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Abstract. Automatic music transcription represents a specific translation task that falls into 
information processing, where input information is sound. Similar, but more general, are 
building text transcripts from speech. We propose a data analysis pipeline that follows the 
roadmap of previous works but uses a distinct dataset and several custom hyperparameter 
settings. The results are not as good as previous ones as the implementation runs on 
commodity systems, and therefore refinements and more powerful techniques may further 
improve the results. Still, state-of-the-art DL libraries raise the potential for improvements 
in a susceptible application domain. 
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1. Introduction 
Deep learning (further referred to as DL) algorithms have been integrated into 
many application domains and proved their effectiveness. This paper tackles 
the problem of building the transcription of polyphonic music given as input 
a music file in MIDI format (Rothstein 1992). Thus, automatic transcription 
represents an ancient task that could nowadays benefit from the high potential 
currently developed DL algorithms. Professional music software systems 
integrate various functionalities, and usage of DL for music transcription 
should be emulative simple. 

The limitations of current systems are mostly related to the quality of the 
MIDI transcript. It may contain many errors (i.e., wrong or missing notes) 
exhibited by the best algorithms and do not correspond to human 
performance. Therefore, many applications such as musical education, 
validation of students' musical abilities of students or helping amateur 
musicians generate musical transcripts could not be obtained by other means. 
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Similarly, with the natural language processing task of building a 
transcript from a recorded speech, music transcription reduces to producing 
a paper or digital representation of a musical continuous sound wave.   

The difficulty of building precise Automatic Music Transcription (AMT) 
systems comparable to human professionals derives from two reasons. 
Firstly, each note is represented by a complete spectrum of harmonics with 
variable intensity, which is highly sensitive to musical instruments. Secondly, 
the overlapping of harmonics introduced by polyphonic (i.e., many notes that 
exist simultaneously) reduces the problem of source separation. In our case, 
we do not retrieve any information about the instrument, and all transcript 
notes are combined on one side. 

2. Related Work  
The music may be represented by a continuous sound wave that represents 
the music itself. The MIDI representation may be regarded as an exemplary 
symbolic musical notation. Therefore, AMT is a fundamental problem in 
Computer Audition (CA) and Music Information Retrieval (MIR). 

The AMT concept (Piszczalski & Galler 1977) has developed starting in 
1977 due to the new field of digital audio engineering, which heavily relied 
on the availability of computer systems and their ability to be programmed to 
analyze a music recording detects the musical notes along with rhythm 
accents of percussion instruments. The AMT task explores a musical play and 
prints a partiture from that play.     

An approach using deep neural networks (DNN) in (Morin 2017) had the 
objective to compare the performance between LSTM (Long short-term 
memory artificial neural network) and simple DNNs in the task of Automatic 
Music Transcription (AMT). 

A model proposed in (Wu 2019) performed polyphonic transcription via a 
system of support vector machine (SVM) classifiers using 87 OVA binary 
note classifiers to perform classification with the advantage of simplicity. 
Then, a post-processing of the Hidden Markov Model (HMM) was adopted 
to smooth the results temporarily. 

A recent model proposed in (Poliner 2006) used the semantic 
segmentation model for transcription, which is also widely used in image 
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processing. This model is improved initially from DeepLabV3+1 and further 
combined with U-net architecture and focal loss. 

Our code is adapted from the GitHub project (BShakhovsky 2021) to run 
on a different dataset. The network structure was reconfigured and a 
hyperparameter tuning was performed to achieve a decent performance on 
the new data. 

3. Proposed System 
In general terms, music is a type of sound. At least in western music – which 
is exclusively used in our study – there are 12 classes of pitch (i.e., the height 
of the sound), each of them being offset by a semitone or half step. Each note 
is in one of these pitch classes, in a particular octave (i.e., range of 
frequencies) which occurs in a specific quantity of time. A chord is defined 
as two or more notes played at the same time. The task of this study is to build 
the transcript for piano music, which has 88 keys from A0 to C8. 

