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Abstract. Digital art galleries have become increasingly popular; the intersection of 
technology and art has opened new avenues for creative works. This paper introduces the 
Smart Web Art Gallery System, a novel platform designed to revolutionize online art 
curation, display, and user interaction. By leveraging advanced technologies such as artificial 
intelligence (AI), and data analytics, the system offers a dynamic and personalized user 
experience. A key component of the system is the integration of the YOLOv3 (You Only 
Look Once, version 3) model, a state-of-the-art real-time object detection algorithm. 
Implemented using Flask, a lightweight web framework, YOLOv3 enhances the system's 
ability to recognize and categorize artworks accurately. The overall application is developed 
using ASP.NET Core MVC, ensuring robust and scalable performance. Experiments 
demonstrate the system’s effectiveness making it more inclusive and engaging for diverse 
audiences worldwide. 
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1. Introduction 

In the contemporary digital age, the intersection of technology and art has 
opened new avenues for the appreciation and dissemination of creative 
works. While still vital, traditional art galleries are increasingly 
complemented by innovative digital platforms offering enhanced 
accessibility and interactive experiences. This paper introduces the concept 
and implementation of a Smart Web Art Gallery System, designed to 
revolutionize the way art is curated, displayed, and experienced online. 

The Smart Web Art Gallery System leverages cutting-edge technologies 
such as artificial intelligence (AI) and data analytics to create a dynamic and 
personalized user experience. Unlike conventional online galleries that 
merely replicate physical exhibits, this system adapts to individual user 



118 
Adriana Cristiana Bîrzeanu, Paul Stefan Popescu,  

Marian Cristian Mihaescu 

 

preferences, offering tailored recommendations and immersive interactions 
with artworks. 

A significant technological component of this system is the integration of 
the YOLOv3 (You Only Look Once, version 3) model, an advanced real-time 
object detection algorithm. YOLOv3 is employed to enhance the system's 
capability in recognizing and categorizing artworks with high accuracy. This 
model analyzes visual content to automatically identify and classify different 
styles, periods, and features of artworks. By doing so, it enables more precise 
recommendations and interactions based on the detected attributes. The 
model is implemented using Flask, a lightweight WSGI web application 
framework, ensuring efficient and scalable deployment. 

The application itself is developed using ASP.NET Core MVC, a robust 
framework for building scalable and high-performance web applications. 
This combination of Flask for the YOLOv3 model and ASP.NET Core MVC 
for the overall application infrastructure allows for seamless integration and 
efficient handling of complex tasks such as real-time object detection and 
dynamic content delivery. 

Key features of the system include AI-driven art recommendations, which 
analyze user behavior and preferences to suggest relevant artworks, and AR 
functionalities that allow users to visualize art pieces within their own spaces. 
The YOLOv3 model plays a crucial role in this by providing a detailed 
analysis of each artwork, thus enriching the data used for personalization. 
Additionally, the system incorporates advanced data analytics to provide 
artists and curators with valuable insights into visitor engagement and trends, 
fostering a more informed and responsive approach to art curation. 

By bridging the gap between traditional art exhibition methods and 
modern technological capabilities, the Smart Web Art Gallery System aims 
to democratize art access, making it more inclusive and engaging for diverse 
audiences worldwide. This paper will explore the development process, core 
functionalities, and potential impact of the system, highlighting its 
significance in the evolving landscape of digital art presentation. 

