
International Journal of User-System Interaction 16 (4) 2023, 117-132 © MatrixRom

Smart Web Art Gallery

Adriana Cristiana Bîrzeanu, Paul Stefan Popescu, Marian
Cristian Mihaescu
University of Craiova, Craiova, Dolj, Romania
birzeanu.adriana.u3i@student.ucv.ro, stefan.popescu@edu.ucv.ro,
cristian.mihaescu@edu.ucv.ro

Abstract. Digital art galleries have become increasingly popular; the intersection of
technology and art has opened new avenues for creative works. This paper introduces the
Smart Web Art Gallery System, a novel platform designed to revolutionize online art
curation, display, and user interaction. By leveraging advanced technologies such as artificial
intelligence (AI), and data analytics, the system offers a dynamic and personalized user
experience. A key component of the system is the integration of the YOLOv3 (You Only
Look Once, version 3) model, a state-of-the-art real-time object detection algorithm.
Implemented using Flask, a lightweight web framework, YOLOv3 enhances the system's
ability to recognize and categorize artworks accurately. The overall application is developed
using ASP.NET Core MVC, ensuring robust and scalable performance. Experiments
demonstrate the system’s effectiveness making it more inclusive and engaging for diverse
audiences worldwide.

Keywords: Art gallery, YOLO, Tag detection

DOI: 10.37789/ijusi.2023.16.4.2

1. Introduction

In the contemporary digital age, the intersection of technology and art has
opened new avenues for the appreciation and dissemination of creative
works. While still vital, traditional art galleries are increasingly
complemented by innovative digital platforms offering enhanced
accessibility and interactive experiences. This paper introduces the concept
and implementation of a Smart Web Art Gallery System, designed to
revolutionize the way art is curated, displayed, and experienced online.

The Smart Web Art Gallery System leverages cutting-edge technologies
such as artificial intelligence (AI) and data analytics to create a dynamic and
personalized user experience. Unlike conventional online galleries that
merely replicate physical exhibits, this system adapts to individual user

118
Adriana Cristiana Bîrzeanu, Paul Stefan Popescu,

Marian Cristian Mihaescu

preferences, offering tailored recommendations and immersive interactions
with artworks.

A significant technological component of this system is the integration of
the YOLOv3 (You Only Look Once, version 3) model, an advanced real-time
object detection algorithm. YOLOv3 is employed to enhance the system's
capability in recognizing and categorizing artworks with high accuracy. This
model analyzes visual content to automatically identify and classify different
styles, periods, and features of artworks. By doing so, it enables more precise
recommendations and interactions based on the detected attributes. The
model is implemented using Flask, a lightweight WSGI web application
framework, ensuring efficient and scalable deployment.

The application itself is developed using ASP.NET Core MVC, a robust
framework for building scalable and high-performance web applications.
This combination of Flask for the YOLOv3 model and ASP.NET Core MVC
for the overall application infrastructure allows for seamless integration and
efficient handling of complex tasks such as real-time object detection and
dynamic content delivery.

Key features of the system include AI-driven art recommendations, which
analyze user behavior and preferences to suggest relevant artworks, and AR
functionalities that allow users to visualize art pieces within their own spaces.
The YOLOv3 model plays a crucial role in this by providing a detailed
analysis of each artwork, thus enriching the data used for personalization.
Additionally, the system incorporates advanced data analytics to provide
artists and curators with valuable insights into visitor engagement and trends,
fostering a more informed and responsive approach to art curation.

By bridging the gap between traditional art exhibition methods and
modern technological capabilities, the Smart Web Art Gallery System aims
to democratize art access, making it more inclusive and engaging for diverse
audiences worldwide. This paper will explore the development process, core
functionalities, and potential impact of the system, highlighting its
significance in the evolving landscape of digital art presentation.

