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Abstract. This paper presents a method that aims to improve the recognition rate of 
PointMLP (Xu et al., 2022) for the classification task with minimal impact on training and 
inference speed by extracting and incorporating more information from the 3D objects used 
during the training process. Firstly, when extracting the 3D point cloud from the 3D mesh, 
besides sampling 3D points across the surface of the 3D objects and applying other common 
preprocessings, our proposed algorithm also saves the normal of the triangle out of which the 
3D point was sampled and calculates 2 orthogonal vectors that are tangent to the surface of 
the 3D model in that point. Afterwards, the resulting vectors are incorporated into the 
architecture of PointMLP through the addition of new layers to the calculation of the 
embedding vector, so that the information about the tangents and normals is incorporated 
into the model architecture. This effectively provides the model with more context about the 
surface of the original 3D object, slightly improving the accuracy of the model with close to 
0 impact on training/inference speed. 
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Introduction 

 
Classification of 3D objects is crucial in many areas and across many 
industries and domains, like automotives (for self-driving vehicles and 
various systems for road safety), aeronautics (for many types of sensors and 
flight guidance equipment), military (smart radars, guided missiles), video 
games production (enabling some accessibility options), etc. One of the most 
important metrics for the classifiers is accuracy, defined as the number of 
correct predictions reported to the number of total predictions, as incorrect 
predictions could confuse the systems that use the data from the classifier and 
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lead to incorrect behaviors. 
In computer graphics, 3D models are usually represented as unordered sets 

of R3 floating point vectors, grouped by their indices into polygons 
(commonly triangles or quads) that constitute the surface of an object. Whilst 
this structure is useful for interpolating fragments for rendering the model, it 
is not ideal for object classification. Classical approaches used on 2D images 
cannot be used directly, as the data in this structure is unordered and irregular. 
For this reason, the 3D models are usually transformed into structures that are 
easier to process and learn from during the training process (Section 2). One 
such data structure is the point cloud, which only keeps sets of R3 vectors 
that represent 3D points located on the surface of a 3D object, eliminating 
any connection between the vertices. Whilst this representation is popular for 
capturing real-world objects and environments (as in Zeid at al. (2023)) and 
is the representation provided by most capture devices (Wang et al. (2019)), 
this structure discards a lot of the information provided by an artificial 3D 
model (modeled by an artist, e.g.). This paper aims to propose an intuitive 
solution to extract more information about the surface of an artificial 3D 
object when converting it to a point cloud, with respect to the properties that 
a point cloud has (unordered, e.g.) by integrating additional input vectors into 
the point cloud: the normal vector, a vector perpendicular on the surface of 
the 3D object on the parent polygon of the extracted vertex, and some tangent 
vectors (vectors perpendicular to the normal vector). The necessity to extract 
more information from the 3D object is given by the lack of annotated training 
data available for 3D objects (Xue et al. (2022), Zeid at al. (2019), Qi et al. 
(2023)) as learning more features from the 3D objects could decrease the 
amount of necessary training data. 

In mathematics, a tangent is defined as a vector that touches a curve or 
surface at a specific point in space.  For a 3D object, the number of tangents 
to the surface is infinite, and we could theoretically choose any arbitrary 
vector that is tangent to the surface of the object in the chosen point. However, 
it is intuitive that if the tangent vectors are correlated with the tangents of 
their neighbors (from a Euclidean distance perspective), results might have 
higher accuracy. We have followed through with this intuition and extracted 
the vectors in such a way that they are aligned with their UV projections, 
similarly to how this process is done for game engines, where two orthogonal 
tangent vectors are extracted from the model in such a way that that they point 
in the direction of increasing texture coordinate U, respectively V. In 3D 
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graphics, this information is used for lighting calculations for improving the 
aspect of 3D objects during the rendering process by faking the lighting of 
bumps and dents. 

As datasets of 3D objects available as of now do not include UV data, the 
projection vectors must be generated. In order to create the UV projection for 
a certain model, the model is placed in a 3D box with an edge of 2 units (after 
the model is centered and the vertices are normalized), and it is projected on 
the closest of the 8 sides of the cube. The projections are 2D vectors that can 
be used as placeholders for the UV vectors, a common method used in 3D 
graphics known as cube projection. There are other methods that can be used 
to generate the UV vectors, but this one was chosen because it generates 
vectors quickly and efficiently, which is important because when applying a 
more complex method to an entire data set, the time to compute the vectors 
quickly degenerates: the time required to calculate a cube projection for an 
object with about 100.000 vertices takes less than a second on most modern 
hardware, whilst more complex methods take a few minutes for the same 
object, as per our tests (ex: Blender’s ”Smart UV Project”). 