2. Related Work 

The usage of deep learning algorithms for object detection in visual arts is a 
well-debated subject as presented in Bengamra et al. (2024). The authors state 
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that where many methods exist, a deep review of the literature concerning 
object detection in visual art is still lacking. After reviewing several related 
papers, this study presents a comprehensive review, including an overview of 
major computer vision applications for visual art, a presentation of previous 
related surveys, and a comprehensive overview of relevant object detection 
methods for artistic images. Considering the studied object detection 
methods, we propose a new taxonomy based on the supervision learning 
degree, the adopted framework, the adopted methodology (classical or deep-
learning-based method), the type of object to detect, and the depictive style 
of the painting images. Then the several challenges for object detection in 
artistic images are described and the proposed ways of solving some 
encountered problems are discussed. In addition, available artwork datasets 
and metrics used for object detection performance evaluation are presented.  
    Another art form is analyzed in Bomfim et al. (2022) where the paper 
describes a deep learning-based methodology to accurately detect urban 
graffiti in complex images. The different graffiti varieties and the multiple 
variabilities present in these artistic elements on street scenes (such as partial 
occlusions or their reduced size) make this object detection problem 
challenging. Their experimental results using different datasets endorse the 
effectiveness of this proposal. 
    Regarding machine learning algorithms used in visual art there is a paper 
Falomir et al. (2018) that used k-Nearest Neighbor  as in Pandey et al. (2017) 
and support vector machine presented by Peng et al. (2002) techniques for 
learning the features of paintings from the Baroque, Impressionism and Post-
Impressionism styles. Specifically, two classifiers are built, and two different 
parameterizations have been applied for the QCD. For testing QArt-Learn 
approach, the Painting-91 dataset has been used, from which the paintings 
corresponding to Velázquez, Vermeer, Monet, Renoir, van Gogh and 
Gauguin were extracted, resulting in a set of 252 paintings. The results show 
that categorization accuracies are higher than 65%, comparable to accuracies 
obtained in the literature. However, QArt-Learn uses qualitative color names 
to describe style color palettes linguistically, so non-experts in art can better 
understand them since QCDs are aligned with human perception. 
     Regarding review and summarization papers about deep learning models 
applied on art, there is a paper published by Diaz et al. (2020) in which was 
carried out in the context of the Digital Humanities project ChIA, authors 
present an approach for testing different commercial (Clarifai, IBM Watson, 
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Microsoft Cognitive Services, Google Cloud Vision) and open-source 
(YOLO) computer vision (CV) tools on a set of selected cultural food images 
from the Europeana collection with regard to producing relevant concepts. 
The project aims to improve access to implicit cultural knowledge contained 
in images and increase analysis possibilities for scientific research, content 
providers, and educational purposes. Preliminary results showed that not only 
quantitative output results are important, but also the quality of concepts 
generated.  
    In his paper, Diaz et al. (2020) compare two influential deep learning 
algorithms in image processing and object detection, Mask R-CNN and 
YOLO. The authors state that it is also a challenging task to understand subtle 
details in their surroundings. For instance, radiance conditions, background 
clutter, and partial or full occlusion. When a machine tries to interact with 
human or try to take pictures, it becomes hard for them to magnify the details 
of a human surrounding. In this study, we have focused on detecting humans 
effectively.      
    The main focus of the paper published by Sumit et al. (2020) objective of 
the work is to compare the performance of YOLO and Mask R-CNN, which 
unveils the inability of Mask R-CNN to detect tiny human figures among 
other prominent human images, and illustrate YOLO was successful in 
detecting most of the human figures in an image with higher accuracy. 
Therefore, the paper evaluates and differentiates the performance of YOLO 
from the deep learning method Mask R-CNN in two points, detection ability 
and computation time. Since machine learning algorithms are mostly data-
specific, the authors believe that the presented results might vary with the 
varying nature of the data under observation. In another way, the presented 
data might be seen as a counter-example of unveiling the detection inaccuracy 
of the Mask R-CNN. 

3. Proposed approach 

3.1 System architecture 

The provided diagram (Figure 1) illustrates a comprehensive system 
architecture composed of various components that collaborate to deliver 
functionality to users. The system can be divided into three primary layers: 
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Frontend, Backend, and External Services.  
     The front end is responsible for the user interface and user experience. It 
is implemented using HTML, CSS, and Bootstrap for styling, along with 
JavaScript and jQuery for dynamic content and interactivity. Users interact 
with the system through this layer, uploading images, inputting data, and 
viewing results. The use of these technologies ensures a responsive and user-
friendly interface. 
     The backend handles the application logic, processes user inputs from the 
front end, and interacts with the database and external services. The backend 
is built using ASP.NET Core MVC, which handles HTTP requests and 
renders views, providing a robust framework for developing web 
applications. Entity Framework Core is utilized for database interactions, 
facilitating CRUD (Create, Read, Update, Delete) operations and database 
management, ensuring seamless integration with the SQL Server database. 
ASP.NET Identity is employed for authentication and authorization, 
managing user accounts and roles, which enhances the security of the 
application. 

