
International Journal of User-System Interaction 14(4) 2021, 131-147           ©  MatrixRom 

Artificial Intelligence technologies for enhancing 
real estate apps 

Filip Mănișor1, Mihai Mașală1, Eduard Cojocea1,  
Traian Rebedea1,2 
1 IMOPEDIA SRL, 52 Ion Băiulescu Street, Bucharest, Romania 
2 University Politehnica of Bucharest, Faculty of Automatic Control and Computers, 313 
Splaiul Independentei, Bucharest, Romania 
E-mail: filip.manisor@gmail.com, mihaimasala@gmail.com, iedi.cojocea@gmail.com, 
traian.rebedea@upb.ro 

Abstract. Given the large amounts of data available in real estate applications and also 
influenced by the recent uptake of Artificial Intelligence (AI) in various domains, real estate 
apps are also exploring how AI can be used to improve user experience and provide better 
functionality for buyers, sellers, and real estate agents. We provide an overview of using 
various machine learning technologies for several tasks relevant to real estate apps. The 
experiments were performed using data from IMOPEDIA, one of the leading real estate 
portals in Romania, and the developed technologies are currently being integrated into the 
IMOPEDIA app. Thus, we analyze the performance of machine learning models for price 
prediction and detection of duplicate listings, together with some insights about the 
explainability of these models. We also show how to visit and click logs can be used to 
recommend properties similar to the preferences of a user and also to improve search by 
providing a personalized search.  

Keywords: machine learning, real estate apps, price prediction, duplicate detection, page 
recommendations 

DOI: 10.37789/ijusi.2021.14.4.2 

1. Introduction 
Artificial Intelligence (AI) has seen wide adoption in recent years in many 
domains, ranging from agriculture to medicine, including various domains 
such as finance, education, oil and mining, manufacturing, and public 
administration (Zhang et al., 2022). The main powerhouse of the recent 
uptake of AI has been the development of more powerful Machine Learning 
(ML) methods, usually powered by large amounts of data and by the rise of 
deep neural networks. In this respect, most domains that have access to large 



132 Filip Mănișor, Mihai Mașală, Eduard Cojocea, Traian Rebedea 

 

amounts of data have started to incorporate ML and AI methods to improve 
their products.  

To this aspect, it should be no surprise that many real estate and proptech 
applications (web, mobile, or portal) worldwide have sought to use ML 
algorithms to improve the features they provide to their users: sellers, buyers, 
or real estate agents. Among these, Zillow1, the largest real estate website in 
the United States by the number of visitors, is probably the most dedicated 
app to using ML, AI, and other data analytics. It offers price prediction for 
real estate listings using ML models, but also launched a new feature in 2021, 
called Zillow Offers, that made buying offers automatic to some sellers. 
Zillow Offers also employed another ML-predicted estimate for the price that 
would be accepted by a seller to close a deal. 

In this paper, we tackle similar problems but are using Romanian real 
estate apps from various sources, including IMOPEDIA2, one of the largest 
real estate apps in Romania. Thus, we propose solutions using Machine 
Learning algorithms for three very relevant tasks for real estate apps: price 
prediction, duplicate listing detection, and page/listing recommendations for 
a visitor. For all three tasks, our ML models achieve very good results that 
make them ready to be deployed in production and tested with real users in 
the following months.     

The research presented in this paper is part of the project “IMOPEDIA – 
Innovative system using Artificial Intelligence for Real Estate Apps” (in 
Romanian, “IMOPEDIA - Sisteme innovative de Inteligencia Artificial, co-
funded by the European Regional Development Fund, Competitiveness 
Operational Programme, SMIS 129132, POC/524/2/2, action 2.2.1, call nr. 2. 

2. Related work 

2.1 Price prediction 
Price prediction is one of the fundamental tasks in the real estate market. Most 
often the prediction of the sale price for a property is done by experts, using 
their past knowledge and comparative market analysis. However, several 

 
 
1 Zillow, https://www.zillow.com/, last accessed 15th July 2022 
2 IMOPEDIA.ro, https://www.zillow.com/, last accessed 15th July 2022  



Artificial Intelligence technologies for enhancing real estate apps      133 

 

automated methods have been proposed for handling this task, if not as a 
replacement, at least as an assistant for the experts. 