2. Related Work

The usage of deep learning algorithms for object detection in visual arts is a
well-debated subject as presented in Bengamra et al. (2024). The authors state

Smart Web Art Gallery 119

that where many methods exist, a deep review of the literature concerning
object detection in visual art is still lacking. After reviewing several related
papers, this study presents a comprehensive review, including an overview of
major computer vision applications for visual art, a presentation of previous
related surveys, and a comprehensive overview of relevant object detection
methods for artistic images. Considering the studied object detection
methods, we propose a new taxonomy based on the supervision learning
degree, the adopted framework, the adopted methodology (classical or deep-
learning-based method), the type of object to detect, and the depictive style
of the painting images. Then the several challenges for object detection in
artistic images are described and the proposed ways of solving some
encountered problems are discussed. In addition, available artwork datasets
and metrics used for object detection performance evaluation are presented.
 Another art form is analyzed in Bomfim et al. (2022) where the paper
describes a deep learning-based methodology to accurately detect urban
graffiti in complex images. The different graffiti varieties and the multiple
variabilities present in these artistic elements on street scenes (such as partial
occlusions or their reduced size) make this object detection problem
challenging. Their experimental results using different datasets endorse the
effectiveness of this proposal.
 Regarding machine learning algorithms used in visual art there is a paper
Falomir et al. (2018) that used k-Nearest Neighbor as in Pandey et al. (2017)
and support vector machine presented by Peng et al. (2002) techniques for
learning the features of paintings from the Baroque, Impressionism and Post-
Impressionism styles. Specifically, two classifiers are built, and two different
parameterizations have been applied for the QCD. For testing QArt-Learn
approach, the Painting-91 dataset has been used, from which the paintings
corresponding to Velázquez, Vermeer, Monet, Renoir, van Gogh and
Gauguin were extracted, resulting in a set of 252 paintings. The results show
that categorization accuracies are higher than 65%, comparable to accuracies
obtained in the literature. However, QArt-Learn uses qualitative color names
to describe style color palettes linguistically, so non-experts in art can better
understand them since QCDs are aligned with human perception.
 Regarding review and summarization papers about deep learning models
applied on art, there is a paper published by Diaz et al. (2020) in which was
carried out in the context of the Digital Humanities project ChIA, authors
present an approach for testing different commercial (Clarifai, IBM Watson,

120
Adriana Cristiana Bîrzeanu, Paul Stefan Popescu,

Marian Cristian Mihaescu

Microsoft Cognitive Services, Google Cloud Vision) and open-source
(YOLO) computer vision (CV) tools on a set of selected cultural food images
from the Europeana collection with regard to producing relevant concepts.
The project aims to improve access to implicit cultural knowledge contained
in images and increase analysis possibilities for scientific research, content
providers, and educational purposes. Preliminary results showed that not only
quantitative output results are important, but also the quality of concepts
generated.
 In his paper, Diaz et al. (2020) compare two influential deep learning
algorithms in image processing and object detection, Mask R-CNN and
YOLO. The authors state that it is also a challenging task to understand subtle
details in their surroundings. For instance, radiance conditions, background
clutter, and partial or full occlusion. When a machine tries to interact with
human or try to take pictures, it becomes hard for them to magnify the details
of a human surrounding. In this study, we have focused on detecting humans
effectively.
 The main focus of the paper published by Sumit et al. (2020) objective of
the work is to compare the performance of YOLO and Mask R-CNN, which
unveils the inability of Mask R-CNN to detect tiny human figures among
other prominent human images, and illustrate YOLO was successful in
detecting most of the human figures in an image with higher accuracy.
Therefore, the paper evaluates and differentiates the performance of YOLO
from the deep learning method Mask R-CNN in two points, detection ability
and computation time. Since machine learning algorithms are mostly data-
specific, the authors believe that the presented results might vary with the
varying nature of the data under observation. In another way, the presented
data might be seen as a counter-example of unveiling the detection inaccuracy
of the Mask R-CNN.

