
International Journal of User-System Interaction 14(3) 2021, 87-100 © MatrixRom

Automatic Music Transcription by Deep Learning
Dan Teodor Avramescu, Paul Stefan Popescu, Mihai Mocanu
and Marian Cristian Mihaescu
University of Craiova
Department of Computers and Information Technology
avramescu.dan.m8s@student.ucv.ro,
{stefan.popescu,mihai.mocanu,cristian.mihaescu}@edu.ucv.ro

Abstract. Automatic music transcription represents a specific translation task that falls into
information processing, where input information is sound. Similar, but more general, are
building text transcripts from speech. We propose a data analysis pipeline that follows the
roadmap of previous works but uses a distinct dataset and several custom hyperparameter
settings. The results are not as good as previous ones as the implementation runs on
commodity systems, and therefore refinements and more powerful techniques may further
improve the results. Still, state-of-the-art DL libraries raise the potential for improvements
in a susceptible application domain.

Keywords: automatic music transcription; deep learning.

DOI: 10.37789/ijusi.2021.14.3.1

1. Introduction
Deep learning (further referred to as DL) algorithms have been integrated into
many application domains and proved their effectiveness. This paper tackles
the problem of building the transcription of polyphonic music given as input
a music file in MIDI format (Rothstein 1992). Thus, automatic transcription
represents an ancient task that could nowadays benefit from the high potential
currently developed DL algorithms. Professional music software systems
integrate various functionalities, and usage of DL for music transcription
should be emulative simple.

The limitations of current systems are mostly related to the quality of the
MIDI transcript. It may contain many errors (i.e., wrong or missing notes)
exhibited by the best algorithms and do not correspond to human
performance. Therefore, many applications such as musical education,
validation of students' musical abilities of students or helping amateur
musicians generate musical transcripts could not be obtained by other means.

88
Dan Teodor Avramescu, Paul Stefan Popescu, Mihai Mocanu and Marian

Cristian Mihaescu

Similarly, with the natural language processing task of building a
transcript from a recorded speech, music transcription reduces to producing
a paper or digital representation of a musical continuous sound wave.

The difficulty of building precise Automatic Music Transcription (AMT)
systems comparable to human professionals derives from two reasons.
Firstly, each note is represented by a complete spectrum of harmonics with
variable intensity, which is highly sensitive to musical instruments. Secondly,
the overlapping of harmonics introduced by polyphonic (i.e., many notes that
exist simultaneously) reduces the problem of source separation. In our case,
we do not retrieve any information about the instrument, and all transcript
notes are combined on one side.

2. Related Work
The music may be represented by a continuous sound wave that represents
the music itself. The MIDI representation may be regarded as an exemplary
symbolic musical notation. Therefore, AMT is a fundamental problem in
Computer Audition (CA) and Music Information Retrieval (MIR).

The AMT concept (Piszczalski & Galler 1977) has developed starting in
1977 due to the new field of digital audio engineering, which heavily relied
on the availability of computer systems and their ability to be programmed to
analyze a music recording detects the musical notes along with rhythm
accents of percussion instruments. The AMT task explores a musical play and
prints a partiture from that play.

An approach using deep neural networks (DNN) in (Morin 2017) had the
objective to compare the performance between LSTM (Long short-term
memory artificial neural network) and simple DNNs in the task of Automatic
Music Transcription (AMT).

A model proposed in (Wu 2019) performed polyphonic transcription via a
system of support vector machine (SVM) classifiers using 87 OVA binary
note classifiers to perform classification with the advantage of simplicity.
Then, a post-processing of the Hidden Markov Model (HMM) was adopted
to smooth the results temporarily.

A recent model proposed in (Poliner 2006) used the semantic
segmentation model for transcription, which is also widely used in image

Automatic Music Transcription by Deep Learning 89

processing. This model is improved initially from DeepLabV3+1 and further
combined with U-net architecture and focal loss.

Our code is adapted from the GitHub project (BShakhovsky 2021) to run
on a different dataset. The network structure was reconfigured and a
hyperparameter tuning was performed to achieve a decent performance on
the new data.

3. Proposed System
In general terms, music is a type of sound. At least in western music – which
is exclusively used in our study – there are 12 classes of pitch (i.e., the height
of the sound), each of them being offset by a semitone or half step. Each note
is in one of these pitch classes, in a particular octave (i.e., range of
frequencies) which occurs in a specific quantity of time. A chord is defined
as two or more notes played at the same time. The task of this study is to build
the transcript for piano music, which has 88 keys from A0 to C8.

The proposed system takes input audio files (i.e., mp3, wav, etc.) and
returns corresponding MIDI files as output. In our case, the system

The MP3 is a compressed audio file, while the MIDI file has no raw (i.e.,
wave) audio data. It provides information about the components of the note,
such as pitch (height), volume (how loud or quiet it sounds), modulation (how
long it lasts), as well as other characteristics. This MIDI file can be easily
converted to a transcribed score, easily shared with other musicians for
collaboration, and edited to change notes in that performance to enhance a
composition individually.