 
Figure 1. System Architecture Description 

The Database, implemented using SQL Server, stores persistent data 
including user information, uploaded images, and tags generated by the 
YOLO model. The backend interacts with the database through Entity 
Framework Core to perform various operations, ensuring data integrity and 
consistency. 

 The External Services component consists of a Flask server, the YOLO 
model, and the Stripe API service. The Flask server, a lightweight Python 
web server, hosts the YOLO model for object detection which is more 
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detailed by Diwan et al. (2023). The backend communicates with this server 
to send images for processing. The YOLO model which was also described 
by Stancel et al (2019), implemented in Python, performs object detection on 
the uploaded images, processes them, and returns detected objects as tags. 
Additionally, the Stripe API service is used for payment processing; the 
backend interacts with this service to handle financial transactions securely. 

The workflow begins when users upload images via the front end. The 
backend receives the image and sends it to the Flask server. The Flask server 
then uses the YOLO model to detect objects in the image. The detected 
objects are returned to the backend as tags. The backend stores these tags in 
the SQL Server database and displays them to the user via the front end. If 
required, the backend interacts with the Stripe API service to process 
payments. 

This architecture ensures a clear separation of concerns, with each layer 
and component handling distinct responsibilities. The front end provides an 
interactive user interface, the back end manages application logic and data 
flow, and external services handle specialized tasks like object detection and 
payment processing. This modular approach enhances maintainability, 
scalability, and the overall robustness of the system. By leveraging the 
strengths of each technology and component, the system delivers a seamless 
and efficient user experience. 
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Figure 2. Tag Generation Workflow 

The diagram provided (Figure 2) outlines the workflow for generating 
automated tags using a YOLO model through a Flask server, integrated with 
an ASP.NET Core MVC backend. 

The process begins in the Backend, implemented using ASP.NET Core 
MVC. When a user requests to generate automated tags for an uploaded 
image, the backend sends an HTTP request to the Flask server. This request 
includes the image data to be processed. 

Upon receiving the request, the Flask Server utilizes the YOLO Model   
to perform object detection on the image. The YOLO model analyzes the 
image and identifies objects within it, generating corresponding tags for each 
detected object. 

After processing the image, the Flask server sends an HTTP response back 
to the backend. This response contains the generated tags. 

Finally, the backend receives the tags and saves them into the database. 
This completes the tag generation process, allowing the tags to be used for 
further application features or displayed to the user. This workflow ensures 
an efficient and automated way of tagging images, leveraging advanced 
object detection capabilities provided by the YOLO model. 
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3.2 Pipeline Breakdown into Modules 

The system for generating automated tags is composed of several 
interconnected modules, each playing a crucial role in ensuring the 
functionality and efficiency of the overall process. 

The front end serves as the user interface, developed using HTML, CSS, 
Bootstrap, JavaScript, and jQuery. This module is responsible for capturing 
user inputs, including image uploads, and providing a responsive and intuitive 
interface. Users interact with the front end to initiate the tag generation 
process by uploading images and requesting automated tags. 

The Backend module, built with ASP.NET Core MVC, acts as the 
intermediary between the front end and the external services. It handles HTTP 
requests from the front end, processes the data, and communicates with 
external services. The backend uses Entity Framework Core for database 
operations and ASP.NET Identity for user authentication and management. 
Upon receiving an image upload request, the backend sends an HTTP request 
to the Flask server for tag generation. 

The Flask Server, written in Python, hosts the YOLO Model for object 
detection. When the backend sends an image for processing, the Flask server 
utilizes the YOLO model to analyze the image and identify objects. The 
YOLO model, known for its speed and accuracy, processes the image and 
generates corresponding tags, which are then sent back to the backend as an 
HTTP response. 