This article describes the methods used for generating the specified vectors 
for each 3D point in the sampled cloud and effectively incorporate this 
additional data in the architecture of the PointMLP classifier. This classifier 
was chosen specifically because it is the most recent classifier that uses the 
point cloud approach. However, this additional data could theoretically be 
incorporated in most other point-cloud based classifier architectures. 

Related Works  

Recent research on 3D object classification usually follows one of these 
approaches: 
- conversion of the 3D object into voxel grids, followed by volumetric or 

convolutional approaches (as depicted in Maturana & Scherer (2015), Liu 
et al. (2021), Li et al. (2021), Zhang et al. (2021), Wu et al. (2015)). Being 
the first types of 3D object classifiers, some of those are simply 
generalizations over 2D image classifiers that extend well-known image 
classifier architectures into the 3rd dimension. Those methods are less 
efficient, as their memory requirements and computational power 
complexity are cubic, which limits the resolution of the grid even on 
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modern hardware. Because of the low resolution, the accuracy of those 
solutions is usually lower than other approaches. 

- rasterization of the 3D objects, followed by conventional methods used in 
2D image classification (as in Tatarchenko et al. (2018), Su et al. (2015), 
Gupta et al. (2014), Li et al. (2016), McCormac et al. (2016), Qi et al. 
(2017)). Articles that use this method start by drawing/rendering or 
otherwise calculating some form of projection of the object onto a plane, 
either from one or from multiple angles with various rendering 
techniques. Those images are stacked and are processed through various 
methods. Although those methods usually yield better results than the 
previous method, they are still limited because of the computationally 
expensive process of rendering images and the high volume of data that 
is costly to process. 

- unified learning from multiple data representations (multi-modal 
networks). Those methods merge various types of data (like 2D images 
and 3D objects), which enables the model to learn from additional data. 
3D object datasets are few and relatively small in size, which limits 
learning of most models. This approach, however, aims to solve this 
problem, and achieves better results than most other previous models. 
Depending on the specific model, the additional data can be extracted 
directly from the objects (e.g. rendering the 3D objects to generate 
images) (Yan et al. (2022))  or from external datasets with other types of 
data (Xue et al. (2022)). 

- converting the 3D object to a point cloud and using the point cloud as 
input (as in Xu et al. (2022), Qi et al. (2017), Xu et al. (2021), Liu et al. 
(2019), Thomas et al. (2019), Zhao et al. (2020)). There are various 
methods to extract/sample a point cloud from the surface of a 3D object 
and even more methods of processing it for the task of object 
classification, many of those however being limited by the irregularity 
and sparseness of the data, as the classifiers does not have a lot of context 
about the surface of the object. This paper expands on a classic way of 
extracting this data, in an attempt to reduce this issue; but before 
describing our own methods, we will expand for more context on two 
well-known point cloud classifiers: PointNet, and PointMLP. 
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PointNet is the first multi-layer perceptron for 3D object classification, part 
segmentation and semantic segmentation ever created that trains directly on 
clouds of 3D points. This method was an important scientific breakthrough at 
its time, as it respected the permutation invariance of point clouds, moving 
away from classical approaches like convolutions that require highly regular 
input formats. This method has 3 key modules: max pooling as a symmetric 
operation to aggregate information from all the points, a local and global 
geometric combination structure, and two joint alignment networks that align 
both input points and point features (see Qi et al. (2017)). 

PointMLP is a residual neural network (ResNet) used for classification and 
part segmentation, built on top of the PointNet idea. It is a neural network 
built with training and inference speed in mind that features a lightweight 
affine geometric module, which significantly improves recognition rate and 
with minimal impact on the performance. 

The core of the architecture can be resumed using the following formula: 

𝑔 = 𝜃௦ ቀ𝐴൫𝜃൫𝑓,൯, |𝑗 = 1,… , 𝐾൯ቁ 

where 𝜃௦ and 𝜃 are residual multi-layer perceptron blocks, and ”A” 
is an aggregation function (namely, the max pooling operation is being used). 
The 𝜃 block is a shared block meant to learn shared local weights, and the 
𝜃௦ block is designed to extract deep aggregated features. This equation is 
repeated for a number of stages, in order to form a profound (deep) neural 
network. The number of stages used is 4, and each of the 𝜃 and 𝜃௦ stages 
have 2 residual blocks. 