The sound we hear playing the MIDI file is created digitally (with a
device/program). It uses its data to play a song, similar to a musician playing
by scores, while the MP3 is an audio recording. The MIDI pitch range is 0-
127, but we will only use the interval between MIDI notes 21-108,
representing A0 - C8 (standard piano pitches).

Data Preprocessing
We use a single train/validation/test division to satisfy the following criteria:

1 DeepLabV3: https://github.com/VainF/DeepLabV3Plus-Pytorch

90
Dan Teodor Avramescu, Paul Stefan Popescu, Mihai Mocanu and Marian

Cristian Mihaescu

1) No composition should appear in more than one split; 2)
Train/validation/test represents approximately 80/10/10% of the data set
(over time). These proportions should be accurate globally and also within
each composer. Maintaining these proportions is not always possible, as some
composers have few compositions in the dataset; and 3) The validation and
test splits should contain a variety of compositions. Modern compositions
performed by many performers should be placed in the training split.

However, built models differ slightly from Magenta (Music and Art
Generation with Machine Intelligence)2 ones. Magenta is a research project
exploring the role of machine learning in creating art and music. Primarily
this involves developing new deep learning and reinforcement learning
algorithms for generating songs, images, drawings, and other materials. But
it's also an exploration in building smart tools and interfaces that allow artists
and musicians to extend (not replace!) their processes using these models.
Their model is too big for available GPU, so we decided to split it into four
separate sub-models:

• Onsets - represent the time when a musical note begins.
• Offsets - represent (approximately) the length of time from the

beginning of the track.
• Actives - represent the duration of each note over time.
• Volumes - represent how loud the note sounds.

Step 1. Model Configuration
For model configuration, which is presented in Figure 1, we used the
approach from (Hawthorne et al. 2017) by using the Librosa3 library (McFee
et al. 2015) for computing the exact input data representation of mel-scaled
spectrograms with log amplitude of the input raw audio with 229
logarithmically spaced frequency bins, a hop length of 512, an FFT window
of 2048, and a sample rate of 16kHz.

Step 2. Piano Transcription and MIDI Preprocessing
The piano transcription follows a similar approach as (Hawthorne et al.

2 Magenta: https://github.com/magenta/magenta
3 Librosa, https://librosa.org/doc/latest/index.html

Automatic Music Transcription by Deep Learning 91

2018), with the difference that we switched to HTK frequency spacing
(Young, S. et al. 2006) for the Mel-frequency spectrogram input.

We first translate "sustain pedal" control changes into longer note
durations for MIDI preprocessing. If a note is active when sustain goes on,
that note will be extended until either sustain goes off or the same note is
played again. Regarding the model configuration, all onsets will span exactly
two frames. Labeling only the frame containing the exact beginning of the
onset does not work because of possible miss-alignments of the audio and
labels. We experimented with requiring a minimum amount of time a note
had to be present in a frame before it was labeled but found that the optimum
value included any presence.

Figure 1. Network Architecture

Step 3. Hyperparameter Tunning
We have set up the number of time-frames for 5 seconds at the 16 kHz sample
rate. Similar to [3], we split the training audio into smaller files. However,
when we do this splitting, we do not want to cut the audio during notes
because the onset detector would miss an onset while the frame detector
would still need to predict the note's presence.

Step 4. Training and Validation
The model's logic is based on Google's [3] approach. The parameters are the

92
Dan Teodor Avramescu, Paul Stefan Popescu, Mihai Mocanu and Marian

Cristian Mihaescu

same with the following exceptions: 1) Batch normalization is used whenever
possible (everywhere except the LSTM layer and the last fully-connected
layer); 2) Dropout is not necessary at all, as there is no sign of overfitting; 3)
It was impossible to keep the recommended batch size of 8 on our custom
implementation, so I increased it to 64; 4) The model is divided into four
.hdf5 files: Training Onsets Model, Training Offsets Model, Training Actives
Model, Training Volumes Model.

We have used Frame-Based Accuracy Metric as a validation metric, which
is stricter than F1-score. The standard accuracy is not representative, it would
be almost 50% right at the beginning, and obviously, it would increase to 99%
very quickly. The F1 score is better, but stricter accuracy is (Dixon &
Cambouropoulos 2000).

Specific Contributions in Model's Design
The onset detector is composed of the acoustic model, followed by a
bidirectional LSTM with 128 units in both the forward and backward
directions, followed by a fully connected sigmoid layer with 88 outputs
representing the probability of onset for each of the 88 piano keys. Still, the
convolutional acoustic stack is from (Kelz et al. 2016), which means a state-
of-the-art model.

