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1. Introduction 

Human-Computer Interaction is changing these years towards Human-
Artificial Intelligence Interaction in an ever-growing degree. This fact is 
empowered by the remarkable achievements of Artificial Intelligence (AI) in 
using Machine Learning (ML) and its subdomain of Deep Learning (DL) 
(Krzysztof, 2018) , which became now the predominant paradigm, replacing 
the Knowledge-Based, Symbolic AI. However, these achievements come 
with a cost: many ML algorithms and especially DL (based on Deep Neural 
Networks - DNN), do not provide means for explaining their decisions or, in 
the case of Natural Language Processing (NLP), artificial dialogue systems, 
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cannot justify their generated utterances. Therefore, it can be said that such 
AI systems behave like "black-boxes", for example, in the case of 
conversational agents with NLP, they are not answerable in the sense of 
Mikhail Bakhtin (1993), as emphasized in several studies and official 
documents (Banavar, 2016; European Commission, 2019; AI HLEG, 2019). 
Moreover, the problem of lacking the possibility of providing explanations 
may drive to the impossibility of growing a real dialog with an artificial agent 
(Trausan-Matu, 2019). This major concern gave birth to a domain of research 
and development called eXplainable Artificial Intelligence (XAI), which 
aims at finding algorithms and methods able to interpret and explain the 
results provided by machine learning methods. In addition to XAI, another 
concern regarding AI is related to ethical problems (Trausan-Matu, 2019; 
Trausan-Matu, 2020; O’Neil, 2016), which are also generated by the opacity 
of how the results were obtained by many ML approaches. 

The world of XAI is rapidly growing when looking at the number of 
scientific papers and conferences over the recent years. The problem with this 
field is the fact that there is a lot of new information, which needs to be 
structured and reviewed. The goal of this paper is to study all the state-of-the-
art explainability techniques and present them in an informative manner.  

Three reasons may be identified, which enforce the idea of creating 
explainability:  

• The need for transparent models.  
• The development of techniques that allow humans to interact with a 

model and grow a real dialog (Trausan-Matu, 2019).  
• The building of trust between machine learning models and humans.  

 
There are several approaches for XAI, which can be grouped in the 

following four classes:  
• Interpretable models  
• Model-agnostic methods  
• Example-based explanations  
• Neural network interpretation  

 
In this paper, we will focus on model-agnostic methods for text 

classification tasks, and also test them on a dataset that has never been used 
before for this task. We have considered all the above-mentioned classes, but 
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we have taken the decision to go with model-agnostic methods due to the fact 
that they can be used to explain any algorithm, there are not dedicated to a 
specific approach, and this is what we consider that Explainable AI should 
be.  

2. The concept of Interpretability 

Interpretability has no formal definition, but we have found two informal 
definitions that we consider illustrative. The first definition states that 
interpretability is the degree to which a human can understand the cause of a 
decision (Miller, 2019). Other definition focuses on the degree to which a 
human can consistently predict the model’s result (Kim, Khanna, & Koyejo, 
2016).  

2.1. Importance of Interpretability  

Nowadays, in the Machine Learning community, the focus was directed 
towards the performance of models instead of explainability and 
interpretability. The question that is the center of this subject is "Why should 
we not just trust the model?". As Doshi-Velez and Kim (2016) state, a single 
metric (accuracy) cannot fully describe the performance of a model. 

Unfortunately, there is a trade-off between the performance of a model and 
its transparency (interpretability). One must weigh the importance of a 
model’s predictions to be explained, such that it will be a drop in the model’s 
performance if this path is chosen. Furthermore, knowing "why" a result was 
generated may help with learning more about the problem, or about the data, 
and how it behaves in certain situations. The most important thing is for the 
designer of the model to figure out if the task at hand is a low-risk or a high-
risk task, if it may be biased and generate unethical utterances. The need for 
interpretability arises from an incompleteness in problem formalization, 
which means that for many problems it is not enough to get the prediction, 
but also the explanation (Doshi-Velez & Kim, 2017).  

Regarding the importance of interpretability, there are more reasons, 
which are listed below:  

• Human curiosity and learning: Humans are usually trying to learn 
pairs of cause and effect. Therefore, in order to facilitate learning and 
satisfy the curiosity of human beings, the explainability and 
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interpretability are especially important regarding Artificial 
Intelligence models.  