3. Proposed approach

3.1 System architecture

The provided diagram (Figure 1) illustrates a comprehensive system
architecture composed of various components that collaborate to deliver
functionality to users. The system can be divided into three primary layers:

Smart Web Art Gallery 121

Frontend, Backend, and External Services.
 The front end is responsible for the user interface and user experience. It
is implemented using HTML, CSS, and Bootstrap for styling, along with
JavaScript and jQuery for dynamic content and interactivity. Users interact
with the system through this layer, uploading images, inputting data, and
viewing results. The use of these technologies ensures a responsive and user-
friendly interface.
 The backend handles the application logic, processes user inputs from the
front end, and interacts with the database and external services. The backend
is built using ASP.NET Core MVC, which handles HTTP requests and
renders views, providing a robust framework for developing web
applications. Entity Framework Core is utilized for database interactions,
facilitating CRUD (Create, Read, Update, Delete) operations and database
management, ensuring seamless integration with the SQL Server database.
ASP.NET Identity is employed for authentication and authorization,
managing user accounts and roles, which enhances the security of the
application.

Figure 1. System Architecture Description

The Database, implemented using SQL Server, stores persistent data
including user information, uploaded images, and tags generated by the
YOLO model. The backend interacts with the database through Entity
Framework Core to perform various operations, ensuring data integrity and
consistency.

 The External Services component consists of a Flask server, the YOLO
model, and the Stripe API service. The Flask server, a lightweight Python
web server, hosts the YOLO model for object detection which is more

122
Adriana Cristiana Bîrzeanu, Paul Stefan Popescu,

Marian Cristian Mihaescu

detailed by Diwan et al. (2023). The backend communicates with this server
to send images for processing. The YOLO model which was also described
by Stancel et al (2019), implemented in Python, performs object detection on
the uploaded images, processes them, and returns detected objects as tags.
Additionally, the Stripe API service is used for payment processing; the
backend interacts with this service to handle financial transactions securely.

The workflow begins when users upload images via the front end. The
backend receives the image and sends it to the Flask server. The Flask server
then uses the YOLO model to detect objects in the image. The detected
objects are returned to the backend as tags. The backend stores these tags in
the SQL Server database and displays them to the user via the front end. If
required, the backend interacts with the Stripe API service to process
payments.

This architecture ensures a clear separation of concerns, with each layer
and component handling distinct responsibilities. The front end provides an
interactive user interface, the back end manages application logic and data
flow, and external services handle specialized tasks like object detection and
payment processing. This modular approach enhances maintainability,
scalability, and the overall robustness of the system. By leveraging the
strengths of each technology and component, the system delivers a seamless
and efficient user experience.

Smart Web Art Gallery 123

Figure 2. Tag Generation Workflow

The diagram provided (Figure 2) outlines the workflow for generating
automated tags using a YOLO model through a Flask server, integrated with
an ASP.NET Core MVC backend.

The process begins in the Backend, implemented using ASP.NET Core
MVC. When a user requests to generate automated tags for an uploaded
image, the backend sends an HTTP request to the Flask server. This request
includes the image data to be processed.

Upon receiving the request, the Flask Server utilizes the YOLO Model
to perform object detection on the image. The YOLO model analyzes the
image and identifies objects within it, generating corresponding tags for each
detected object.

After processing the image, the Flask server sends an HTTP response back
to the backend. This response contains the generated tags.

Finally, the backend receives the tags and saves them into the database.
This completes the tag generation process, allowing the tags to be used for
further application features or displayed to the user. This workflow ensures
an efficient and automated way of tagging images, leveraging advanced
object detection capabilities provided by the YOLO model.

124
Adriana Cristiana Bîrzeanu, Paul Stefan Popescu,

Marian Cristian Mihaescu

3.2 Pipeline Breakdown into Modules

The system for generating automated tags is composed of several
interconnected modules, each playing a crucial role in ensuring the
functionality and efficiency of the overall process.