An essential step for automated predictions is preprocessing the data. 
Special care has to be given to missing values, which occur frequently in real-
life datasets. Jadhav, Pramod & Ramanathan (2019) discuss the different 
techniques for single imputation of missing data. Replacing it with the mean 
value is easiest, however, regression imputation helps maintain the 
distribution of the data. Feature selection can improve the speed and 
performance of the prediction and can avoid overfitting. Mutual information 
is one of the main techniques for this, as discussed by Zhang et al. (2017). Lu 
et al. (2017) use feature engineering to add new features and perform feature 
selection using the Lasso algorithm. Landberg (2016) studies the effect 
different features can have on the price of properties in the Swedish market, 
directly or indirectly. Usman, Lizam & Adekunle (2020) study the effect of 
splitting the housing market into more homogeneous submarkets on the price 
prediction.  

Many different Machine Learning approaches have been proposed for 
price prediction. Abdulal & Aghi (2020) compare regression models Lasso, 
Ridge, and Random Forest with the performance of Artificial Neural 
Networks (ANN). Shinde & Gawande (2018) use several scoring methods to 
compare the performance of Logistic Regression, Support Vector Machines 
(SVM), Lasso, and Random Forest. They conclude that Random Forest 
produces the least errors. Ja’afar, Mohamad & Ismail (2021) also point to 
Random Forest as the best option for prediction, followed by Gradient 
Boosting and SVM, based on a literature review. 

Sarip, Hafez & Daud (2016) propose two fuzzy-based models for the task, 
of which a fuzzy least-squares model produces good results even on a very 
small dataset. Zurada, Levitan & Guan (2006) compare several non-
conventional algorithms (fuzzy logic, ANN, Memory-based Reasoning) to 
Multiple Regression Analysis. They conclude that the classic regression 
approach produces the best results. 

2.2 Duplicate detection 
Duplicate detection is a fundamental task in the real estate domain as there is 
a direct negative correlation between the number of duplicate listings on a 
website and customer satisfaction. One of the most common reasons for user 
irritation is finding multiple listings (with slightly different details, with 



134 Filip Mănișor, Mihai Mașală, Eduard Cojocea, Traian Rebedea 

 

different prices) for the same real-estate property. While real-estate duplicate 
detection is a heavily understudied field, general methods for finding 
duplicate or near-duplicate web pages have been widely studied. Henzinger 
(2006) studies classical algorithms based on string hashing for detecting near-
duplicate web pages. Similarly, Theobald et al. (2008) introduce another 
purely textual matching algorithm for detecting near-duplicate web pages. 
Yandrapally et al. (2020) perform an extensive study of multiple near-
duplicate detection algorithms for web crawling. Their findings suggest that 
no near-duplicate algorithm is particularly suited for the task at hand and that 
application-specific knowledge greatly improves the performance of the 
considered algorithms. In this work, we devise a specialized duplicate 
detection algorithm for the real estate domain that integrates expert-level real 
estate knowledge. 

2.3 Page recommendations 
The task regarding page recommendations is referring to models which are 
able to recommend pages that are a good match for a user and to be able to 
sort the results of a query search such that the most relevant pages for a user 
are listed at the top. 

Recommender systems are a vital part of any web platform, regardless of 
the platform’s profile and focus. Being able to serve the most relevant content 
for a specific user is achieved via many possible solutions. 

Covington et al. (2016) propose a solution for YouTube consisting of a 
neural network for candidate generation and one for ranking. The first 
network is able to extract from a large number of videos a few hundred videos 
which are considered generally of interest for a user. The second network is 
used to present to the user to top few best videos based on the results of the 
first network. 

Fu et al. (2015) present a solution for ranking real estate from a mixed land 
use viewpoint, where geographical, community, neighborhood features, and 
other urban functions are taken into consideration. 