• Safety measures: This is valid for example in automotive, self-driving 
cars, where the safety of a passenger is based on the performance of 
machine learning models, so there needs to be an explanation for the 
decision it makes (as a form of model debugging).  

• Detecting bias: Machine learning pick up bias from training from a 
biased dataset. A good example is a model which automatically 
accepts or rejects people for a credit. This model may discriminate 
based on the background dataset, which is not allowed due to UE 
regulations. By introducing interpretability, we can detect that bias 
and modify the data in order to remove it with certain specialized 
algorithms. 

2.2 Taxonomy of Interpretability Methods 

In this section, a classification of Machine Learning interpretability methods 
will be described based on some relevant criteria. The first criterion of 
classification of these methods is whether interpretability is achieved by 
reducing the complexity of the model (intrinsic) or by applying the methods 
of interpretability after the model was trained (post hoc). Regarding intrinsic 
interpretability, machine learning models that enter this category are 
interpretable by nature due to their simple structure, such as sparse linear 
models or decision tree-based models.  

On the other hand, post-hoc interpretability can only be achieved after the 
training of the model occurs. An example of an interpretation method that 
achieves post-hoc interpretability Explainable AI in Natural Language 
Processing is SHAP (SHapley Additive exPlanations - Lundberg and Lee, 
2017), which is derived from game theory and tries to compute feature 
importances based on predictions from the trained model. Another method 
that is not so ambiguous is permutation feature importance, which can be 
computed for decision trees. This paper will be organized based on the criteria 
we have briefly explained here. 

The second criterion these methods can be classified with is according to 
the result of the interpretation method. The result can be classified into:  

• Feature summary statistics: The methods included here should return 
summary statistics for each feature in the data set, such as feature 
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importance, or more complex results, such as the pairwise feature 
interaction strength.  

• Feature summary visualization: Based on the methods from the 
category above, the problem of some results may be the fact that 
simple numbers may not present an actual information, and because of 
this fact a visualization method for those results is required. An 
example of such a method is the Partial Dependent Plot. This method 
shows curves that show a certain feature together with the average 
predicted outcome.  

• Model internals (e.g., model weights): As a clear example, 
intrinsically interpretable models can be classified into this category. 
Model internals can be weights in linear models, or decision tree splits 
and thresholds. Regarding a highly successful branch of Artificial 
Intelligence, Computer Vision, the method of visualization of feature 
detectors learned in convolutional neural networks falls into this 
category.  

• Data point: This category might be ambiguous, since it includes all the 
interpretability methods that return data points as explanations, such 
as counterfactual examples. This method takes as an input a data point 
from the original data set, and try to change certain features in order to 
change the prediction of the model for that data point (e.g. change the 
predicted class of a point).  

• Intrinsically interpretable model: This category has not had that much 
development as the others and represents the interpretation of black 
box models by approximating them with an interpretable model, which 
can be easily explained.  

 
Another meaningful criterion is the usefulness of the interpretability 

method (model-specific or model-agnostic). Model-specific methods are 
limited to a specific class of models. Instead, model-agnostic methods can be 
used on any machine learning model, and also can be only applied after the 
training step. These methods are useful when we do not have access to the 
model’s architecture or internal parameters, meaning they focus on input-
output data pairs. 

The last criterion of the interpretability methods is the scope (local or 
global). This criterion refers to the question of whether the method explains 
an individual prediction or the entire model. 
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2.3. Scope of Interpretability  

In this subsection we will present the evaluation of the level of transparency 
of each step in a model creation (training, inference, etc.)  
 
2.3.1. Algorithm Transparency  
Algorithm transparency can be defined as the method the algorithm uses in 
order to create the model. The algorithm learns a model through data, and this 
metric describes the method and the relationships the model can learn. Thus, 
the transparency of an algorithm is described only by the knowledge we have 
about it. For example, algorithms that have a linear characteristic are well 
studied and are characterized as being very transparent. On the other hand, 
deep learning methods, which imply learning weights that are propagated 
through thousands of neurons cannot be well explained and thus are less 
transparent.  
 