The Database, implemented using SQL Server, stores the generated tags 
along with other related data. The backend saves the tags received from the 
Flask server into the database, ensuring that they are readily available for 
future retrieval and use within the application. 

Additionally, the system integrates the Stripe API Service for handling 
payments. This external service allows users to make secure transactions, 
adding a layer of functionality for applications requiring payment processing. 

This modular architecture ensures a clean separation of concerns, with 
each module focusing on a specific aspect of the system. The frontend 
handles user interactions, the backend manages data flow and business logic, 
the Flask server processes images and generates tags using the YOLO model, 
and the database securely stores the data. This design enhances 
maintainability, scalability, and ease of development, allowing each module 
to be developed and optimized independently. 
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The use case diagram (Figure 3) depicts the interactions between three 
types of users and the functionalities of an online art platform. The three user 
types are general users, registered users, and administrators, each represented 
by distinct stick figures and arrows in different colors. 

General users, indicated by the green arrows, have access to the following 
functionalities: viewing products, searching for products, registering on the 
platform, and viewing the art gallery which was also addressed by Chou et al. 
(2019). These actions do not require logging into the system and are 
accessible to anyone visiting the website. 

Registered users, represented by the orange arrows, gain access to 
additional features after logging in. They can view their user cart, use a wish 
list, add products, edit their profile, view their order history, and add 
comments to artworks. Moreover, they have access to Stripe payment 
integration for purchasing products and benefit from automated tag 
generation to enhance their browsing experience. 

Administrators, shown with red arrows, possess advanced privileges. 
After logging in, they can edit the order stage, delete artworks, delete 
comments, and view the dashboard. These functionalities are critical for 
maintaining the platform's content and ensuring smooth operational 
management. 
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Figure 3. Use-Case Diagram 

In summary, the diagram efficiently categorizes functionalities based on 
user roles, highlighting the accessible features for general users, the extended 
capabilities for registered users, and the administrative control available to 
administrators. This structured access ensures a streamlined user experience 
while maintaining secure and effective platform management. 
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Figure 4. YOLO Performance Comparison 

3.3 Image tagging functionality 

The selection of YOLOv3 (You Only Look Once, version 3) for the image 
tagging functionality is driven by several key factors that align with the needs 
of our system. Here is an in-depth discussion of why YOLOv3 is the optimal 
choice for our application (Figure 4): 

Balanced Accuracy 

YOLOv3 provides a well-rounded balance between accuracy and speed. 
Compared to its predecessors, YOLOv1 and YOLOv2, version 3 has shown 
significant improvements in precision. This enhancement ensures that our 
system can accurately detect and tag objects within images, reducing the 
likelihood of errors and improving the overall reliability of the tag generation 
process. The balanced accuracy is crucial for maintaining a high standard of 
performance while still being efficient. 
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Real-Time Performance 

One of the standout features of YOLOv3 is its capability to process images 
in real-time. With a processing speed of approximately 20 frames per second 
(FPS) on a high-end GPU, YOLOv3 is well-suited for applications that 
require immediate results. This real-time performance is particularly 
beneficial for our system as it allows users to receive instant feedback on their 
uploaded images. This responsiveness enhances the user experience by 
minimizing waiting times and providing immediate insights. 

Small-Object Detection 

YOLOv3 includes improvements specifically designed for the detection of 
small objects. In many practical scenarios, the ability to accurately identify 
and tag small objects within an image is critical. Whether it’s for applications 
in surveillance, healthcare, or retail, the detection of small objects ensures 
that no important details are missed. YOLOv3’s enhanced algorithms for 
small object detection make it a robust choice for comprehensive image 
analysis. 

Resource and Performance Balance 

Another significant advantage of YOLOv3 is its efficient use of 
computational resources. While delivering high performance and accuracy, 
YOLOv3 maintains reasonable resource requirements, making it accessible 
for various applications. This balance is crucial for our system as it ensures 
that we can deploy the model without the need for excessively powerful 
hardware, thus reducing costs and making the technology more accessible. 