Gharahighehi et al. (2021) surveyed available solutions for implementing 
recommender systems for real estate, underlining the inherent difficulty of 
doing so due to the many domain-specific limitations in comparison to other 
web platforms such as video platforms, newspapers, or social media. 



Artificial Intelligence technologies for enhancing real estate apps      135 

 

3. Proposed methods 

3.1 Price prediction 
The price prediction was done using Machine Learning algorithms, which 
depend in large part on the quality of the input data. Thus, the preprocessing 
and feature operation steps were done before the actual prediction. 

The initial dataset used for price prediction was composed of a bit over 
100,000 listings of properties with verified sale prices by experts, obtained 
from the MLS (Multiple Listings Service) - FlexMLS3 and it contained data 
regarding properties in Bucharest and Constanta. After the preprocessing 
step, a subset of 11967 data points was extracted from the initial set. These 
final listings were all associated with properties that were sold between 2015 
and 2020 and contained information regarding both the properties and the 
sale. 

3.1.1 Preprocessing 

Missing data 
Much of the input data was incomplete, either because some features did not 
apply to certain instances or because they were not mandatory. Several of the 
more common methods for handling missing data were tested, from using the 
mean value to using the k-Nearest Neighbors (k-NN) algorithm to estimate 
missing values using the values of the closest k neighbors of the instance. A 
custom method was also designed, which used domain knowledge to deal 
with missing data in most of the features, setting their default values. In the 
cases where a default value did not make sense, the k-NN algorithm was used. 

Data transformation 
All features were transformed into a numerical format before running the 
prediction algorithms. Boolean labels were transformed into binary data, 
while categorical features were transformed using One Hot Encoding. 

For features where the number of possible labels was considered too large, 
a particular case of One Hot Encoding was used. The most frequent labels 
were transformed into new binary features, while the rest of the labels were 

 
 
3 FlexMLS in Romania, https://www.mls.ro/, last accessed on 15th July 2022 



136 Filip Mănișor, Mihai Mașală, Eduard Cojocea, Traian Rebedea 

 

all grouped into separate binary features. 
For date features, each date was assigned a number, representing the 

interval it is part of, starting from the oldest date in the dataset. Three-month 
intervals were chosen to better represent the seasonality of the data. Four new 
hot encoding features which represent the four quarters of the year were also 
added to model the potential seasonality of the data. 
Outliers 
Most outliers were due to human-entry mistakes in the input data and they 
degraded the performance of the prediction algorithms. For each feature, all 
the possible values in the input data were considered and outlier values were 
detected using the Inter Quartile Range method and a large factor, so as to 
only flag obviously incorrect values. The instances which had outliers were 
removed from the dataset, leading to 0.5% of total instances being removed.  

3.1.2 Feature operations 
Feature selection and adding new features were done in order to obtain more 
powerful predictive models. 

New features 
The input data were augmented with new features extracted from other 
sources, in order to add information for the prediction algorithm. 

One set of new features was formed by the distance between each property 
and the main points of interest in the city. The points of interest included 
airports, rail stations, and the cardinal points of the city. 

Then properties were assigned to cells on a map and OpenStreetMap 
(OSM) was used to calculate new features per cell. Points of interest provided 
by OSM were grouped into several relevant categories (such as food, culture, 
and lower or higher education) and their counts were used as new features. 
Two other new features were constructed using OSM: the house percentage 
and the average floor for each area. A new cluster feature was also added by 
grouping similar cells into clusters. 

Feature selection 
Some of the features were not relevant to the price prediction or were heavily 
correlated with other features, so they did not provide any benefit.  

The most important features were selected using the Recursive Feature 
Elimination (RFE) algorithm, which produces the N most important features. 



Artificial Intelligence technologies for enhancing real estate apps      137 

 

For the estimator model, a Decision Tree regression algorithm was used. 

3.1.3 Prediction 
A series of algorithms were tested for the prediction task. Elastic Net (EN) 
was used to obtain a baseline for the results of the more complex models. The 
rest of the models were chosen based on the state-of-the-art literature review 
and domain knowledge. 

