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Abstract. Evaluating a user interface often means comparing it against a reference, whether 
theoretical or empirical. To ensure an appropriate comparison, this paper contributes to 
computational evaluation by creating a large dataset (top 53 websites ranked in 20 categories: 
N=1060), computing 53 metrics for them (56,180 entries) by applying a principal component 
analysis to identify standout metrics, and by performing a factorial analysis to derive a 
reference visual profile for websites within each category. After analysing the correlations 
between these 53 metrics and performing various rotations, we have been able to reduce the 
expressiveness of these metrics to seven latent factors: colorfulness, color complexity, 
analogous color scheme dissimilarity, primary hue, lightness deviation, complementary 
colors dissimilarity, and structural simplicity. Therefore, positioning a screenshot with 
respect to the corresponding visual profile can be simplified based on these latent factors. 
This approach aims to provide a more comprehensive and context-specific understanding of 
computational evaluation in the realm of graphical user interface design. 
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1. Introduction 
Computational interaction (Oulasvirta et al., 2018) seeks to employ 
computational methods and techniques to reason about the structure of 
interactions, aiming to inform and improve the design of user interfaces. 
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Within this field, computational evaluation (Camargo et al., 2018) and 
modeling (Bauerly and Liu, 2006) employs metrics (Oulasvirta et al., 2018; 
Zen and Vanderdonckt, 2014), models (Leder et al., 2004; Ngo et al., 2003), 
principles (Lara-Alvarez and Reyes, 2017), techniques (Dondis, 1974; 
Vanderdonckt and Gillo, 1994) and laws to objectify user interface quality, 
ensuring and optimizing it (Camargo et al., 2018). A substantial amount of 
research has been dedicated to identifying, defining, calculating, and testing 
metrics (Burny and Vanderdonckt, 2022; Lara-Alvarez and Reyes, 2017; 
Moshagen et al., 2009; Reinecke et al., 2013; Skulmowski et al., 2016; Tuch 
et al., 2012) (also known as measures: Ngo et al., 2003) to characterize the 
overall quality of a user interface and its associated quality factors. Many of 
these metrics focus on assessing the visual quality of a user interface (Hartono 
and Holsapple, 2019; Lepreux et al., 2006), primarily its aesthetics (Bauerly 
and Liu, 2008; Leder et al., 2004; Wang et al., 2018; Zheng et al., 2009), but 
not exclusively, given its close correlation with quality factors, such as 
perceived usability in general (Tractinsky et al., 2000) and in model-based 
design (Dupuy-Chessa et al., 2016; Sousa et al., 2008), performance 
(Sonderegger and Sauer, 2009), credibility (Robins and Holmes, 2008), and 
trustwhortiness (Skulmowski et al., 2016). However, these metrics vary 
widely in their theoretical or empirical foundations, relying on different 
formulas, leading to erroneous and inconsistent interpretations. 

Numerous software tools, such as WebTango (Ivory and Hearst, 2002), 
AIM (Oulasvirta et al., 2018), QUESTIM (Zen and Vanderdonckt, 2014), 
PLAIN (Soui et al., 2017), UI-CAT (Riegler and Holzmann, 2015), Web UI 
ANALYZER (Bakaev et al., 2019), have emerged to swiftly and efficiently 
calculate these metrics for graphical user interfaces like websites (which is 
convenient because the source code is in principle accessible) and mobile 
applications (which is convenient because they can be downloaded from an 
application store and there are datasets available), but less so those of 
professional applications. These tools, whether online (Zen and 
Vanderdonckt, 2014), offline (Soui et al., 2017), in the form of callable 
services (Riegler and Holzmann, 2015) or both (Oulasvirta et al., 2018), 
provide an estimated value for each metric, making the computational 
evaluation context-agnostic when reference values of these metrics are absent 
and context-sensitive when compared to known reference values. Some 
studies calculated these measures for a small number of user interfaces 
(Dupuy-Chessa et al., 2016), or a large number (Wang et al., 2018), but their 
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applicability remains questionable by the limited consideration given to the 
context of use and application domain: the metric values obtained for an 
online newspaper should not be compared to the same reference values as one 
for a gaming application. Comparing the calculated values with reference 
values for a large number of user interfaces is useful, but not context-specific. 
Other studies have calculated these measures instead for a significant number 
of interfaces within a given application domain (Camargo et al., 2018). 
However, applicability remains limited, as the problem of generalization 
arises: either the reference values are too specific to one domain and cannot 
be transposed to another, or the reference values are too generic and have 
little or no application to a given domain. For example, there are models based 
on machine learning or applying other methods to characterize visual design 
or aesthetics (Wang et al., 2018), but the problem of 
generalization/specialization persists. We do not know to what extent we can 
apply such a model and how to interpret it. 