The proposed system takes input audio files (i.e., mp3, wav, etc.) and 
returns corresponding MIDI files as output. In our case, the system 

The MP3 is a compressed audio file, while the MIDI file has no raw (i.e., 
wave) audio data. It provides information about the components of the note, 
such as pitch (height), volume (how loud or quiet it sounds), modulation (how 
long it lasts), as well as other characteristics. This MIDI file can be easily 
converted to a transcribed score, easily shared with other musicians for 
collaboration, and edited to change notes in that performance to enhance a 
composition individually. 

The sound we hear playing the MIDI file is created digitally (with a 
device/program). It uses its data to play a song, similar to a musician playing 
by scores, while the MP3 is an audio recording. The MIDI pitch range is 0-
127, but we will only use the interval between MIDI notes 21-108, 
representing A0 - C8 (standard piano pitches). 

Data Preprocessing 
We use a single train/validation/test division to satisfy the following criteria: 

 
 
1 DeepLabV3: https://github.com/VainF/DeepLabV3Plus-Pytorch  
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1) No composition should appear in more than one split; 2) 
Train/validation/test represents approximately 80/10/10% of the data set 
(over time). These proportions should be accurate globally and also within 
each composer. Maintaining these proportions is not always possible, as some 
composers have few compositions in the dataset; and 3) The validation and 
test splits should contain a variety of compositions. Modern compositions 
performed by many performers should be placed in the training split. 

However, built models differ slightly from Magenta (Music and Art 
Generation with Machine Intelligence)2 ones. Magenta is a research project 
exploring the role of machine learning in creating art and music. Primarily 
this involves developing new deep learning and reinforcement learning 
algorithms for generating songs, images, drawings, and other materials. But 
it's also an exploration in building smart tools and interfaces that allow artists 
and musicians to extend (not replace!) their processes using these models. 
Their model is too big for available GPU, so we decided to split it into four 
separate sub-models: 

• Onsets - represent the time when a musical note begins. 
• Offsets - represent (approximately) the length of time from the 

beginning of the track. 
• Actives - represent the duration of each note over time. 
• Volumes - represent how loud the note sounds. 

Step 1. Model Configuration 
For model configuration, which is presented in Figure 1, we used the 
approach from (Hawthorne et al. 2017) by using the Librosa3 library (McFee 
et al. 2015) for computing the exact input data representation of mel-scaled 
spectrograms with log amplitude of the input raw audio with 229 
logarithmically spaced frequency bins, a hop length of 512, an FFT window 
of 2048, and a sample rate of 16kHz. 

Step 2. Piano Transcription and MIDI Preprocessing 
The piano transcription follows a similar approach as (Hawthorne et al. 

 
 
2 Magenta: https://github.com/magenta/magenta  
3 Librosa, https://librosa.org/doc/latest/index.html 
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2018), with the difference that we switched to HTK frequency spacing 
(Young, S. et al. 2006) for the Mel-frequency spectrogram input. 

We first translate "sustain pedal" control changes into longer note 
durations for MIDI preprocessing. If a note is active when sustain goes on, 
that note will be extended until either sustain goes off or the same note is 
played again. Regarding the model configuration, all onsets will span exactly 
two frames. Labeling only the frame containing the exact beginning of the 
onset does not work because of possible miss-alignments of the audio and 
labels. We experimented with requiring a minimum amount of time a note 
had to be present in a frame before it was labeled but found that the optimum 
value included any presence. 

 
Figure 1. Network Architecture 

Step 3. Hyperparameter Tunning 
We have set up the number of time-frames for 5 seconds at the 16 kHz sample 
rate. Similar to [3], we split the training audio into smaller files. However, 
when we do this splitting, we do not want to cut the audio during notes 
because the onset detector would miss an onset while the frame detector 
would still need to predict the note's presence. 