The chosen algorithms were Support Vector Regressor, K-Nearest 
Neighbors, AdaBoost, Gradient Boosting, and Random Forest. The 
prediction results for these algorithms can be seen in Section 4.1. 

3.2 Duplicate detection 
The duplicate detection module’s role is to automatically decide if two entries 
represent the same property. We resort to Machine Learning algorithms to 
solve the task at hand, with the final version of the module based on Random 
Forests. Therefore, handling and preprocessing the data into the appropriate 
format is essential. This process is deeply intertwined with the data analysis 
step as not all the data features are relevant to the task at hand. As we had no 
specific data for duplicate detection, the next step was building a simple 
graphical interface for annotating duplicate entries. Having built a corpus of 
duplicate entries, we trained ML models for detecting duplicate entities. 

3.2.1 Data preprocessing and analysis 
We start with a corpus of real estate listings from the IMOPEDIA app, 
containing a total of 54.564 listings with 118 different features for each entry.  

The first step was selecting the relevant features for the duplicate detection 
task out of the 118 features present in the corpus. Using the expertise of 
professional real estate agents and data analysis techniques we managed to 
narrow the relevant features down to 18. These features include the year in 
which the building was built, the text of the listing, the number of bathrooms, 
the number of rooms, the location, the asking price or the type of property (a 
house or an apartment), or the total area. 

3.2.2 Data annotation 
After removing perfect matches (based on the 18 features) we were left 

with a corpus of 54.138 real-estate listings. We want our models to be able to 



138 Filip Mănișor, Mihai Mașală, Eduard Cojocea, Traian Rebedea 

 

distinguish between two properties that are similar (i.e., in a similar location, 
with a similar total area) but still different. For example, we don’t want to 
annotate a pair of listings that represent properties in different cities, or a one-
bedroom apartment with an apartment with 4 bedrooms, as they clearly 
represent different properties.  

To alleviate this issue, we build an intermediate corpus that contains 
possible duplicates. We aim to select pairs of listings that are similar, listings 
that are considered candidates to represent the same property. To build this 
corpus we devise a set of rules based on each feature that is successively 
applied to decide if two listings are possibly duplicates. Some of the rules are 
meant to check the county in which the property is situated, the number of 
rooms, or the asking price. While for some features we require an exact match 
such as the number of rooms in the county, for other features we look for a 
more relaxed condition: for the precise location of the property, we require 
that there is a difference of less than 1000m, for the price we settle for a 
difference of less than 10%, while for the year in which the building was built 
a difference of under 2 years is still considered a match. The process of 
developing the rules and their parameters was intertwined with a data analysis 
process and input from real estate experts.  

The next step was to run the rules on all pairs of listings. To ease the 
computational resources needed to build the corpus we resort to a process of 
binning. We apply successive binning based on the following features: 
county, type of property, number of rooms, number of baths, and floor. 
Finally, we apply the previously mentioned rules to each bin. 

Out of the total 20.473 pairs of possible duplicates, around 80% contain 
differences in the text of the listings, 73% contain differences in the asking 
price, 55% contain differences in the surface and only 30% contain 
differences in the building year.  

We developed a simple graphical interface to ease this process. Our goal 
was to make this process as easy as possible for the human annotator and as 
such our interface is made up of three main visual components: a central 
interface built for handling input from the annotator and large parallel 
components in which we display the page of each listing in a pair. The human 
annotator, when faced with a pair of listings has three labeling options: both 
listings refer to the same property so they (the listings) are duplicates, or the 
listings refer to different properties in which case they should be labeled as 
different. Finally, if not enough information is available to make an informed 



Artificial Intelligence technologies for enhancing real estate apps      139 

 

decision, we provide an additional label in the form of “inconclusive”. 
In the first step, we annotate a total of 600 pairs. As we analyzed the data, 

we found that based on the number of differences we need to focus on 
categories one, two, three, and four differences. The other categories contain 
straightforward cases: for 0 differences we can safely label all pairs as 
duplicates and for five or more differences we can safely say they are not 
duplicates. In all further experiments, we will use data from categories one, 
two, three, and four. Finally, this leaves us with a corpus of 300 annotated 
pairs with 157 duplicates, 52 inconclusive, and 91 different pairs.  