To address the major challenges mentioned above, this paper contributes 
to computational evaluation by initially creating a large dataset of mobile user 
interfaces (20 website categories with the top 53 sites ranked=1,060 
websites). Subsequently, 53 metrics were systematically computed to 
augment the dataset to 1,060 × 53 values = 56,180 entries. Finally, principal 
component analysis is employed to identify standout metrics, and their 
distribution is analyzed through factor analysis to derive a reference visual 
profile for websites within each category. This approach aims to provide a 
more comprehensive and context-specific understanding of computational 
evaluation in the realm of graphical user interface design. 

To this end, this paper is structured as follows: Section 2 conducts a 
literature review targeting recent or representative studies on the visual design 
of Graphical User Interfaces (GUIs) and computation of related metrics; 
Section 3 describes the experimental setup and provides a first analysis of the 
metrics on the dataset; Section 4 performs an exploratory data analysis of the 
metrics; Section 5 identifies the latent structure in the data and establishes the 
visual profile of website categories based on the extracted factors. Finally, 
Section 7 concludes this study by discussing its contributions, its limitations, 
and the potential improvements for the future.  
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2. Related Work  
To assess GUI quality and associated factors (ISO/IEC 25010, 2011), 
extensive research has focused on defining and computing metrics 
(Moshagen et al., 2009; Ngo et al., 2003; Reinecke et al., 2013; Skulmowski 
et al., 2016; Touch et al., 2012), mostly emphasizing visual quality and 
aesthetics, closely linked to factors like usability or performance (Leder et al., 
2004; Robins and Holmes, 2008; Tractinsky et al., 2000). However, these 
metrics vary widely in theoretical or empirical foundations, leading to 
potential misinterpretations or inconsistent results. Studies often calculate 
metrics for a given number of GUIs to discover any correlation between GUI 
features and quality dimensions or to develop models predicting the user 
score for a particular user experience facet (Ivory and Hearst, 2002; Reinecke 
et al., 2013; Zheng et al., 2009). 

Ngo et al. (2003) presented a theoretical approach to quantifying GUI 
aesthetics through metrics computable by formulas to demonstrate a close 
relationship between them and perceived aesthetics. Based on Ngo’s work, 
Zheng et al. (2009) studied low-level image features and measured their 
impact on user perceptions of visual design aesthetics. Ivory and Hearst 
(2002) came to the same conclusion after performing a quantitative analysis 
of web page layout and usability through 157 low-level measures computed 
on 5,300 web GUIs. The greatest interest of this study lies in its ability to 
evaluate any GUI by comparing the values calculated through the metrics 
with the reference values obtained for the corresponding website category, 
which is the hallmark of computational evaluation. When these reference 
values are recorded in a visual profile for each category, real benchmarking 
can be carried out. Evaluating typically refers to comparing a current GUI to 
something, like reference values of metrics, such as for comparing the 
consistency between two GUIs (Burny and Vanderdonckt, 2022). We will 
pursue the same goal in this paper with an up-to-date dataset, different 
metrics, and two statistical instruments. Others have attempted to capture 
such “visual profiles”, but in rather different ways. Moshagen and Thielsch 
(2013) measured the perceived visual aesthetics of websites by creating the 
Visual Aesthetics of Websites inventory (VisAWI), of which a short version 
called VisAWI-S was developed and evaluated in three studies comprising 
1673 participants. VisAWI-S is a reliable metric that captures a single 
dimension of perceived visual aesthetics and provides a good approximation 
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to the full-length version. 

