions, Options, Criteria), a
notation proposed by MacLean et al. in 1991, can be adopted. By using the
QOC notation, the adaptations are associated with the criteria they leverage.
These associations are graphically represented with positive or negative
signs, according to the way the criterion is affected. Figure 1 illustrates the
adaptation of the background color regarding legibility, easiness and speed.

In this example the choice in dark blue color affects positively the
legibility, negatively the speed and does not interfere with the easiness. This
notation provides a basis for a more complex discussion about the potential
tradeoffs that may occur between software qualities (MacLean et al., 1991).

Figure 1. QOC notation: Adaptation of the background color regarding legibility, easiness, and speed.

Regardless of whether the user or the machine have started the adaptation
life-cycle, MAYA automatically proposes the set of adaptation rules that best

Questions Options Criteria

Background
color

Dark blue

White

Yellow

Legibility

Easyness

Speed

+

+

-

+/-

-

GISATIE: A User Interface Adaptation Life-Cycle 21

fit the current context of use. The specification of the pool of available
adaptations to choose from is built in different ways. The user can
demonstrate how he would like the UI to be adapted (widget colors, sizes,
etc.). MAYA supports also the specification of rules by computation, that is,
rules created automatically from other rules or from other data sources. It is
currently constrained to the refinement of rules previously defined. However,
the main corpus of adaptation rules is usually provided by the application
designer who defines how the system should react to the different situations
resulting from the interaction in specific contexts of use. If the user initiated
the adaptation MAYA will ask him which adaptation between the eligible
ones he would like to apply. Thus, a UI supporting this task must be delivered
to the client. Otherwise, if the user delegates the task of choosing the
adaptation to MAYA, it will choose the most appropriate ones, creating a
ranking of rules. To make this selection the rules are evaluated by using a set
of metrics (López-Jaquero et al., 2008).

3.4 Application of the Adaptation
This stage specifies which entity will apply the adaptation chosen in the
previous stage. Since this adaptation is always applied to the UI, the UI should
always provide a mechanism that supports adaptation, for instance by
provided an API for parametrization (Cockton, 1987). The U adapts (e.g.,
through UI options, customization, personalization) or the M does it on behalf
of the user. For instance, transformations can be applied to apply surface
adaptations of a GUI in an information system (Aquino et al., 2010).

Afterwards, MAYA will try to execute the rules starting from the highest
one in the ranking of rules previously produced. If the application of the rule
does not meet the quality trade-off specified in the goals for UI adaptation,
then that rule will be discarded and the MAS will try to apply the next rule in
the ranking, following the same process as for the first rule in the ranking.
This process is made until no rule is left in the ranking list or until the MAS
finds that the score reached in the list is too low for that rule to be applied.
The MAS is designed so it will not apply an adaptation rule unless it is
considered good enough (unless the user forces its execution). Most of the
times, it is better inaction than applying a rule that is not good enough, since
it can produce a degradation of UI usability or damage users’ trust in the
system. One issue found in adaptive systems is that if the adaptations are not
properly carried out, and the user starts feeling like he is losing the control of

22
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

the application, then the adaptation engine might be easily rejected.
Therefore, it is really important for an adaptation architecture to support the
user in taking control of the adaptation engine, because mental models and
tastes for different users might differ. Therefore it is a good choice to include
a mechanism to undo adaptations or to avoid forcing applying an adaptation.

The adaptation can be made at run-time, but also at design-time. For
example, a calculator application is adapted at compile-time offering the user
a set of options to decide what to include or exclude in the application (Schlee
and Vanderdonckt, 2004). Recompiling thr project results into an adapted UI.

3.5 Transition of Adaptation
To improve the continuity in the adaptation life-cycle, a new stage must be
included in the adaptation life-cycle. It aims at making smoother the transition
from the original UI to the adapted one. This stage is one of the extra stages
in GISATIE adaptation framework with respect to Dieterich’s one.