3.2.3 Detecting duplicates 
After we built the corpus, we turn our attention to training and evaluating 
models for duplicate detection. In all our experiments we will use a 10-fold 
cross-validation with 5 splits, therefore generating for each fold of 240 train 
samples and 60 test samples. For most of the features, we will use the absolute 
difference between the two values of that specific feature. For example, the 
difference between the asking price of two listings becomes one of the 
features of our model. For other features, we apply more complex rules to 
transform the data into the appropriate format. The corpus contains the 
location of a property in the form of latitude and longitude, which is 
transformed into a feature in the form of the distance in meters between two 
real estate properties. Another interesting example is represented by the text 
column. As the text in the listings varies from semi-structured text to whole 
stories, we used lexical models and semantic models to compute the similarity 
between the two texts. We experimented with simpler semantic models such 
as Word2Vec embeddings (Mikolov et al., 2013) and with more complex 
language models in the form of Transformers (Vaswani et al., 2017, Devlin 
et al., 2018), namely RoBERT models (Masala et al., 2020). 

3.3 Page recommendations 
The recommender system we propose contains multiple methods: a learning-
to-rank model which sorts a list of pages according to a score, a Siamese 
model with triplet loss which outputs how similar two pages are and a 
collaborative filtering model which outputs how appropriate is a page for a 
certain user. 

3.3.1 Data preprocessing and analysis 



140 Filip Mănișor, Mihai Mașală, Eduard Cojocea, Traian Rebedea 

 

For training the models we used two datasets. The first dataset consists of 
more of the corpus of real estate listings described in the previous subsection. 
The second dataset consists of more than 1 million unique site visits, both 
from real users and bots, containing the IP address of the user, the date and 
time of the visit, the URL, and the id of the listing contained by the page. 

The first dataset for preprocessed for outliers and missing values using the 
methods mentioned in Section 3.1. Preprocessing the second dataset 
consisted of identifying and removing the bots from the visits since they do 
not add any value to the data. Thus, all the visits have been grouped by IP 
address and all the visits which are within 1 second of each other for a certain 
IP address have been attributed to bots. The remaining visits have been 
grouped into visiting sessions, where multiple visits from the same IP address 
have been associated with a unique user. 

The dataset containing listings serves as the data for the Machine Learning 
models to interpret objectives and features of apartments and houses, while 
the dataset containing user visits serves as the data for the Machine Learning 
models to understand user latent or hidden preferences (which are not 
necessarily visible in the first dataset) and user interaction with the listings. 

3.3.2 Learning to rank 
For the user to have a positive experience with a real estate app, the results of 
each search should be ordered based on how relevant the properties in relation 
to the search query and the user are, and not only based on some heuristic. 
Thus, we have trained multiple models which for a property given as input, 
output a score that tells how relevant that property is. 

The dataset used for training consisted of a mixture of the two datasets 
presented above. The data used as input contained 28 numerical features of a 
listing and the label was a binary label, which represented if a user is 
interested or not in the specific ad. We considered that a user is interested in 
a listing if she spent at least 100 seconds viewing the page of the ad. We 
estimated the time spent on a page by subtracting the time between 2 visits 
with the same IP address and removed the differences where the time between 
visits was anomalous long. Using this data, we have implemented logistic 
regression models and multiple neural networks.  

Also, instead of a binary value for the interest of the user, we placed how 
interested a user is in 6 classes from 0 to 5, where 0 is the least interested and 
5 is the most interested. Thus, the labels of the data change and we consider 



Artificial Intelligence technologies for enhancing real estate apps      141 

 

the class based on the time spent with the following thresholds: 10 seconds, 
30 seconds, 60 seconds, 120 seconds, and 300 seconds. 

3.3.3 Triplet loss 
In order to offer the user the best results for a search query, the recommender 
system should be able to determine how similar 2 properties are based on the 
user’s page visits.  