Bauerly and Liu (2006) investigated the effect of GUI elements on 
aesthetic evaluation and reported a strong correlation between visual 
elements and aesthetic ratings. Furthermore, the importance of symmetry and 
the number of compositional elements was demonstrated by measuring the 
effect of these two parameters on subjective appraisals of interface aesthetics 
(Bauerly and Liu, 2008). Robins and Holmes (2008) showed that the same 
GUI content with higher aesthetics is perceived as more credible. Tuch et al. 
(2012) also examined the impact of design factors on perceptions of visual 
appeal and found that low visual complexity and high prototypicality were 
perceived as highly appealing. This supports the information-processing 
stage model of aesthetics processing (Leder et al., 2004). 

Based on low-level features of GUIs, Reinecke et al. (2013) predicted the 
initial impression of aesthetics based on perceptual models of color and visual 
complexity. Seckler et al. (2015) examined the relationship between objective 
aesthetic design factors and subjective aesthetic perceptions to conclude that 
the combination of high symmetry, low complexity, blue hue, medium 
brightness, and medium to high saturation resulted in the highest subjective 
scores. Other factors such as credibility or trustworthiness were also 
influenced. The results obtained by those studies are sometimes inconsistent 
(Seckler et al., 2015). In sum, a significant body of knowledge has 
investigated how GUI metrics are used to evaluate or predict quality factors, 
but how to evaluate another GUI that was not in each dataset remains open: 
results obtained for one study are not necessarily generalizable. Miniukovitch 
and de Angeli (2015) determined a computational model for measuring GUI 
aesthetics for desktop applications and introduced some metrics that can be 
reused for mobile GUIs. 

3. Method 
Our study pursues two goals: (1) to identify the latent factors underlying the 
low-level features of mobile website GUIs quantified through measures and 
(2), to establish the visual profile of top rank websites based on the identified 
factors. 
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3.1. Data Collection and Dataset Acquisition 
Many studies focused on GUI for websites browsed in desktop configurations 
or mobile applications. This may not be representative of the whole 
ecosystem as most of the websites are browsed using mobile devices 
nowadays (Mittal and Mattela, 2019; Qazi et al., 2020). Some studies are also 
relying on datasets composed of arbitrarily selected GUIs. As a consequence, 
some categories of websites may not be sufficiently represented or even not 
present at all in the selected panel of websites. The understanding of low-
level GUI features is more complex and their usage makes the derived 
insights less actionable. 

In contrast, we collected data from the 53 most popular websites in each 
of the 22 domain categories provided by SimilarWeb via its SimilarWeb API. 
We employed UILAB (Burny and Vanderdonckt, 2021) to create one gallery 
to contain the websites of each category. The screenshots were automatically 
captured by a script with a resolution of 414 pixels (width) by 732 pixels 
(height), with a Device Pixel Ratio (DPR) of 3, a resolution of a high-end 
mobile device (Mittal and Mattela, 2019). Some screenshots had to be 
captured manually and some websites were removed due to request timeout 
or regional restrictions. After processing, removing outliers, and clustering, 
we included 53 websites × 20 categories = 1,060 websites in the dataset. We 
used UILAB to compute a subset of  53 AIM metrics (Oulasvirta et al., 2018) 
on each screenshot (see Table 1). These metrics cover color perception 
(Hasler and Süsstrunk, 2003; Miniukovich and de Angeli, 2015) and 
perceptual fluency (Balinsky, 2006; Wong, Carpendale, and Greenberg, 
2003). In particular, each screenshot image is analysed with respect to all 
color harmonic templates (Cohen-Or et al., 2006) on the hue wheel (Fig. 1): 
when the colors of a screenhot fall into the corresponding gray area, it is 
considered to be harmonic in terms of color harmonization. The templates 
may be rotated by an arbitrary angle: for example, the L type can be inverted. 