Technical Improvements in YOLOv3 

YOLOv3 introduces several technical improvements over its predecessors: 
● Multi-Scale Predictions: YOLOv3 predicts bounding boxes at 

different scales, which improves its ability to detect objects of varying sizes 
within the same image. 

● Feature Pyramid Network (FPN): This allows YOLOv3 to use 
different layers of the network to detect small, medium, and large objects, 
enhancing its versatility. 

● Darknet-53 Backbone: YOLOv3 uses the Darknet-53 architecture, 
which is a more powerful and efficient feature extractor than the ones used in 
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YOLOv1 and YOLOv2. 

4. RESULTS 

The tag generation functionality is a core feature of the system, enabling 
automated tagging of images using advanced object detection techniques. 
This process involves several key steps, each handled by different modules 
of the system to ensure seamless and efficient operation. 

 

4.2 User Interaction and Image Upload 

The process begins at the Frontend where users interact with the application. 
Built with HTML, CSS, Bootstrap, JavaScript, and jQuery, the frontend 
provides an intuitive interface for users to upload images. Users can select an 
image file, which is then displayed in a preview section (Figure 5). Once the 
image is uploaded, the user can request the generation of automated tags by 
clicking a designated button. 

 

 
Figure 5. Uploading images 

4.2 Backend Request Handling 

Upon user request, the Backend module, developed with ASP.NET Core 
MVC, takes over. The backend receives the image file from the frontend and 
prepares it for processing. This involves creating an HTTP request that 
includes the image file as part of the form data. The backend sends this 
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request to the Flask server, which hosts the object detection model. 

4.3 Flask Server and YOLO Model Processing 

The Flask Server is a crucial component, implemented in Python, responsible 
for running the YOLO (You Only Look Once) object detection model. When 
the server receives the image from the backend, it processes the image using 
the YOLO model. YOLO is renowned for its ability to detect multiple objects 
within an image quickly and accurately. It scans the image, identifies objects, 
and generates corresponding tags based on the detected objects. The YOLO 
model returns a list of tags, each representing an object found in the image 
(Figure 6). 

 
Figure 6. Tags found 

4.4 Returning Tags to Backend 

After the YOLO model processes the image and generates the tags, the Flask 
server sends an HTTP response back to the backend. This response includes 
the list of generated tags. The backend parses this response and extracts the 
tags. 

4.5 Storing Tags in Database 

Once the backend receives the tags from the Flask server, it stores them in 
the Database. The database managed using SQL Server and Entity 
Framework Core, maintains a record of the generated tags along with other 
relevant data. This ensures that the tags are persistently stored and can be 
retrieved for future use. 

4.6 Displaying Tags to User 

Finally, the backend sends the generated tags back to the front end. The front 
end then displays these tags to the user (Figure 7), providing immediate 
feedback on the objects detected within the uploaded image. Users can view 
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the tags and, if necessary, delete or add new tags before finalizing their 
submission. 

 
Figure 5. Displaying Tags 

5. CONCLUSION 

The Smart Web Art Gallery System presents a significant advancement in 
the fusion of technology and art, demonstrating how digital platforms can 
enhance the accessibility and appreciation of creative works. Through the 
integration of the YOLOv3 model, implemented with Flask and supported by 
ASP.NET Core MVC, the system effectively automates the recognition and 
categorization of artworks, providing users with accurate and personalized art 
recommendations. Key findings from this research include the system’s 
ability to process and identify various art styles and elements in real time, 
offering an interactive and engaging user experience.  

The proposed solution bridges the gap between traditional art exhibition 
methods and modern technological capabilities, it also highlights areas for 
future research. In conclusion, the Smart Web Art Gallery System 
exemplifies how AI and modern web technologies can transform the 
traditional art gallery experience, making art more inclusive and engaging for 
diverse audiences worldwide. This research underscores the transformative 
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potential of digital platforms in the art world, paving the way for innovative 
approaches to art curation and presentation. 
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