We have implemented a Siamese network with 3 hidden layers and a 
dropout layer, using a triplet loss for evaluating the model. The input of the 
network consisted of a triplet of listings, one of which is the anchor, another 
one is a positive example and the third is a negative example. The anchor 
represents a listing to which we compare the other 2 listings. The positive 
example represents a listing that is considered to be of a similar value for the 
user as the anchor. The negative example represents a listing that is 
considered to be of a different value than the anchor. Thus, we created another 
dataset that contained these triplets. We started from the user visits sessions 
and considered one listing as the anchor, and another listing from the visit 
session as the positive example (since the user visited both pages in the same 
visit session he is likely taking a similar interest in both pages) and for the 
negative example we considered a random listing which is not in the current 
visiting session. Each listing in the triplet consists of 14 relevant numerical 
features. 

3.3.4 Collaborative filtering 
We implemented a collaborative filtering model to be able to tell how relevant 
the results of a search query are for a user based on his past visits and other 
users’ past visits, without taking into consideration the features of an ad. In 
order to achieve this, we take into consideration only those users who have at 
least 20 visits. Thus, the model could have a good grasp of the user’s profile. 
If a user has fewer visits, his search results will be heuristically ordered until 
he makes enough visits.  

The dataset used will contain a list of triplets: user, listing, and rating, 
where user and listing are unique ids and rating is a value from 1 to 5. The 
value of the rating is computed similarly as in section 3.3.2, where the value 
1 represents a low interest and the value 5 represents a high interest of the 
user. The value is based on the time spent by the user on the page, having the 
value computed based on the following time thresholds: 10 seconds, 30 



142 Filip Mănișor, Mihai Mașală, Eduard Cojocea, Traian Rebedea 

 

seconds, 120 seconds, and 300 seconds. 

4. Results 

4.1 Price prediction 
Testing was done to determine both the best set of features and the actual 
prediction algorithm. Only the most relevant results will be selected here, due 
to space constraints. 

Figure 1 – R2 scores using a different number of features for price prediction 

 
The feature selection was done using the mutual information score for the 

features, averaging over 10 runs for more accurate results. After all features 
were ranked according to their feature importance score, the optimum number 
of features was selected based on the result of predictions using the Elastic 
Net algorithm, which provides a good baseline and is also quite sensitive to 
feature selection.  

Figure 1 shows the coefficient of determination (R2) scores for each 
number of features, obtained by running 5-fold cross-validation 5 times and 
averaging the results. The final number of selected features was 25, as only 
minimal improvements were obtained by adding any more features. 

The results for the prediction algorithms were obtained by averaging 10 
runs of 5-fold cross-validation, in order to minimize the variations that can 



Artificial Intelligence technologies for enhancing real estate apps      143 

 

occur between different training sessions. Table 1 contains the scores for 
Percentage Mean Average Error (pMAE), Mean Average Percentage Error 
(MAPE), Root Mean Squared Error (RMSE), and Root Mean Squared 
Logarithmic Error (RMSLE). The best results were obtained using the 
Random Forest algorithm. 

Table 1 – Results of price prediction algorithms 
Algorithm pMAE MAPE RMSE RMSLE 

SupportVector 0.3314 0.3700 30649 0.4413 
kNN 0.1405 0.1411 14376 0.1862 

AdaBoost 0.1892 0.2593 14618 0.2901 
GradientBoost 0.0863 0.0880 9367 0.1194 

HistGradientBoost 0.0645 0.0649 7208 0.0924 
RandomForest 0.0520 0.0506 6357 0.0806 

4.2 Duplicate detection 
In this section, we present the results of the duplicate detection module. As 
previously mentioned, we experiment with Random Forest models, using 10-
fold cross-validation and averaging the results over 10 runs. To recap the 
model gets as input a vector of differences or similarities (computed on a pair 
of listings) and must assign to each entry one of the labels: duplicate, 
inconclusive or different. In Table 2 we present the core of our results. In the 
first column, we mark the text similarity function used (in the first row where 
the text similarity function is “None” we ignore the text entirely. In the 
following columns, we present the common Precision, Recall, and F1 metrics 
on the “duplicate” class and a global metric in the form of accuracy.  