We did not compute other metrics, such as accessibility metrics as they 
were not relevant ofr our study. The AIM metrics returning compound results 
were decomposed, thus resulting in 53 individual metrics for a final dataset 
consisting of 1060 screenshots × 53 metrics = 56,180 entries. 
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Figure 1. Color harmonic templates on the hue wheel (Hasler and Süsstrunk, 2003). 

3.2. Exploratory Data Analysis 
Fig. 2 shows that 53 metrics have markedly different univariate distributions: 
some measures have a clear bi-modal or multi-modal distribution, such as 
alpha-related variables associated with the angle at which the best fit occurs 
between the screenshot color scheme and the color scheme template 
represented by the variable. For example, Fig. 3 shows the results of color 
harmonization for the screnshots of the whole distribution according to four 
templates: V, inverted L, L, and T. In particular, the rightmost graph shows 
that, with respect to the T template, the magenta spectrum falls in the grey 
area of the T type (Fig. 1) while the green spectrum, which is also dense, is 
outside the greay area, thus meaning that the distribution is somewhat 
harmonic with respect to this template. 

Other metrics exhibit strong skewness due to statistical outliers, which 
might require removal for further analysis. Since all screenshots were 
manually verified, no other outlier was removed from the analysis. 

Table 1. List of the 53 metrics computed for each web site on mobile device (Source: 
https://github.com/aalto-ui/aim/blob/aim2/metrics.json - Oulasvirta et al., 2018) 

1 HSVAvg_average_hue Hasler-Süsstrunk-Vetterli (HSV) color 
space, hue average 

2 HSVAvg_average_sat HSV color space, saturation average 
3 HSVAvg_average_value HSV color space, value average 
4 HSVAvg_nb_unique_hsv Number of distinct values of hue, saturation, 

and value in the HSV color space after color 
reduction; only values covering more than 
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0.1% of image are counted 
5 HSVAvg_nb_unique_hue Number of unique hues in the HSV color 

space 
6 HSVAvg_nb_unique_sat Number of unique saturations in the HSV 

color space 
7 HSVAvg_nb_unique_value Number of unique values in the HSV color 

space 
8 HSVAvg_sat_stdev Number of saturations in HSV, standard 

deviation 
9 HSVAvg_value_stdev Number of values in HSV, value standard 

deviation 
10 HasslerSusstrunk_Colorfulness Hassler-Süsstrunk (HS) colorfulness in 

natural images 
11 HasslerSusstrunk_RGYB_mean Mean of red-green-yellow-blue values in HS 
12 HasslerSusstrunk_RGYB_stdev Standard deviation of red-green-yellow-blue 

values in HS 
13 HasslerSusstrunk_RG_mean Mean of red-green values in HS 
14 HasslerSusstrunk_RG_stdev Standard deviation of red-green values in 

HS 
15 HasslerSusstrunk_YB_mean Mean of yellow-blue values in HS 
16 HasslerSusstrunk_YB_stdev Standard deviation of yellow-blue values in 

HS 
17 LABAvg_A_mean LAB color space average of A metric 
18 LABAvg_A_stdev LAB color space standard deviation of A 

metric 
19 LABAvg_B_mean LAB color space average of B metric 
20 LABAvg_B_stdev LAB color space standard deviation of B 

metric 
21 LABAvg_lightness_mean LAB color space average of lightness 
22 LABAvg_lightness_stdev LAB color space standard deviation of 

lightness 
23 Color_harmony_I_alpha l template for the closest harmonic color 

scheme and distance to it: Harmonized 
image based on the closest harmonic 
template with minimal changes, significance 
level (alpha) 