The front end serves as the user interface, developed using HTML, CSS,
Bootstrap, JavaScript, and jQuery. This module is responsible for capturing
user inputs, including image uploads, and providing a responsive and intuitive
interface. Users interact with the front end to initiate the tag generation
process by uploading images and requesting automated tags.

The Backend module, built with ASP.NET Core MVC, acts as the
intermediary between the front end and the external services. It handles HTTP
requests from the front end, processes the data, and communicates with
external services. The backend uses Entity Framework Core for database
operations and ASP.NET Identity for user authentication and management.
Upon receiving an image upload request, the backend sends an HTTP request
to the Flask server for tag generation.

The Flask Server, written in Python, hosts the YOLO Model for object
detection. When the backend sends an image for processing, the Flask server
utilizes the YOLO model to analyze the image and identify objects. The
YOLO model, known for its speed and accuracy, processes the image and
generates corresponding tags, which are then sent back to the backend as an
HTTP response.

The Database, implemented using SQL Server, stores the generated tags
along with other related data. The backend saves the tags received from the
Flask server into the database, ensuring that they are readily available for
future retrieval and use within the application.

Additionally, the system integrates the Stripe API Service for handling
payments. This external service allows users to make secure transactions,
adding a layer of functionality for applications requiring payment processing.

This modular architecture ensures a clean separation of concerns, with
each module focusing on a specific aspect of the system. The frontend
handles user interactions, the backend manages data flow and business logic,
the Flask server processes images and generates tags using the YOLO model,
and the database securely stores the data. This design enhances
maintainability, scalability, and ease of development, allowing each module
to be developed and optimized independently.

Smart Web Art Gallery 125

The use case diagram (Figure 3) depicts the interactions between three
types of users and the functionalities of an online art platform. The three user
types are general users, registered users, and administrators, each represented
by distinct stick figures and arrows in different colors.

General users, indicated by the green arrows, have access to the following
functionalities: viewing products, searching for products, registering on the
platform, and viewing the art gallery which was also addressed by Chou et al.
(2019). These actions do not require logging into the system and are
accessible to anyone visiting the website.

Registered users, represented by the orange arrows, gain access to
additional features after logging in. They can view their user cart, use a wish
list, add products, edit their profile, view their order history, and add
comments to artworks. Moreover, they have access to Stripe payment
integration for purchasing products and benefit from automated tag
generation to enhance their browsing experience.

Administrators, shown with red arrows, possess advanced privileges.
After logging in, they can edit the order stage, delete artworks, delete
comments, and view the dashboard. These functionalities are critical for
maintaining the platform's content and ensuring smooth operational
management.

126
Adriana Cristiana Bîrzeanu, Paul Stefan Popescu,

Marian Cristian Mihaescu

Figure 3. Use-Case Diagram

In summary, the diagram efficiently categorizes functionalities based on
user roles, highlighting the accessible features for general users, the extended
capabilities for registered users, and the administrative control available to
administrators. This structured access ensures a streamlined user experience
while maintaining secure and effective platform management.

Smart Web Art Gallery 127

Figure 4. YOLO Performance Comparison

3.3 Image tagging functionality

The selection of YOLOv3 (You Only Look Once, version 3) for the image
tagging functionality is driven by several key factors that align with the needs
of our system. Here is an in-depth discussion of why YOLOv3 is the optimal
choice for our application (Figure 4):

Balanced Accuracy

YOLOv3 provides a well-rounded balance between accuracy and speed.
Compared to its predecessors, YOLOv1 and YOLOv2, version 3 has shown
significant improvements in precision. This enhancement ensures that our
system can accurately detect and tag objects within images, reducing the
likelihood of errors and improving the overall reliability of the tag generation
process. The balanced accuracy is crucial for maintaining a high standard of
performance while still being efficient.