 
Table 2 – Results of duplicate detection methods 

Text similarity Precision Recall F1 Accuracy 
None 0.76 0.81 0.78 0.63 

Word2Vec 0.82 0.86 0.84 0.69 
RoBERT-small 0.80 0.84 0.82 0.67 
RoBERT-base 0.80 0.87 0.83 0.68 
RoBERT-large 0.79 0.85 0.82 0.66 

All 0.81 0.81 0.81 0.70 
 
We used all text similarity functions as a mean of feature extraction, neither 
function is further trained on the current corpus. We note that while there are 
no significant differences between the used text similarity function, using text 



144 Filip Mănișor, Mihai Mașală, Eduard Cojocea, Traian Rebedea 

 

information clearly boosts performance across all metrics. As no model has 
the best performance across the used metrics, we pick the model based on 
Word2Vec as the “best” in part due to its simplicity (especially when 
compared to BERT-based models). Also, it is the best-performing model on 
the F1 metric for the “duplicate” class, the class we are most interested in. 

In Figure 2 we present the importance of each feature for predicting if two 
listings are duplicates or not. We note the most important in their respective 
order: text information, surface, asking price, and location.  

Figure 2 – Feature importance for duplicate detection 

4.3 Page recommendations 
In this section, we discuss the results of the page recommendation. In Table 
3 we present the results for the models we have implemented for learning 
importance scores for listings. We have tried several models, but neural 
networks with more than 2 hidden layers yielded weak results, hence we 
included only those in the table. 

Table 3 – Results of page recommendations models 

Model Input 
features 

Accurac
y 

Precisio
n 

Recall  F1 

2 hidden layers 
NN 

28 0.67 0.59 0.79 0.68 

2 hidden layers 
NN 

16 0.73 0.70 0.82 0.75 



Artificial Intelligence technologies for enhancing real estate apps      145 

 
2 hidden layers 
NN + dropout 

28 0.83 0.83 0.86 0.84 

2 hidden layers 
NN + dropout 

16 0.78 0.77 0.82 0.79 

Logistic 
regression 

28 0.76 0.71 0.84 0.77 

Logistic 
regression 

16 0.74 0.7 0.79 0.74 

 
For the Siamese model, the dataset contained more than 800k triplets 

(anchor, positive, negative), which were split into 70% for training, 20% for 
validation, and 10% for testing. The results are harder to interpret than normal 
since the ground truth is subject to user preferences and thus there is some 
overlap between what could be a positive example and a negative example. 
We evaluate how many of the triplets have a bigger cosine similarity between 
the resulting embeddings of positive and anchor than the cosine similarity 
between the resulting embeddings of negative and anchor. Thus, out of the 
88 376 triplets used for testing, 65 601 had more similar embeddings for 
anchor and positive than anchor and negative. 

5. Conclusions 
In this paper, we have discussed several methods for incorporating Machine 
Learning methods into real estate apps in order to solve three relevant tasks: 
price prediction, detection of duplicate listings, and page/listing 
recommendations. The proposed methods achieve good results, showing that 
ML methods have the performance required to be integrated into real estate 
products for the Romanian market. In the forthcoming months, the developed 
ML models will be integrated into the user-facing IMOPEDIA app.  

While these tasks seem very technical, they are very related to the user's 
needs: buyers do not want fake or duplicate listings and are interested in 
relevant price predictions and relevant other listing recommendations related 
to their needs and interests. Also, the results should also be useful for 
Computer-Human Interaction practitioners that want to assess the 
performance of Romanian real-estate apps, maybe also focusing on the 
technology usage component and the level of integration of ML algorithms 
into these apps.   



146 Filip Mănișor, Mihai Mașală, Eduard Cojocea, Traian Rebedea 

 

Acknowledgments 
The research presented in this paper is part of the project “IMOPEDIA – 
Innovative system using Artificial Intelligence for Real Estate Apps” (in 
Romanian, “IMOPEDIA - Sisteme inovative de Inteligenta Artificiala in 
domeniul portalurilor imobiliare”), co-funded by the European Regional 
Development Fund, Competitiveness Operational Programme, SMIS 
129132, POC/524/2/2, action 2.2.1, call nr. 2. 