24 Color_harmony_I_distance Distance to the l color harmonic template 
25 Color_harmony_L_alpha Significance level for L color harmonic 

template 
26 Color_harmony_L_distance Distance to the L color harmonic template 
27 Color_harmony_Linverse_alpha Significance level for inverted L color 

harmonic template 
28 Color_harmony_Linverse_distance Distance to the inverted L color harmonic 

template 
29 Color_harmony_T_alpha Significance level for T color harmonic 

template 
30 Color_harmony_T_distance Distance to the T color harmonic template 
31 Color_harmony_V_alpha Significance level for V color harmonic 
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template 
32 Color_harmony_V_distance Distance to the V color harmonic template 
33 Color_harmony_X_alpha Significance level for X color harmonic 

template 
34 Color_harmony_X_distance Distance to the X color harmonic template 
35 Color_harmony_Y_alpha Significance level for Y color harmonic 

template 
36 Color_harmony_Y_distance Distance to the Y color harmonic template 
37 Color_harmony_i_alpha Significance level for i color harmonic 

template 
38 Color_harmony_i_distance Distance to the i color harmonic template 
39 Edge_congestion Mental effort needed to differentiate 

spatially proximal lines 
40 Edge_density Ratio of contour pixels to all pixels 
41 FigureGround_contrast Difference in color or luminance between 

two adjacent areas 
42 Jpeg_file_size File size in bytes of an screenshot image, 

saved in the JPEG format (image quality 70) 
43 Luminance_stdev Standard deviation of pixel luminance 
44 Nb_alignment_lines Number of alignment points 
45 Nb_colors Number of colors 
46 Pixel_symmetry Measure of symmetry in terms of pixels 
47 Png_file_size File size in bytes) of a screenshot image, 

saved in the PNG format (24-bit per pixel) 
48 Quadtree_balance Balance of the screenshot quadtree (tree 

that defines each node as having four 
children to subdivide a 2D space by splitting 
it recursively in four quadrants) 

49 Quadtree_equilibrium Equilibrium of the screenshot quadtree 
50 Quadtree_nb_leafs Number of leaf nodes of the screenshot 

quadtree 
51 Quadtree_symmetry Symmatry of the screenshot quadtree 
52 Wave_score Score of the Weighted Affective Valence 

Estimates (WAVE), defined as the mean of 
a mapping of pixel colors to the color 
preference values 

53 White_space Proportion of white space 
 

The identification of latent factors is only reasonable if variables or groups 
of variables are correlated to some extent, indicating the presence of 
underlying concepts.  
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Figure 2. Statistical distribution of the 53 metrics computed on the whole dataset (see Table 1 for 

IDs). 

Fig. 4 represents the correlation matrix between the 53 considered metrics, 
showing several clusters of highly correlated variables, which suggests that 
these data can be summarized as a smaller set of latent variables. To validate 
the data suitability for structure detection, we computed the Kaiser-Meyer-
Olkin (KMO) (Kaiser, 1974) score for the whole dataset, which represents 
the proportion of variance in the variables that might be due to underlying 
factors: KMO=0.52, which is interpreted as “miserable”. After removing 
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variables with KMO scores lower than 0.6, the overall KMO score grew up 
to 0.8, which is interpreted as “meritorious”, indicating the data are now 
suitable for factor analysis. 

Moreover, we computed Bartlett’s sphericity score for the dataset 
(Bartlett, 1951), a test that computes the probability that the correlation 
matrix has significant correlations among at least some of the variables in a 
dataset, a prerequisite for factor analysis. The test confirms the suitability of 
data for factorial analysis (!=54491.7, " <.001∗∗∗). We ran a Principal 
Component Analysis (PCA) (Jolliffe and Cadima, 2016) to make a first 
selection of the number of factors to retain by applying the Kaiser criterion 
(Yeomans and Golder, 1982) to determine the number of components to keep 
for further analysis: the first 10 factors should be retained for a cumulated 
explained variance of 76.96%. Fig. 5 shows the Scree plot (Ledesma et al., 
2015) representing the amount of variance explained by each extracted factor 
in decreasing order of eigenvalue. 