This stage specifies which entity will ensure a smooth transition between
the original UI and the adapted one. For instance, if M is responsible for this
stage, it could provide some visualization techniques, which will present the
intermediary steps executed during the adaptation life-cycle, e.g., through
animation, morphing or progressive rendering (Rogers and Iba, 2000).

The transition mechanism must be carefully designed, since although it
helps in avoiding user disruption, it may have a negative impact in the
performance. For instance, when complex animations are used, they can
require extensive processing capabilities not always available to the user what
can result in degrading the user experience.

Making smoother and clearer the transition between the original UI and
the adapted one is very important to avoid confusing the user, and therefore
to avoid degrading the users’ trust in the system. Although many different
kinds of transitions from the original UI to the adapted one can be imagined
(Rogers and Iba, 2000), in MAYA we are just supporting those that are
general enough to be applied to many different UIs. Besides, our transitions
are generated at run-time on-the-fly. MAYA takes the adapted UI and it
creates smooth transitions depending on the kind of adaptation the UI has
undergone. Right now, it is able to highlight the adapted widgets in different
ways to guide the user, by changing the background color of some
components, changing the panel containing the adapted components or

GISATIE: A User Interface Adaptation Life-Cycle 23

adding word balloons to explain the user what happened during the
adaptation. Other techniques such as image animation or morphing could be
implemented as well.

3.6 Interpretation of Adaptation
This stage specifies which entity will produce meaningful information in
order to facilitate the understanding of the adaptation to other entities.
Typically, when M performs some adaptation without any explanation, U
does not necessarily understand why this type of adaptation has been
performed. Conversely, when U performs some adaptation, the user should
tell the machine how to interpret this adaptation. For instance, Eisenstein et
al. (2000) developed a machine-learning algorithm where the machine first
proposes some adaptation to be applied. If this adaptation does not correspond
to the user needs, the user is provided with an alternative adaptation and
informs the machine how to incorporate this new scheme for future use. The
machine updates the knowledge base by interpreting this explanation.

In MAYA, if the user is the one responsible for this stage in the adaptation
life-cycle, he is allowed to provide a description of what the adaptation was
useful for. It allows the machine to extract some keywords used to relate the
new adaptation to other adaptations stored in the adaptation rules repository.
On the other hand, if the machine is responsible for this stage, it always adds
a tooltip to the adapted UI with a short description of the adaptation made
(this text must be provided by the designer of the adaptation rule). This simple
add-in to the generated UI helps the user to understand what happened, so he
can better interpret what is going on. Therefore, MAYA supports the
transition stage to be carried out by either the machine or the user.

3.7 Evaluation of Adaptation
This stage specifies the entity responsible for evaluating the quality of the
adaptation performed so that it will be possible to check whether or not the
goals initially specified are met. For instance, if M maintained some internal
plan of goals, it should be able to update this plan according to the adaptations
applied so far. If the goals are in the users’ mind, they could also be evaluated
with respect to what has been conducted in the previous stages. In this case,
the explanation of the adaptation conducted contributes to updating the goals’
status too. Collaboration between M and U could be considered.

24
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

MAYA tries to achieve QoA (Quality of Adaptation) (López-Jaquero et
al., 2008) by selecting the best adaptation rules to apply at a given application
stage. Since it is impossible to foresee every combination of changes in the
context of use, the machine can apply a rule that is not good enough, or simply
it can apply a rule that the user dislikes. Thus, in the system, the user can undo
any adaptation applied expressing that he did not like it. This feedback from
the user is injected into the adaptation evaluation mechanism by applying a
Bayesian approach in which rules can improve or worsen their scores. That
is, even though an adaptation rule can obtain a high score initially at
application stage, its position in the ranking can be decreased if the user
dislikes the adaptation and he informs this by undoing the adaptation rule
whenever it is applied. Therefore, the evaluation stage is carried out by the
user and the machine in collaboration.