Step 4. Training and Validation 
The model's logic is based on Google's [3] approach. The parameters are the 
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same with the following exceptions: 1) Batch normalization is used whenever 
possible (everywhere except the LSTM layer and the last fully-connected 
layer); 2) Dropout is not necessary at all, as there is no sign of overfitting; 3) 
It was impossible to keep the recommended batch size of 8 on our custom 
implementation, so I increased it to 64; 4) The model is divided into four 
.hdf5 files: Training Onsets Model, Training Offsets Model, Training Actives 
Model, Training Volumes Model. 

We have used Frame-Based Accuracy Metric as a validation metric, which 
is stricter than F1-score. The standard accuracy is not representative, it would 
be almost 50% right at the beginning, and obviously, it would increase to 99% 
very quickly. The F1 score is better, but stricter accuracy is (Dixon & 
Cambouropoulos  2000). 

 

Specific Contributions in Model's Design 
The onset detector is composed of the acoustic model, followed by a 
bidirectional LSTM with 128 units in both the forward and backward 
directions, followed by a fully connected sigmoid layer with 88 outputs 
representing the probability of onset for each of the 88 piano keys. Still, the 
convolutional acoustic stack is from (Kelz et al. 2016), which means a state-
of-the-art model. 

In our case, there is a bidirectional LSTM layer between the last two fully-
connected layers, batch normalization is intensively used, dropout is not 
necessary, and the remaining parameters are from [5] with available 
implementation in GitHub4. Specifically, we increased the size of the 

 
 
4 

https://github.com/tensorflow/magenta/blob/master/magenta/models/onsets_frames_transcription/
model.py 
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bidirectional LSTM layers from 128 to 256 units, changed the number of 
filters in the convolutional layers from 32/32/64 to 48/48/96, and increased 
the units in the fully-connected layer from 512 to 768. In terms of the batch, 
we used the size 64 for onsets, offsets, frame subnets, and 128 for CNN 
(convolutional neural network or ConvNet) volumes, instead of size eight as 
implemented by [3]. The batch size represents the number of samples 
processed before the model is updated. The number of epochs is the number 
of complete passes through the training data set. The batch size must be 
greater than or equal to 1 and less than or equal to the number of samples in 
the training data set. 

4. Experimental Results 

Dataset Description 
The dataset consists of pairs (wave, midi) from the MAESTRO V1.0.0 
archive, downloaded from Google Magenta 5. The dataset archive contains 
1184 music performances divided into .wav and .midi files that have a total 
size of 125 GB. Given the fact that the size of the files in the dataset and those 
that will be created after data processing is considerable, for quick training, 
we chose the MAESTRO dataset from the folder named "2015" that contains 
waveforms and MIDI representations for 43 pieces of piano recorded in the 
year 2015. 

Numerical Accuracy Results 
We have used LSTM as a recurring layer that only supports the Tensorflow 
backend, and we have used Adam optimizer as a stochastic optimization 
method. 

The initial training and validation graphics for Onsets are presented in 
Figure 2, and we can observe that the loss and accuracy reach a plateau at 
around ten epochs. The model accuracy slightly goes above 0.7 while the loss 
goes below 0.01, so there is no need for further training. 

 
 
 
5 Magenta, https://magenta.tensorflow.org/datasets/maestro#download 
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Figure 2. Training and validation for Onsets 

We have added an offset detection head regarding the offsets for the RNN 
subnetwork. The offset head feeds into the frame detector but is not directly 
used during decoding. The offset labels are defined to be the 32ms following 
the end of each note. 

Figure 3 presents the training and validation for offsets; in this case, the 
head of the offset fuels the frame detector, but it is not directly used while 
decoding. The offset tags are, in this case, the last 32 ms from the end of every 
note. 
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Figure 3. Training and validation for Offsets 

Figure 4 presents the training for the activation detector, which is 
composed of a conventional CNN acoustic model with a sigmoid layer on top 
of it connected to 88 different outputs. We also used ten epochs for training 
until we reached a plateau. 