 
Figure 3. Screenshot metrics: densities and color distribution of variables according to four harmonic 

templates: color_harmony_V_alpha, color_harmony_Linverse_alpha, color_harmony_L_alpha, 
color_harmony_T_alpha. 
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4. Results and Discussion 

4.1 Identification of Latent Factors 
PCA is primarily used for feature summarization, data dimensionality 
reduction, and structure identification. However, interpreting principal 
components can be a challenging task, as they represent “generic” factors that 
load most of the variables and do not provide specific information about the 
data. Therefore, we utilized Factor Analysis, specifically Exploratory Factor 
Analysis (EFA) (Fabrigar et al., 1999), to discover underlying constructs and 
detect clusters of related variables, as it operates on the notion that observable 
variables can be reduced to a smaller set of hypothetical constructs. Initially, 
the appropriate factor space rotation method was determined to simplify the 
interpretation of the factor solution. 

The ultimate aim of factor rotation is to achieve a simple structure (Tucker, 
1955). To compare various factor extraction configurations, a plot of factor 
loadings (Fig. 6) was generated for 10 factors, including PCA and Factor 
analysis with PROMAX (an oblique rotation, which allows factors to be 
correlated), OBLIMIN (a method for oblique, nonorthogonal rotation), 
VARIMAX (an orthogonal rotation method that minimizes the number of 
variables that have high loadings on each factor), and QUARTIMAX (a rotation 
method that minimizes the number of factors needed to explain each variable) 
rotations, following recommendations of Brown (2009). We found that the 
oblique rotations PROMAX and OBLIMIN provide the simplest structure, while 
PCA without rotation suffered from cross-loadings and generic factors.  
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Figure 4. Correlation matrix between the 53 metrics computed in our dataset. 
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Fig. 5. Scree plot of Principal Component Analysis. 

The decision to extract 10 factors was based on PCA, but this number may 
not be applicable to the oblimin rotation (Brown, 2009). Based on the Kaiser 
criterion and scree plot analysis, 8 factors with eigenvalues > 1 were retained, 
and parallel analysis confirmed that only the first 7 factors should be retained 
(Fig. 7). Due to the non-orthogonal nature of the destination space, oblique 
rotations allow extracted factors to be correlated with each other. Rotations 
shown in Fig. 7 are giving almost the same results as in Fig. 6, thereby 
suggesting that this ultimate reduction from 10 factors to 7 factors does not 
deteriorate the correlation between the variables. 

Conversely, orthogonal rotations ensure that extracted factors are 
independent of one another. As part of the current scenario, oblique rotations 
were selected since the extracted factors represent distinct aspects of the same 
GUI, and a correlation between them is logical. Ultimately, the configuration 
with oblimin rotation was selected for interpretation purposes. The 
interpretation and labeling of extracted factors, the final seven latent factors 
of our study, are as follows: 

1. Colorfulness: The most important loadings are all related to 
colorfulness and color variation, which corroborates previous 
results obtained by Hasler and Süsstrunk (2003) who developed 
this metric to assess colourfulness in natural images to 
perceptually qualify the effect that processing or coding has on 
colour. While this metric has been used to quantify the 
colourfulness of natural images, it is here used for the same 
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purpose on GUIs screenshots, which are assumed to have some 
natural dimension. 

2. Color complexity: Several loadings are found to be associated 
with the number of colors present in the images. Furthermore, 
there is a positive correlation between the number of colors and 
the file size of both PNG and JPEG files, as the efficiency of 
image compression decreases with the number of colors. 
Additionally, the number of leaves in quadtree decomposition, as 
represented by the variable quadtree_nb_leafs, is also associated 
with the number of colors present in the images, since the 
decomposition process is based on color entropy, resulting in a 
larger number of leaves on average for images with a larger 
number of colors. Although the graph always breaks down into 
four nodes at each level, the number of levels is indicative of the 
visual complexity in terms of colors. 