2.3.2 Global, Holistic Model Interpretability  
A model can be fully interpretable if one can explain the entire model at once 
(Lipton, 2018). The problem with the global interpretability is the fact that 
you need a lot of information to achieve it, such as the trained model, 
knowledge of the algorithm and the data used for training. Global model 
interpretability can be also described as finding out the distribution of the 
outcomes (predictions) based on the input features. This raises the problem 
that if a model has a substantial number of parameters or weights the chance 
for a human to understand that model is not good. Also, the data used today 
has more than three features, meaning that a hyperplane cannot be visualized 
in order to see feature relationships.  
 
2.3.3 Global Model Interpretability on a Modular Level  
As we have stated in the previous subsection, generating global 
interpretability is untouchable for certain types of models. But, if a model can 
be sectioned in smaller parts, such as single weights, it can become 
interpretable. The linear models’ parts that can be interpretable are the 
weights, for trees are the splits and leaf node predictions. Regarding linear 
models, the problem is that the interpretation of a single weight is linked with 
all the other weights due to connections between the distributions of the 
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features. Even though this is not a good thing, the weights in a linear model 
are much more interpretable than the weights of a deep neural network.  
 
2.3.4 Local Interpretability for a Single Prediction  
As said before, global explanations are harder to obtain for complex models. 
Instead, trying to explain a single example from the dataset might give an 
insight of the behavior of the model. The problem with these methods is the 
fact that you do not have a big picture on the model, and by explaining some 
predictions you may not find the complex dependences between features.  

3. Explanations and their properties  

3.1 Definition and metrics  

An explanation can be defined as the feature values of an instance to its model 
prediction in an understandable way (Robnik-Šikonja & Bohanec, 2018). 
Further, properties of these explanation will be detailed (Robnik-Šikonja & 
Bohanec, 2018). The first described properties are about the explanation 
methods:  

• Expressive power: Describes the structure of an explanation, or how 
the explanation looks to the end user. They can be rules, decision 
trees, a numerical metric, natural language, etc.  

• Translucency: Refers to how tied the explanation is to the model’s 
parameters and architecture. For example, methods of interpretability 
that rely on intrinsically explainable models such as linear regression 
are highly translucent, but methods that only rely on observing the 
inputs and the predictions are not translucent. There is no good value 
of translucency, because it is dependent on the use case. For instance, 
a high translucency relies on more information to give an explanation, 
but the low translucency may make the explanation method more 
portable.  

• Portability: This measures the diversity of the explanation method, 
and it depends on the number of different machine learning 
architectures can be used from.  

• Algorithmic complexity: It describes the complexity of the algorithm 
for generating explanations.  
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A second group of properties are related to the individual explanations:  
 

• Accuracy: This metric describes how good the explanation method 
predicts on unseen data. It is not a restrictive metric because of the 
fact that it is normal if both the explanation method and the machine 
learning model have low accuracy.  

• Fidelity: This is one of the most important metrics for individual 
explanations, and it describes how well the explanation approximates 
the black box prediction. An explanation is invalid if it has low 
fidelity. The problem is that, because of local explanations, the 
method may only have good local fidelity on a subset of data, and not 
globally.  

• Consistency: The degree to which similar explanations are generated 
from different models trained on a similar task. For examples, 
explanations may vary because of the explanation method even 
though the models are trained on the same data and the predictions 
being similar.  

• Stability: The degree to which similar explanations are generated for 
similar instances. This metric is different from consistency because of 
the fact that it is based on a single model.  

• Comprehensibility: This depends on how readable the explanations 
are (depends on the audience and the size of the explanation).  

• Certainty: It is described as the degree to which the explanations 
reflect the model’s prediction.  

• Degree of importance: The degree to which the explanations are 
reflecting the importance for each returned item.  

• Novelty: It is related to certainty, and describes if explanations would 
reflect the fact that the explained instance is from a new region, 
meaning that it is out of distribution.  

• Representativeness: It describes how the model is represented by the 
explanations (local or global explanations).  

2.2 Human-friendly explanations  

Explanations and their classification is a very sensitive subject. Miller (2019) 
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has conducted a huge survey of publications about this topic, and this 
subsection will review this publication in detail, and put an emphasis to what 
is important for Interpretable Machine Learning.  

Many times, an explanation is an answer to a “why” question (Miller, 
2019). Regarding Interpretable Machine Learning, everyday-type 
explanations are of interest to us. There are a couple of criteria that needs to 
be taken into consideration when thinking if an explanation is proper for 
human beings, and these are:  

• Explanations should be selected, not in full form, because of how 
human attention work.  