ADAMOS (Arhippainen, 2004) is a project that provides a practical view
of user experience studies and methods. Adamos provides a mechanism that
enables to evaluate the quality of the adaptation performed. It is done in a
way that makes it possible to check whether the adaptation goals initially
specified are met or not. For instance, an automated evaluation of the
adaptation will be recorded in a knowledge base to be benchmarked with
other adaptation rules and strategies. The final outcome of the evaluation of
an adaptation will consist in a feedback loop that will inform the machine
about the success or the failure of the adaptation so as to improve any future
adaptation (see Figure 2). Less intrusive techniques can also be imagined.
The availability of emotion recognition techniques (Cowie et al., 2001) can
provide a mean to automatically assess the satisfaction of the user with the
adaptations without disturbing him.

GISATIE: A User Interface Adaptation Life-Cycle 25

Figure 2. Feedback gathered from the user after adaptation in the ADAMOS project.

4. Conclusion
Adaptation is a complex topic. When dealing with such a complex topic, the
availability of methods, processes, guidelines, etc. helps the designer to create
better system with adaptation capabilities. In this paper we aim at contributing
in this direction. First, an adaptation framework has been thoroughly
described, including all seven stages. For each stage a definition, together
with some examples and a discussion is provided. A multi-agent system has
been used as a running example throughout the paper to better illustrate
GISATIE. Moreover, different stakeholders are considered and described,
namely: the user, the machine and a third party. An interesting aspect
discussed in GISATIE is how these entities can interact to perform a stage in
the adaptation life-cycle. Thus, the entities can interact by using negotiation,
consultancy, delegation, coopetition or competition. One of the strong points
of GISATIE with respect to other adaptation frameworks is supporting more
than just the execution part of the adaptation life-cycle, that is to say, covering
all the stages related to the evaluation of the adaptation. The evaluation part
of the adaptation life-cycle should be a must for any adaptation designed,
since it will provide better adaptations with smooth transitions from the
original UI to the adapted one, an understanding of why the adaptation took
place and an assessment of how good the adaptation actually was. By
designing all the seven stages, adaptations will be more easily understood by
the user, reducing the chances that the adaptation applied is rejected.

26
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

Acknowledgements
This paper is part of the R+D+i project 2gether (PID2019-108915RB-I00)
funded by MCIN/AEI/ 10.13039/501100011033.

References
Abrahão, S., Insfrán, E., Sluÿters, A., Vanderdonckt, J.: 2021. Model-based intelligent user

interface adaptation: challenges and future directions. Softw. Syst. Model. 20(5), 1335-
1349. DOI: https://doi.org/10.1007/s10270-021-00909-7

Aquino, N., Vanderdonckt, J., Pastor, O.: 2010. Transformation templates: adding flexibility
to model-driven engineering of user interfaces. In: Proc. of ACM Symposium on Applied
Computing SAC’2010, ACM Press, New York, pp. 1195–1202. DOI:
https://doi.org/10.1145/1774088.1774340

Arhippainen, L., Rantakokko, T. and Tähti, M.: 2005. Navigation with an Adaptive Mobile
Map-Application: User Experiences of Gesture- and Context-Sensitiveness. In: Proc. of
2nd Int. Symposium on Ubiquitous Computing Systems, UCS’2004, Tokyo, November
8-9, 2004. Vol. 3598 of Lecture Notes in Computer Science, Springer, Berlin, pp. 62–73.
DOI: https://doi.org/10.1007/11526858_6

Benaboud, R. and Sahnoun, Z. 2006. Implémentation par agents du processus d'adaptation
des informations en interface homme-machine. In: Proc. of the 18th Int. Conf. of the
Association Francophone d'Interaction Homme-Machine IHM '06. ACM Press, New
York, NY, USA, pp. 273–276. DOI: https://doi.org/10.1145/1132736.1132782

Benyon, D. and Murray, D. 1993. Developing adaptive systems to fit individual aptitudes.
In: Proc. of the 1st International Conference on Intelligent User Interfaces IUI 1993,
Orlando, Florida. ACM Press, New York, NY, pp. 115-121. DOI:
https://doi.org/10.1145/169891.169925

Bratman, M.E.: 1987. Intention, Plans, and Practical Reason. Harvard University Press,
Cambridge.