3. Analogous color scheme dissimilarity: This factor displays a 
positive correlation with the distance between the color scheme of 
an image and the analogous color templates (#, $) (Cohen-Or et 
al., 2006), as well as with the % and & Matsuda color schemes, 
which can also be categorized as analogous color schemes albeit 
with a higher degree of uncertainty. According to Lara-Alvarez 
and Reyes (2017), the Matsuda color schemes can be defined by 
three patterns, namely analog, complementary, and triad. 
Therefore, a higher value of this factor indicates a greater 
dissimilarity between the color scheme of the image and 
analogous color schemes, with a tendency towards a larger 
number of dissimilar colors, which may be categorized as 
complementary or triadic schemes. 

4. Primary hue: This factor is associated with the hue angle at which 
the analogous color schemes (# , &, &_$'()*+), % , $) are in closest 
proximity to the image color scheme. This factor can be 
interpreted as representing the principal color component or hue 
of the screenshot, which is further supported by the loading of 
HSVAvg_average_hue, because it is the most dominant and 
influential color, affecting both the visual impact (e.g., the 
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primary hue is often the most noticeable color in the screenshot if 
it covers the largest area of the screenshot or appears mostly in its 
elements, controls, etc.) and the psychological perception (e.g., 
such a hue sets the overall tone) of the screenshot. 

5. Lightness deviation: The most significant factor loadings are 
associated with the deviation of lightness around the average 
value of lightness in the image. A higher value of this factor 
indicates a greater level of variation in luminosity observed in the 
screenshot. This factor contributes to creating a visual hierarchy 
of the elements in the screenshots by differentiating them by their 
lightness: for example, lighter or darker elementss can draw 
attention and guide the end user's eye to important elements of the 
screenshot, particularly the controls, such as pushbuttons or menu 
items. 

6. Complementary colors dissimilarity: This factor is positively 
related to the distance to complementary color schemes (the 
greater the value of this factor, the greater the distance to 
complementary color schemes). It means that screenshots with 
large values for this factor are far from complementary schemes 
and tend to be closer to either analogous or triadic schemes. 
Complementary colors, being opposite each other on the color 
wheel, induce a better contrast among the screenshot elements, 
thus making it easier for the end user to identify and understand 
them and to recognize their type. 

7. Structural simplicity: This factor is mostly related to the 
complexity of the image, but from a composition viewpoint 
(Lepreux et al., 2006) and a structural perspective 
(nb_alignment_lines representing grid quality of the image, 
white_space). The average lightness of the image 
LABAvg_lightness_mean is positively correlated with the 
proportion of white space and thus contributes to improving the 
structural simplicity. The higher the score, the simpler the GUI 
structure of the screenshot is because the white space is better 
distributed on the surface. 
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Fig. 6. Comparison of the different factorial analysis methods with 10 factors. 
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Fig. 7. Comparison of the different factorial analysis methods with 7 factors. 
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Fig. 8. Distribution of factors for the category E-commerce & Shopping. 

4.2 Visual Profiles 
To establish the visual profile of each website category, we first computed 
the average profile of websites by analyzing the distribution of factors across 
all categories. Subsequently, we compared the distribution of factors for each 
category with the global distribution of the same factors to identify significant 
deviations from the average profile. 
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To elaborate on the global distribution of factors, we observed that some 
factors were symmetrically distributed while others displayed a skewed 
distribution, either positively or negatively. Notably, the fifth factor, referred 
to as “primary hue”, mainly loads the alpha variables of several color schemes 
and displays a bimodal distribution, with peaks located around 120 and 300 
degrees, corresponding to green and magenta colors, respectively. The 
minimum value of this distribution is located in the blue region of the hue 
wheel. Although the approximation of the two peaks of the distribution is not 
as precise as for single variables, owing to the superimposition of several 
alpha variables and other variables with a minor impact, it provides an 
insightful understanding of the fifth factor distribution. 