In our case, there is a bidirectional LSTM layer between the last two fully-
connected layers, batch normalization is intensively used, dropout is not
necessary, and the remaining parameters are from [5] with available
implementation in GitHub4. Specifically, we increased the size of the

4

https://github.com/tensorflow/magenta/blob/master/magenta/models/onsets_frames_transcription/
model.py

Automatic Music Transcription by Deep Learning 93

bidirectional LSTM layers from 128 to 256 units, changed the number of
filters in the convolutional layers from 32/32/64 to 48/48/96, and increased
the units in the fully-connected layer from 512 to 768. In terms of the batch,
we used the size 64 for onsets, offsets, frame subnets, and 128 for CNN
(convolutional neural network or ConvNet) volumes, instead of size eight as
implemented by [3]. The batch size represents the number of samples
processed before the model is updated. The number of epochs is the number
of complete passes through the training data set. The batch size must be
greater than or equal to 1 and less than or equal to the number of samples in
the training data set.

4. Experimental Results

Dataset Description
The dataset consists of pairs (wave, midi) from the MAESTRO V1.0.0
archive, downloaded from Google Magenta 5. The dataset archive contains
1184 music performances divided into .wav and .midi files that have a total
size of 125 GB. Given the fact that the size of the files in the dataset and those
that will be created after data processing is considerable, for quick training,
we chose the MAESTRO dataset from the folder named "2015" that contains
waveforms and MIDI representations for 43 pieces of piano recorded in the
year 2015.

Numerical Accuracy Results
We have used LSTM as a recurring layer that only supports the Tensorflow
backend, and we have used Adam optimizer as a stochastic optimization
method.

The initial training and validation graphics for Onsets are presented in
Figure 2, and we can observe that the loss and accuracy reach a plateau at
around ten epochs. The model accuracy slightly goes above 0.7 while the loss
goes below 0.01, so there is no need for further training.

5 Magenta, https://magenta.tensorflow.org/datasets/maestro#download

94
Dan Teodor Avramescu, Paul Stefan Popescu, Mihai Mocanu and Marian

Cristian Mihaescu

Figure 2. Training and validation for Onsets

We have added an offset detection head regarding the offsets for the RNN
subnetwork. The offset head feeds into the frame detector but is not directly
used during decoding. The offset labels are defined to be the 32ms following
the end of each note.

Figure 3 presents the training and validation for offsets; in this case, the
head of the offset fuels the frame detector, but it is not directly used while
decoding. The offset tags are, in this case, the last 32 ms from the end of every
note.

Automatic Music Transcription by Deep Learning 95

Figure 3. Training and validation for Offsets

Figure 4 presents the training for the activation detector, which is
composed of a conventional CNN acoustic model with a sigmoid layer on top
of it connected to 88 different outputs. We also used ten epochs for training
until we reached a plateau.

Figure 5 presents the training and validation for volumes, and in this case,
we considered going further than ten epochs as before have we reached a
plateau around 17 epochs but still trained a total of 20 epochs.

96
Dan Teodor Avramescu, Paul Stefan Popescu, Mihai Mocanu and Marian

Cristian Mihaescu

Figure 4. Training and validation for Actives

The frame activation detector comprises a separate acoustic model,
followed by a fully connected sigmoid layer with 88 outputs. Its output is
concatenated with the result of the onset detector and followed by a
bidirectional LSTM with 128 units in both the forward and backward
directions. Finally, the output of that LSTM is followed by a fully connected
sigmoid layer with 88 outputs. During inference, we use a threshold of 0.5 to
determine whether the onset detector or frame detector is active.

Automatic Music Transcription by Deep Learning 97

Figure 5. Training and validation for Volumes

The loss function is the sum of two cross-entropy losses: one from the
onset side and one from the note side.

Ltotal=Lonset +Lframe
We decided to stop gradient propagation into the onset subnetwork from

the frame network. We further extend the model by adding another stack to
predict velocities for each onset. This stack is like the others and consists of
the same layers of convolutions. This stack does not connect to the other two.
The velocity labels are generated by dividing all the velocities by the
maximum speed present in the piece. The lowest rate does not go to zero but
rather to Vmin/Vmax. The stack is trained with the following loss averaged
across a batch:

98
Dan Teodor Avramescu, Paul Stefan Popescu, Mihai Mocanu and Marian

Cristian Mihaescu

 At inference time, the output is clipped to [0,1] and then transformed to a
midi velocity by the following mapping:

vmidi=80⋅vpredicted+10
Firstly, we resize all ground-truth velocities in a transcript in the range [0,

1]. After notes are matched according to their pitch and onset/offset timing,
we assemble pairs of the reference (ground-truth) and estimated velocities for
compared notes, referred to as Vr and Ve, respectively. We then perform a
linear regression to estimate a global scale and offset parameter such that the
squared difference between pairs of reference and estimated velocities is
minimized:

Where M is the number of matches (i.e. number of entries in Vr and Ve).