Browne, D.P., Sharratt, B. and Norman, M.A.: 1986. The formal specification of adaptive
user interfaces using Command Language Grammar. In: Proc. of the ACM Conference
on Human Aspects in Computing Systems CHI’1986, Boston, April 13-17, 1986. ACM
Press, New York, pp. 256–260. DOI: https://doi.org/10.1145/22339.22381

Brusilovsky, P.: 2001. Adaptive Hypermedia, User Modeling and User-Adapted Interaction
11, 1-2, pp .87–110.

Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt, J.: 2003,
A Unifying Reference Framework for multi-target user interfaces. Interact. Comput.
15(3), pp. 289-308. DOI: https://doi.org/10.1016/S0953-5438(03)00010-9

Cockton, G.: 1987. Some Critical Remarks on Abstractions for Adaptable Dialogue
Managers. In: Proc. of BCS HCI 1987: 325-343.

Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., &

GISATIE: A User Interface Adaptation Life-Cycle 27

Taylor, J. G.: 2001. Emotion recognition in human-computer interaction. Signal
Processing Magazine, IEEE, 18(1), 32-80. DOI: https://doi.org/10.1109/79.911197

Dessart, Ch.-E., Genaro Motti, V., Vanderdonckt, J.: 2012. Animated transitions between
user interface views. In: Proc. of ACM Conf. On Advanced Visual Interfaces AVI 2012.
ACM Press, New York, pp. 341-348. DOI: https://doi.org/10.1145/2254556.2254623

Dieterich, H., Malinowski, U., Kühme, T.and Schneider-Hufschmidt, M.: 1993, State of the
Art in Adaptive User Interfaces. In: Schneider-Hufschmidt, M., Khüme, T., Malinowski,
U. (Eds.), Adaptive User Interfaces: Principle and Practice. North Holland, Amsterdam,
pp. 13-48.

Eisenstein, J., Vanderdonckt, J., and Puerta, A.R.: 2000. Adapting to mobile contexts with
user-interface modeling. In: Proc. of the Third IEEE Workshop on Mobile Computing
Systems and Applications WMCSA 2000, IEEE Press, Los Alamitos, pp. 83-92. DOI:
https://doi.org/10.1109/MCSA.2000.895384

Furtado, E., Furtado, V., Silva, W.B., Rodrigues, D.W.T., da Silva Taddeo, L., Limbourg,
Q., Vanderdonckt, J.: An ontology-based method for designing multiple user interfaces.
In: Proceedings of International Workshop on Multiple User Interfaces, MUI’ 01 (2001).
https://www.researchgate.net/publication/2567741_An_Ontology-
Based_Method_for_Universal_Design_of_User_Interfaces

Gardiner, M. and Christie, B.: 1987. Applying Cognitive Psychology to User Interface
Design. John Wiley, New York.

Gómez, J.M. and Tran, T.: 2009. A Survey on Approaches to Adaptation on the Web. In:
Lytras, M.D., Ordóñez de Pablos, P. (Eds.), Emerging Topics and Technologies in
Information Systems. IGI Global Publishing, Hershey, pp. 136-152. DOI: 10.4018/978-1-
60566-222-0.ch007

Horvitz, E.: 1999. Principles of Mixed-Initiative User Interfaces. In: Proceedings of ACM
Conference on Human Factors in Computing Systems CHI’99, Pittsburgh, May 15-20,
1999. ACM Press, New York, pp. 159–166. https://doi.org/10.1145/302979.303030

Huhtala, J., Mäntyjärvi, J., Ahtinen, A., Ventä, L. and Isomursu, M.: 2009. Animated
Transitions for Adaptive Small Size Mobile Menus. In: Proc. of the 12th IFIP TC 13 Int.
Conference on Human-Computer Interaction, Interact’2009, Uppsala, August 24-28,
2009. Vol. 5726 of Lecture Notes in Computer Science. Springer, Berlin, pp. 772-781.