As an example, we provide hereafter the analysis of a particular category 
of websites, namely “E-commerce and Shopping”: Fig. 8 shows that the color 
complexity of e-commerce websites is, on average, lower compared to other 
website categories. This can be determined from the greater concentration of 
the distribution of this factor around zero compared to the average profile 
distribution. Additionally, the distribution of the primary hue factor in this 
category is closer to a bi-modal distribution. The standard deviation of the 
distribution concerning the distances to color schemes is also larger, 
indicating a higher degree of uncertainty in associating a specific color 
scheme to websites of this category. Another notable difference between this 
category and the average profile is related to the structural simplicity of e-
commerce websites, which appear to be much simpler in structure. This is 
likely attributed to the quality of the grid used in most of the websites in this 
category, as is evident from the shift in distribution towards positive values 
in the related chart. Other categories can be described similarly. 

5. Limitations & Future Work 
Despite the potential of using EFA for evaluating GUIs and extracting high-
level constructs from low-level measures, there are several limitations and 
future work that need to be addressed. One of the main limitations of our 
study is the limited set of low-level metrics (Oulasvirta et al., 2018) that are 
considered for factor extraction. Although the metrics were carefully chosen 
based on their relevance to GUI evaluation, there may be other measures that 
could provide additional insights and improve the validity of the extracted 
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factors. Therefore, future studies could explore a wider range of low-level or 
high-level metrics to increase the comprehensiveness of the extracted factors. 
The novel method introduced in this paper suggests a procedure to be 
repeated on other metrics. 

Secondly, the sample size used in this research could be enlarged to be 
more representative of the target population. While the current sample size 
was adequate for the analysis conducted, a larger sample size would allow for 
more robust statistical analyses and would increase the generalizability of the 
findings to other populations, especially when we know that different user 
groups perceive web aesthetics differently (Leiva et al., 2023). Additionally, 
future studies could consider stratified sampling methods to ensure that the 
sample is representative of the target population. 

Thirdly, only one smartphone resolution was considered for every website. 
One could investigate the impact of screen resolution on the studied metrics. 
Some screen resolutions are also more frequently used depending on the 
platform, ranging from a small smartphone and tablets to high-resolution 
screens. Our study demonstrated that AIM metrics are particularly relevant to 
evaluating visual appeal and complexity of websites with a 414 x 732 screen 
resolution, but are perhaps less appropriate for larger resolutions. 

Finally, there is a potential for subjective bias in the interpretation of factor 
loadings and naming. While efforts were made to ensure that the 
interpretation of the factors was based on objective evidence, there may be 
some degree of subjectivity in the interpretation. Future studies could 
consider using a panel of experts to validate the interpretation of the factors 
and ensure that they are representative of the construct being evaluated. 
Additionally, the use of a more objective naming convention for the factors 
could increase the clarity and reproducibility of the findings. 

6. Conclusion 
This paper presented a novel method for evaluating GUIs based on the 
extraction of high-level constructs from low-level metrics computed on GUIs. 
In this way, another GUI to be evaluated can be compared to the visual profile 
of top websites belonging to the same category. Assuming that the metric 
values contained in the visual profile become reference values, a true 
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benchmarking can be operated. There are limitations to the traditional 
approach of evaluating GUIs solely based on low-level measures, as it does 
not provide designers and other stakeholders with actionable insights. This 
study demonstrates that exploratory factorial analysis can be used to extract 
high-level constructs from low-level metrics to produce more interpretable 
insights. Through this analysis, we were able to extract high-level constructs 
with greater interpretability than low-level variables. 

There are, however, some limitations that need to be addressed in future 
research. One limitation is the limited set of low-level measures considered 
for factor extraction, and future studies could explore a wider range of low-
level measures to increase the comprehensiveness of the extracted factors. 
Another limitation is the sample size used in the study, which could be larger 
to increase the generalizability of the findings. Finally, there is a potential for 
subjective bias in the interpretation of factor loadings and naming, and future 
studies could consider using a panel of experts to validate the interpretation 
of the factors and ensure that they are representative of the construct being 
evaluated. Overall, the proposed methodology shows promise for improving 
GUI evaluation, and future work could build on this research to further 
develop and refine the method. 

 
Open science. We release a spreadsheet containing the 53 metrics 

computed for the 1060 web sites on mobile devices as an accompanying 
resource to this paper.  
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