Figure 5 presents the training and validation for volumes, and in this case, 
we considered going further than ten epochs as before have we reached a 
plateau around 17 epochs but still trained a total of 20 epochs. 
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Figure 4. Training and validation for Actives 

The frame activation detector comprises a separate acoustic model, 
followed by a fully connected sigmoid layer with 88 outputs. Its output is 
concatenated with the result of the onset detector and followed by a 
bidirectional LSTM with 128 units in both the forward and backward 
directions. Finally, the output of that LSTM is followed by a fully connected 
sigmoid layer with 88 outputs. During inference, we use a threshold of 0.5 to 
determine whether the onset detector or frame detector is active. 
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Figure 5. Training and validation for Volumes 

The loss function is the sum of two cross-entropy losses: one from the 
onset side and one from the note side. 

Ltotal=Lonset +Lframe 
We decided to stop gradient propagation into the onset subnetwork from 

the frame network. We further extend the model by adding another stack to 
predict velocities for each onset. This stack is like the others and consists of 
the same layers of convolutions. This stack does not connect to the other two. 
The velocity labels are generated by dividing all the velocities by the 
maximum speed present in the piece. The lowest rate does not go to zero but 
rather to Vmin/Vmax. The stack is trained with the following loss averaged 
across a batch: 
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 At inference time, the output is clipped to [0,1] and then transformed to a 
midi velocity by the following mapping: 

vmidi=80⋅vpredicted+10 
Firstly, we resize all ground-truth velocities in a transcript in the range [0, 

1]. After notes are matched according to their pitch and onset/offset timing, 
we assemble pairs of the reference (ground-truth) and estimated velocities for 
compared notes, referred to as Vr and Ve, respectively. We then perform a 
linear regression to estimate a global scale and offset parameter such that the 
squared difference between pairs of reference and estimated velocities is 
minimized: 

 
Where M is the number of matches (i.e. number of entries in Vr and Ve). 

These scalar parameters are used to rescale the entries of Ve to obtain 

 
Finally, a match i is now only considered correct if, in addition to having 

its pitch and timing match, it satisfies Vi-Vri < τ  for some threshold. We used 
τ=0.1 in all of our evaluations. The precision, recall, and F1 scores are then 
recomputed based on this new filtered list of matches. 

Computing the total precision, recall, and F1 score has been done by using 
the mir eval library. 

We compute two versions of the metrics: one that requires that onsets to 
be ± 50 ms from ground truth but ignoring the offsets, and one that requires 
that balances to be obtained as the duration of notes that are 20% off ground 
truth or 50 ms, whichever is greater. 

Both scores of frames and notes are determined by play, and the average 
value of scores is presented as a final metric for a collection of plays. 

The transcripts of poor quality may also lead to high frame scores due to 
false and repeated notes that should be in a continuous message. For the 
human ear, the decrease in transcription quality is best emphasized by the 
note-with-offsets scores. 
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a) 

 
b) 

Figure 6. Transcription example for "Abegg Variations, Op. 1 (Robert Schumann)" from 
the MAESTRO dataset.  

In Figure 6, we present the transcription example for recording "Abegg 
Variations, Op. 1 (Robert Schumann)" from the MAESTRO dataset. The a) 
part present the post-processed output of the transcription-prediction system 
and b) presents the pitch ground truth of the recording. 

Conclusions 
This work focuses on the A2M (Audio to Midi) task, a hardly explored 
formulation consisting of building the MIDI representation from an audio 
file. The output sequence format is intended to be further processed by a 
computer.  

We applied two deep learning methods: LSTM and CNN (a separate 
network) for music transcription. In general, the prediction accuracy is very 
promising given that the used data set is small and the neural network is not 
very deep. The trained model gives exact transcriptions for the piano sounds 
because the model was trained on a dataset that contains only piano 
compositions. But there are noticeable false-positive notes in high octaves 
where they surely should not be. 
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It also manages to transcribe audio files containing the sounds of many 
musical instruments and the piano, but the accuracy is lower. To further 
increase the accuracy of our music transcription, the neural networks could 
be trained on a larger dataset, including more complex music pieces such as 
orchestras. 
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