128
Adriana Cristiana Bîrzeanu, Paul Stefan Popescu,

Marian Cristian Mihaescu

Real-Time Performance

One of the standout features of YOLOv3 is its capability to process images
in real-time. With a processing speed of approximately 20 frames per second
(FPS) on a high-end GPU, YOLOv3 is well-suited for applications that
require immediate results. This real-time performance is particularly
beneficial for our system as it allows users to receive instant feedback on their
uploaded images. This responsiveness enhances the user experience by
minimizing waiting times and providing immediate insights.

Small-Object Detection

YOLOv3 includes improvements specifically designed for the detection of
small objects. In many practical scenarios, the ability to accurately identify
and tag small objects within an image is critical. Whether it’s for applications
in surveillance, healthcare, or retail, the detection of small objects ensures
that no important details are missed. YOLOv3’s enhanced algorithms for
small object detection make it a robust choice for comprehensive image
analysis.

Resource and Performance Balance

Another significant advantage of YOLOv3 is its efficient use of
computational resources. While delivering high performance and accuracy,
YOLOv3 maintains reasonable resource requirements, making it accessible
for various applications. This balance is crucial for our system as it ensures
that we can deploy the model without the need for excessively powerful
hardware, thus reducing costs and making the technology more accessible.

Technical Improvements in YOLOv3

YOLOv3 introduces several technical improvements over its predecessors:
● Multi-Scale Predictions: YOLOv3 predicts bounding boxes at

different scales, which improves its ability to detect objects of varying sizes
within the same image.

● Feature Pyramid Network (FPN): This allows YOLOv3 to use
different layers of the network to detect small, medium, and large objects,
enhancing its versatility.

● Darknet-53 Backbone: YOLOv3 uses the Darknet-53 architecture,
which is a more powerful and efficient feature extractor than the ones used in

Smart Web Art Gallery 129

YOLOv1 and YOLOv2.

4. RESULTS

The tag generation functionality is a core feature of the system, enabling
automated tagging of images using advanced object detection techniques.
This process involves several key steps, each handled by different modules
of the system to ensure seamless and efficient operation.

4.2 User Interaction and Image Upload

The process begins at the Frontend where users interact with the application.
Built with HTML, CSS, Bootstrap, JavaScript, and jQuery, the frontend
provides an intuitive interface for users to upload images. Users can select an
image file, which is then displayed in a preview section (Figure 5). Once the
image is uploaded, the user can request the generation of automated tags by
clicking a designated button.

Figure 5. Uploading images

4.2 Backend Request Handling

Upon user request, the Backend module, developed with ASP.NET Core
MVC, takes over. The backend receives the image file from the frontend and
prepares it for processing. This involves creating an HTTP request that
includes the image file as part of the form data. The backend sends this

130
Adriana Cristiana Bîrzeanu, Paul Stefan Popescu,

Marian Cristian Mihaescu

request to the Flask server, which hosts the object detection model.

4.3 Flask Server and YOLO Model Processing

The Flask Server is a crucial component, implemented in Python, responsible
for running the YOLO (You Only Look Once) object detection model. When
the server receives the image from the backend, it processes the image using
the YOLO model. YOLO is renowned for its ability to detect multiple objects
within an image quickly and accurately. It scans the image, identifies objects,
and generates corresponding tags based on the detected objects. The YOLO
model returns a list of tags, each representing an object found in the image
(Figure 6).

Figure 6. Tags found

4.4 Returning Tags to Backend

After the YOLO model processes the image and generates the tags, the Flask
server sends an HTTP response back to the backend. This response includes
the list of generated tags. The backend parses this response and extracts the
tags.

4.5 Storing Tags in Database

Once the backend receives the tags from the Flask server, it stores them in
the Database. The database managed using SQL Server and Entity
Framework Core, maintains a record of the generated tags along with other
relevant data. This ensures that the tags are persistently stored and can be
retrieved for future use.