• The social environment and the target audience of the machine 
learning model need to be taken into consideration when some 
predictions are explained.  

• "If one of the input features for a prediction was abnormal in any sense 
(like a rare category of a categorical feature) and the feature 
influenced the prediction, it should be included in an explanation, 
even if other ’normal’ features have the same influence on the 
prediction as the abnormal one" (Molnar, 2019). 

• The explanation should predict the event with a high fidelity score, 
meaning it should be as truthful as possible.  

• Better explanations may be provided by giving the machine learning 
algorithm a set of apriori knowledge, such as rules, but this would 
damage the performance of the model too much so it is not feasible.  

• A good explanation can be considered to be one that is more general 
and can explain different events of prediction. The problem with this 
statement is that it is in contradiction with the third item in the list, the 
"abnormality" clause.  

3. Model-Agnostic Methods  

The model-agnostic methods can be used with any machine learning model. 
There are a couple of desirable aspects of such methods (Ribeiro, Singh, & 
Guestrin, 2016):  

• Model flexibility: The interpretation method can work with any 
machine learning method.  

• Explanation flexibility: The form of the explanation is not limited or 
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fixed, may be a graph or a formula.  
• Representation flexibility: The explanation system may use different 

feature representation than the trained model.  
Next, we will describe a couple of popular and state-of-the art agnostic 

methods.  

3.1 Local Surrogate (LIME)  

Local Interpretable Model-agnostic Explanations (LIME) (Ribeiro, Singh, & 
Guestrin, 2016) is a concise way of implementing an algorithm to 
approximate predictions of a black-box model. Instead of training a global 
surrogate model, LIME focuses on local explanations (single examples).  

The first step in applying this algorithm is to consider that we only have a 
blackbox model that has a prediction function. The goal is to understand why 
this model makes certain predictions. LIME tests what happens when you try 
to predict data derived from the original data by performing perturbations. 
There are five steps in training a local surrogate model:  

1. Select the example from the dataset which it is wanted to be explained 
based on a black-box model.  

2. Perturb the dataset and extract predictions with the black-box model.  
3. Weight the new samples based on proximity.  
4. Train an interpretable surrogate model with the perturbed data.  
5. Explain the prediction.  

 
The LIME method has several advantages: 

• The same interpretable model can be used regarding what the 
underlying black-box model is. This statement empowers the fact that 
the explanations are human-friendly.  

• If a decision tree or Lasso regression (Tibshirani, 1996) is used, the 
explanations are short and possibly contrastive.  

• Works for tabular, image, and text data.  
• The fidelity measurement, meaning the R-squared score, gives a very 

good interpretation on how accurate the surrogate model mimics the 
black-box model.  

• Actual LIME implementations are very easy to use (Python).  
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However, LIME has also several disadvantages: 
• The neighborhood of a point is very hard to correctly define, and it is 

an unsolved issue, meaning that we need to be very careful when using 
this algorithm such that we have good explanations.  

• The sampling steps can be improved from the actual version, because 
of the fact that this step can yield unlikely data points.  

• Instability of the explanation because of the sampling step.  
• The algorithm can be tempered with in order to hide biases in the 

dataset or model, and this decreases the trust in LIME.  

3.2 SHAP  

SHAP is a method proposed by Lundberg and Lee (2017) which explains 
individual predictions. The goal of this method is to explain an instance x by 
calculating the contributions made by all the involved features. By using 
Shapley values (Shapley, 1952), we find out about how to fairly distribute the 
prediction among features. Furthermore, there is an innovation, which 
suggests that Shapley values should be represented as an additive feature 
attribution method, similar to LIME (Lundberg & Lee, 2017).  

Shapley values have several properties (Shapley, 1952): Efficiency, 
Symmetry, Dummy and Additivity. SHAP also satisfies these properties, the 
three most desirable ones being the following (Molnar, 2019):  

• Local accuracy  
• Missingness. This property enforces all missing features’ Shapley  
• values to 0.  
• Consistency: If a model changes so that the marginal contribution of 

a feature value increases or stays the same (regardless of other 
features), the Shapley value also increases or stays the same.  

There are two derived methods from SHAP: KernelSHAP and TreeSHAP 
(also proposed by Lundberg et. al (2017), a variant of the SHAP for tree-
based models). 