Huhtala, J., Sarjanoja, A.-H., Mäntyjärvi, J., Isomursu, M. and Häkkilä, J.: 2010. Animated
UI transitions and perception of time: a user study on animated effects on a mobile screen.
In: Proc. of ACM Conf. on Human Aspects in Computing Systems, CHI’2010, Atlanta,
April 10-15, 2010. ACM Press, New York, pp. 1339–1342. DOI:
https://doi.org/10.1145/1753326.1753527

Langley, P.: 1999. User Modeling in Adaptive Interfaces. In: Kay, J. (Ed.), Proceedings of
the 7th International Conference on User Modeling UM’1999, Banff, July 1999. pp. 357-
370, Springer, Berlin.

Lavie, T., Meyer, J.: 2010. Benefits and costs of adaptive user interfaces. International
Journal of Human-Computer Studies 68, pp. 508–524. DOI:
https://doi.org/10.1016/j.ijhcs.2010.01.004

28
Víctor López-Jaquero, Vivian Genaro Motti, Francisco Montero, and Pascual

González López

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., and Florins, M. 2004. USIXML:
A User Interface Description Language Supporting Multiple Levels of Independence. In:
Proc. of Workshops in connection with the 4th Int. Conf. on Web Engineering (ICWE
’04). Engineering Advanced Web Applications (28-30 July, 2004), DIWE ’04, Matera,
M. and Comai, S. (Eds.), Rinton Press, pp. 325–338.

López-Jaquero, V., Vanderdonckt, J., Montero, F., and González, P.: 2007. Towards an
Extended Model of User Interface Adaptation: the ISATINE framework. In: Proc. of IFIP
WG2.7/13.4 10th Conference on Engineering Human Com-puter Interaction jointly
organized with IFIP WG 13.2 1st Conference on Human Centred Software Engineering
and DSVIS - 14th Conference on Design Specification and Verification of Interactive
Systems, EIS’2007, Salamanca, March 22-24, 2007, J. Gulliksen, M.B. Harning, Ph.
Palanque (Eds.). Vol. 4940 of Lecture Notes in Computer Science. Springer, Berlin, pp.
374–392. DOI: https://doi.org/10.1007/978-3-540-92698-6_23

López Jaquero, V., Montero, F. and González, P.: 2008. Quality of Adaptation: User
Cognitive Models in Adaptation Quality Assesment. In: Proc. of 6th International
Conference on Computer-Aided Design of User Interfaces, CADUI’2008, Albacete, June
11-13, 2008. López Jaquero, V., Montero, F., Molina, J.P., Vanderdonckt, J. (Eds.).,
Springer, Berlin, pp. 265–276. DOI: https://doi.org/10.1007/978-1-84882-206-1_24

López-Jaquero, V., Montero, F. and Gonzalez, P.: 2009. AB-HCI: an interface multi-agent
system to support human-centred computing. IET Software 3, 14. pp. 14–25. DOI:
https://doi.org/10.1049/iet-sen:20070108

McKinley, P. K., Sadjadi, S. M., Kasten, E. P., and Cheng, B.H.: 2004. Composing Adaptive
Software. IEEE Computer 37, 7. pp. 56–64. DOI: https://doi.org/10.1109/MC.2004.48

Motti, V.G., Vanderdonckt, J.: 2013. A computational framework for context-aware
adaptation of user interfaces. In: Proceedings of the 7th IEEE International Conference
on Research Challenges in Information Science, RCIS ’13, pp. 1–12 (2013).
https://doi.org/10.1109/RCIS.2013.6577709