4.6 Displaying Tags to User

Finally, the backend sends the generated tags back to the front end. The front
end then displays these tags to the user (Figure 7), providing immediate
feedback on the objects detected within the uploaded image. Users can view

Smart Web Art Gallery 131

the tags and, if necessary, delete or add new tags before finalizing their
submission.

Figure 5. Displaying Tags

5. CONCLUSION

The Smart Web Art Gallery System presents a significant advancement in
the fusion of technology and art, demonstrating how digital platforms can
enhance the accessibility and appreciation of creative works. Through the
integration of the YOLOv3 model, implemented with Flask and supported by
ASP.NET Core MVC, the system effectively automates the recognition and
categorization of artworks, providing users with accurate and personalized art
recommendations. Key findings from this research include the system’s
ability to process and identify various art styles and elements in real time,
offering an interactive and engaging user experience.

The proposed solution bridges the gap between traditional art exhibition
methods and modern technological capabilities, it also highlights areas for
future research. In conclusion, the Smart Web Art Gallery System
exemplifies how AI and modern web technologies can transform the
traditional art gallery experience, making art more inclusive and engaging for
diverse audiences worldwide. This research underscores the transformative

132
Adriana Cristiana Bîrzeanu, Paul Stefan Popescu,

Marian Cristian Mihaescu

potential of digital platforms in the art world, paving the way for innovative
approaches to art curation and presentation.

 References

Bengamra, S., Mzoughi, O., Bigand, A., & Zagrouba, E. (2024). A comprehensive survey on
object detection in Visual Art: taxonomy and challenge. Multimedia Tools and
Applications, 83(5), 14637-14670.

Bomfim, T. S., Nunes, É. D. O., & Sánchez, Á. (2022). Art Graffiti Detection in Urban
Images Using Deep Learning. ICT Applications for Smart Cities, 1-20). Springer.

Falomir, Z., Museros, L., Sanz, I., & Gonzalez-Abril, L. (2018). Categorizing paintings in
art styles based on qualitative color descriptors, quantitative global features and machine
learning (QArt-Learn). Expert Systems with Applications, 97, 83-94.

Pandey, A., & Jain, A. (2017). Comparative analysis of KNN algorithm using various
normalization techniques. International Journal of Computer Network and Information
Security, 10(11), 36.

Peng, D., Lee, F. C., & Boroyevich, D. (2002, June). A novel SVM algorithm for multilevel
three-phase converters. In 2002 IEEE 33rd Annual IEEE Power Electronics Specialists
Conference. Proceedings (Cat. No. 02CH37289) (Vol. 2, pp. 509-513). IEEE.

Díaz, J. L. P., Dorn, A., Koch, G., & Abgaz, Y. (2020, September). A comparative approach
between different computer vision tools, including commercial and open-source, for
improving cultural image access and analysis. In 2020 10th International Conference on
Advanced Computer Information Technologies (ACIT) 815-819. IEEE.

Sumit, S. S., Watada, J., Roy, A., & Rambli, D. R. A. (2020, April). In object detection deep
learning methods, YOLO shows supremum to Mask R-CNN. Journal of Physics:
Conference Series (Vol. 1529, No. 4, p. 042086). IOP Publishing.

Diwan, T., Anirudh, G., & Tembhurne, J. V. (2023). Object detection using YOLO:
Challenges, architectural successors, datasets and applications. Multimedia Tools and
Applications, 82(6), 9243-9275.

Štancel, M., & Hulič, M. (2019). An introduction to image classification and object detection
using YOLO detector. In CEUR Workshop Proceedings (Vol. 2403, pp. 1-8).

Chou, Y. S., Wang, C. Y., Chen, M. C., Lin, S. D., & Liao, H. Y. M. (2019). Dynamic gallery
for real-time multi-target multi-camera tracking. 16th IEEE International Conference on
Advanced Video and Signal-Based Surveillance (AVSS), 1-8. IEEE.