References 
Aghi, N., & Abdulal, A. (2020). House Price Prediction. Technical Report. Khristianstad 

University Sweden. 
Covington, P., Adams, J., & Sargin, E. (2016). Deep neural networks for youtube 

recommendations. In Proceedings of the 10th ACM Conference on Recommender 
Systems (pp. 191-198). ACM. 

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep 
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805. 

Fu, Y., Liu, G., Papadimitriou, S., Xiong, H., Ge, Y., Zhu, H., & Zhu, C. (2015). Real estate 
ranking via mixed land-use latent models. In Proceedings of the 21th ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining (pp. 299-308). 
ACM. 

Gharahighehi, A., Pliakos, K., & Vens, C. (2021). Recommender Systems in the Real Estate 
Market—A Survey. Applied Sciences, 11(16), 7502. 

Henzinger, M. (2006, August). Finding near-duplicate web pages: a large-scale evaluation 
of algorithms. In Proceedings of the 29th annual international ACM SIGIR conference on 
Research and development in information retrieval (pp. 284-291). 

Ja’afar, N. S., Mohamad, J., & Ismail, S. (2021). Machine learning for property price 
prediction and price valuation: a systematic literature review. Planning Malaysia, 19. 

Jadhav, A.S., Pramod, D., & Ramanathan, K. (2019). Comparison of Performance of Data 
Imputation Methods for Numeric Dataset. Applied Artificial Intelligence, 33, 913 – 933. 

Landberg, N. (2016). The Swedish Housing Market: An empirical analysis of the real price 
development on the Swedish housing market. 

Lu, S., Li, Z., Qin, Z., Yang, X., & Goh, R. (2017). A hybrid regression technique for house 
prices prediction. 2017 IEEE International Conference on Industrial Engineering and 
Engineering Management (IEEM), 319-323. 

Masala, M., Ruseti, S., & Dascalu, M. (2020, December). Robert–a Romanian bert model. 
In Proceedings of the 28th International Conference on Computational Linguistics (pp. 
6626-6637). 

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word 
representations in vector space. arXiv preprint arXiv:1301.3781. 



Artificial Intelligence technologies for enhancing real estate apps      147 

 
Sarip, A. G., Hafez, M. B., & Daud, M. N. (2016). Application of fuzzy regression model for 

real estate price prediction. Malaysian Journal of Computer Science, 29(1), 15-27. 
Shinde, N., & Gawande, K. (2018, October). Survey on predicting property price. In 2018 

International conference on automation and computational engineering (ICACE) (pp. 1-
7). IEEE. 

Theobald, M., Siddharth, J., & Paepcke, A. (2008, July). Spotsigs: robust and efficient near 
duplicate detection in large web collections. In Proceedings of the 31st annual 
international ACM SIGIR conference on Research and development in information 
retrieval (pp. 563-570). 

Usman, H., Lizam, M., & Adekunle, M. U. (2020). Property price modeling, market 
segmentation, and submarket classifications: A review. Real Estate Management and 
Valuation, 28(3), 24-35. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & 
Polosukhin, I. (2017). Attention is all you need. Advances in neural information 
processing systems, 30. 

Yandrapally, R., Stocco, A., & Mesbah, A. (2020, June). Near-duplicate detection in web 
app model inference. In Proceedings of the ACM/IEEE 42nd international conference on 
software engineering (pp. 186-197). 

Zhang, Y., Yang, A., Xiong, C., Wang, T., & Zhang, Z. (2014). Feature selection using data 
envelopment analysis. Knowledge-based systems, 64, 70-80. 

Zhang, D., Maslej, N., Brynjolfsson, E., et al. (2022). The AI Index 2022 Annual Report. AI 
Index Steering Committee, Stanford Institute for Human-Centered AI, Stanford 
University. 

Zurada, J. M., Levitan, A. S., & Guan, J. (2006). Non-Conventional Approaches To Property 
Value Assessment. Journal of Applied Business Research (JABR), 22(3). 
  