MacLean, A., Young, R.M., Bellotti, V. and Moran, T.P.: 1991. Questions, options, and
criteria: elements of design space analysis. Hum.-Comput. Interact. 6, 3 (September
1991), 201-250. DOI: http://dx.doi.org/10.1207/s15327051hci0603\&4_2

Norcio, A.F., Stanley, J.: 1989. Adaptive human-computer interfaces: a literature survey and
perspective. IEEE Transactions on Systems, Man, and Cybernetics, Volume 19, Issue 2,
Mar/Apr 1989, 399-408. DOI: https://doi.org/10.1109/21.31042

Norman, D.A.:1986, Cognitive Engineering. In: Norman, D.A., Draper, S.W. (Eds.): User
Centered System Design. Lawrence Erlbaum Associates, Hillsdale, pp. 31–61.

Oppermann, R.: 1994. Adaptively supported adaptability. International Journal of Human-
Computer Studies 40, 3. pp. 455–472.

Paramythis, A.,Weibelzahl, S., Masthoff, J.: 2010. Layered evaluation of interactive adaptive
systems: framework and formative methods. User Model. User Adapt. Interact. 20(5),
383–453 (2010). https://doi.org/10.1007/s11257-010-9082-4

Rogers, S. and Iba, W.: 2000, Adaptive User Interfaces: Papers from the 2000 AAAI

GISATIE: A User Interface Adaptation Life-Cycle 29

Symposium. AAAI Press, Technical Report SS-00-01.

Rosaci, R., Sarnè, G.M.L.: 2006. MASHA: A multi-agent system handling user and device
adaptivity of Web sites. User Modeling and User-Adapted Interaction 16, 5. pp. 435–462.
DOI: https://doi.org/10.1007/s11257-006-9015-4

Schlee, M. and Vanderdonckt, J.: 2004. Generative Programming of Graphical User
Interfaces. In: Proceedings of 7th Interna-tional Working Conference on Advanced Visual
Interfaces, AVI’2004, Gallipoli, May 25-28, 2004. pp. 403-406. ACM Press, New York.
DOI: https://doi.org/10.1145/989863.989936

Schlienger, C., Conversy, S., Chatty, S., Anquetil, M. and Mertz, Ch.: 2007. Improving
Users’ Comprehension of Changes with Animation and Sound: An Empirical Assessment.
In: Proceedings of IFIP TC 13 Conference on Human-Computer Interaction,
Interact’2007, Rio de Janeiro, September 10-14, 2007. Vol. 4662 of Lecture Notes in
Computer Science. pp. 207–220, Springer, Berlin. DOI: https://doi.org/10.1007/978-3-
540-74796-3_20

Sherman, R., Alpert, J.K., Karat, C., Carolyn, B. and Vergo, J.: 2003. User attitudes regarding
a user-adaptive e-commerce web site. User Modeling and User-adapted Interaction 13,
4. pp. 373–396. DOI: https://doi.org/10.1023/A:1026201108015

Sendín, M., López-Jaquero, V. and Collazos, C.A.: 2008. Collaborative Explicit Plasticity
Framework: a Conceptual Scheme for the Generation of Plastic and Group-Aware User
Interfaces. Journal of Universal Computer Science 14, 9. pp. 1447–1462. DOI:
http://dx.doi.org/ 10.3217/jucs-014-09-1447

Totterdell, P. and Rautenbach, P.: 1990. Adaptation as a Problem Design. In: Browne, D.,
Totterdell, P., Norman, M. (Eds.), Adaptive User Interfaces. Computer And People Series,
Acadamic Press, pp. 59–84.

Yu, E.: 1997. Towards Modelling and Reasoning Support for Early-Phase Requirements
Engineering. In: Proceedings of the 3rd IEEE International Symposium on Requirements
Engineering, RE’97, Washington, January 6-8, 1997. pp. 226-235, IEEE Computer
Society Press, Los Alamitos. DOI: http://dx.doi.org/10.1109/ISRE.1997.566873.

.