• The disadvantages of SHAP and its variants are:  
• KernelSHAP is slow because it requires a lot of computations.  
• SHAP considers that there are no dependences between features, 

which is not true and may yield unreliable results in some cases. This 
happens when random values for features are sampled which are out 
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of distribution.  
• TreeSHAP may yield unintuitive feature attributions, because of the 

fact also stated above (different than 0 feature importances).  
 

.  

4. Experiments  

Several experiments were performed with the LIME and SHAP model-
agnostic interpretable methods for Natural Language Processing. The 
experimental setup is shown in Figure 1 and it has four stages:  

1. Initial preprocessing of data (removing stop words, removing special 
characters, emojis and punctuation).  

2. Transform text utterances into text embeddings.  
3. Train three Machine Learning models (Logistic Regression, 

Multinomial Naive Bayes, and Random Forest) on the embeddings.  
4. Generate explanations using LIME and SHAP for each model.  

 
The dataset used to make the experiments is "Conversations Gone Awry" 

Figure 1. Experimental setup. 
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from Cornell University (Zhang, 2018), a corpus of conversations having 
utterances that may be characterized as personal attacks. The three ML 
models were used for classifying utterances as attacks (“class 1”) and not 
attacks (“class 0”). 

 

 
a) 

 
b) 

 
c) 

 

 
d) 

 

 
e) 

 
f)  

 

Figure 2. Lime individual explanation for a single example belonging to class 0 
(a, b, c) and class 1 (d, e, f), for Logistic Regression  (a, d),  
Multinomial Naive Bayes (b, e), and Random Forest  (c, f). 
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The original dataset was very unbalanced between the two classes. The 
consequence is that the model’s performance on the small class is very poor 
and the explanation method’s performance will be affected. Therefore, we 
sampled an equal number of examples from both classes. Furthermore, by 
applying the preprocessing steps we have leveled the character and word.  

Comparative results of the LIME and SHAP approaches to each of the 
three ML models are presented in Figures 2 and 3. The explanations of the 
classifications of the utterances performed by the ML algorithms consist in 
emphasizing how words in the texts contributed to the provided results. For 
example, in Figure 2, LIME emphasizes the importance of each word by 
different colors and intensity. SHAP offers several ways of illustrating the 
results, in Figure 3 only a bar chart is used for the representation of the 
contribution of the concepts, sorted by their importance.  

 
 
 
                    a)                                            b)                                                      c) 
 

In order to build the explanations, we have chosen two instances that are 
from different classes in order to illustrate the functionalities of SHAP and 
LIME. By looking at both explanations from these algorithms, we can clearly 
see differences because of the significant differences between the algorithms. 

Figure 3. SHAP Summary Plot for Logistic Regression (a),  
Multinomial Naive Bayes (b), and Random Forest (c). 
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Due to the Shapley values calculations, this algorithm guarantees local 
accuracy and robustness in explanations, as faced with LIME, which builds 
surrogate models that locally mimic the original explained model. The main 
advantage of SHAP over LIME is the fact that it can explain a model globally, 
by computing an average over all the importances on a partition of examples, 
while LIME can only explain single instances.  

Furthermore, we can also look at how explanations are presented to the 
user, at which LIME has a much better visualization technique due to its 
nature. Unfortunately, both methods have certain issues. One such issue is the 
fact that both methods are based on sampling, meaning that the absence of 
features is simulated by sampling examples from a background dataset and 
replacing those features with the sampled features. The problem is the fact 
that the sampling methods used so far do not generate examples on the data 
manifold (not probable examples). Also, due to this, two experiments with 
the same experimental setup may yield slightly different explanations.  

There are many algorithms that explain text classifiers, but we have chosen 
to focus on the model-agnostic explanations because of the fact that model-
specific explainability methods are much harder to understand and 
implement, and also are not that robust mathematically. Examples of different 
methods that are not model-agnostic are variants of SHAP (LinearExplainer, 
DeepExplainer), DeepLift, and other experimental theoretic methods of 
manipulating the neural networks’ learnt parameters.  

4. Conclusions  
In this paper, we have focused on introducing and classifying the main 
concepts and features of XAI, and on presenting an experiment that 
emphasizes the explanations generated for three machine learning models for 
text classification with the help of model-agnostic methods, such as SHAP 
and LIME, and state the differences and their problems. As further research, 
we will try to come with something new regarding the explanation of 
conversations as a whole, not only single utterances.  
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