These scalar parameters are used to rescale the entries of Ve to obtain

Finally, a match i is now only considered correct if, in addition to having

its pitch and timing match, it satisfies Vi-Vri < τ for some threshold. We used
τ=0.1 in all of our evaluations. The precision, recall, and F1 scores are then
recomputed based on this new filtered list of matches.

Computing the total precision, recall, and F1 score has been done by using
the mir eval library.

We compute two versions of the metrics: one that requires that onsets to
be ± 50 ms from ground truth but ignoring the offsets, and one that requires
that balances to be obtained as the duration of notes that are 20% off ground
truth or 50 ms, whichever is greater.

Both scores of frames and notes are determined by play, and the average
value of scores is presented as a final metric for a collection of plays.

The transcripts of poor quality may also lead to high frame scores due to
false and repeated notes that should be in a continuous message. For the
human ear, the decrease in transcription quality is best emphasized by the
note-with-offsets scores.

Automatic Music Transcription by Deep Learning 99

a)

b)

Figure 6. Transcription example for "Abegg Variations, Op. 1 (Robert Schumann)" from
the MAESTRO dataset.

In Figure 6, we present the transcription example for recording "Abegg
Variations, Op. 1 (Robert Schumann)" from the MAESTRO dataset. The a)
part present the post-processed output of the transcription-prediction system
and b) presents the pitch ground truth of the recording.

Conclusions
This work focuses on the A2M (Audio to Midi) task, a hardly explored
formulation consisting of building the MIDI representation from an audio
file. The output sequence format is intended to be further processed by a
computer.

We applied two deep learning methods: LSTM and CNN (a separate
network) for music transcription. In general, the prediction accuracy is very
promising given that the used data set is small and the neural network is not
very deep. The trained model gives exact transcriptions for the piano sounds
because the model was trained on a dataset that contains only piano
compositions. But there are noticeable false-positive notes in high octaves
where they surely should not be.

100
Dan Teodor Avramescu, Paul Stefan Popescu, Mihai Mocanu and Marian

Cristian Mihaescu

It also manages to transcribe audio files containing the sounds of many
musical instruments and the piano, but the accuracy is lower. To further
increase the accuracy of our music transcription, the neural networks could
be trained on a larger dataset, including more complex music pieces such as
orchestras.

References
BShakhovsky Polyphonic Piano Transcription: Recurrent Neural Network for generating

piano MIDI-files from audio (MP3, WAV, etc.). (2021, May) Available:
(https://github.com/BShakhovsky/PolyphonicPianoTranscription)

Dixon, S., & Cambouropoulos, E. (2000, August). Beat tracking with musical knowledge. In
ECAI (pp. 626-630).

D. G. Morin (2017), Deep neural networks for piano music transcription. Available:
https://github.com/diegomorin8/Deep-Neural-Networks-for- Piano-Music-
Transcription.)

Poliner, G. E., & Ellis, D. P. (2006). A discriminative model for a polyphonic piano
transcription. EURASIP Journal on Advances in Signal Processing, 2007, 1-9.

Kelz, R., Dorfer, M., Korzeniowski, F., Böck, S., Arzt, A., & Widmer, G. (2016). On the
potential of simple framewise approaches to piano transcription. arXiv preprint
arXiv:1612.05153.

McFee, B., Raffel, C., Liang, D., Ellis, D. P., McVicar, M., Battenberg, E., & Nieto, O.
(2015, July). librosa: Audio and music signal analysis in python. In Proceedings of the
14th python in science conference (Vol. 8, pp. 18-25).

Hawthorne, C., Elsen, E., Song, J., Roberts, A., Simon, I., Raffel, C., ... & Eck, D. (2017).
Onsets and frames: Dual-objective piano transcription. arXiv preprint arXiv:1710.11153.

Hawthorne, C., Stasyuk, A., Roberts, A., Simon, I., Huang, C. Z. A., Dieleman, S., ... & Eck,
D. (2018). Enabling factorized piano music modeling and generation with the MAESTRO
dataset. arXiv preprint arXiv:1810.12247.

Piszczalski, M., & Galler, B. A. (1977). Automatic music transcription. Computer Music
Journal, 24-31.

Rothstein, J. (1992). MIDI: A comprehensive introduction (Vol. 7). AR Editions, Inc.

Young, S. (2006) et al., the HTK Book V3. 4 Cambridge University Press. Cambridge UK.

Wu, Y. T., Chen, B., & Su, L. (2019, May). Polyphonic music transcription with semantic
segmentation. In ICASSP 2019-2019 IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP) (pp. 166-170). IEEE.