The architecture was augmented with a geometric module that transforms 
the points via normalization while maintaining the original geometric 
properties, as it was found that deeper architectures are harmful for the 
accuracy and stability of the model (Xu et al., 2022). 

Extracting Input Data for the Classifier 

Our method directly consumes triangulated 3D objects, optionally UV-
mapped (in the absence of an UV map, one will be automatically generated). 
Therefore, those objects are defined as data collections that carry the 
following information: 
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- sets of R3 floating-point vectors that represent the vertices of an object in 

3D space, normalized and centered 

- sets of R3 integer vectors that represent valid vertex indexes connected in 
triangles that define the surface of a 3D object 

- sets of R2  floating-point vectors that represent the UV coordinates of the 

vertices from the first set. 
Starting from this structure, we describe how to extract additional 

information besides the point cloud and how to feed it to the PointMLP 
classifier. 

 

In order to extract the point clouds from the 3D objects, we apply the most 
common algorithm for this task: randomly select a number of triangles (with 
a bias towards triangles with a greater surface) (Qi et al. (2017)), and then 
sample a random 3D location that sits on the surface of the triangle using 
Devroye’s algorithm (Devroye (1986)). We are sampling 8192 points for 
each model using this method, followed by a reduction to 1024 of the most 
relevant vertices using the Furthest Point Sampling algorithm (see Eldar et al. 
(1997)). 

The approach used to calculate the tangent vectors is similar to the 
methods used in 3D graphics for calculating the tangent and bitangent vectors 
for normal mapping, but with a few differences. 

The classical process consists of calculating two of the triangle edge 
vectors (L1, L2) and rewriting them as combinations of the tangent vectors 
(B1, B2) with the components of the UV vectors, obtaining a system that can 
be solved using conventional methods (see Lengyel (2012)): 

 

൜
𝐿ଵ = (𝑢ଵ − 𝑢)𝐵ଵ + (𝑣ଵ − 𝑣)𝐵ଶ

𝐿ଶ = (𝑢ଶ − 𝑢)𝐵ଵ + (𝑣ଶ − 𝑣)𝐵ଶ
 

 
Because we are trying to extract the tangent of a point that was randomly 

sampled on the surface of a 3D object, there are multiple approaches to 
extracting the tangent vectors that yield slightly different results. The simplest 
method to extract the tangent vectors is to calculate the tangents of the nearest 
vertex in the parent triangle, a trivial process using modern software. 
However, the vectors obtained using this method are slightly inaccurate, 
which might affect accuracy. 

This is because in a smooth surface the tangents of the vertices are 
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interpolated for each triangle fragment (Lengyel (2019)). To obtain more 
accurate tangent vectors, we could calculate them by interpolating the 
tangents of the parent triangle; this method might yield better results 
precision-wise, but comes at a cost: we have to calculate 3 times more 
tangents for each triangle, which might affect the computation speed. 

The method that was found to work best is to calculate the UV projection 
of the newly-sampled point using the same weights that were used to generate 
the randomly sampled 3D point. This provides the full 3D information needed 
to form a new triangle by combining the extracted point with 2 points from 
the original parent triangle. Using this triangle, we can now directly calculate 
the tangent vectors. 

Incorporating the Extracted Data in the PointMLP Model  
 

The input data received in the forward propagation call is processed into an 
embedding vector, which is then processed by the model. Naturally, the best 
method to incorporate the additional extracted data into the model is to 
modify the embedding vector. PointMLP uses for the calculation of the 
embedding vector a simple 1D convolution on the point cloud that 
summarizes an object’s point cloud to just a few numbers (a R64 vector, or 
R32 for PointMLPElite), followed by a batch normalization and an activation 
(commonly ReLU). This embedding is mainly used as a dimension reduction 
method, as simply executing the forward pass on the entire point cloud data 
would be expensive to compute even on modern hardware. 

Initially, the input size of this operation was intuitively modified to allow 
processing the additionally calculated data. However, this intuitive approach 
proved to decrease the accuracy of the model, either because the size of the 
embedding vector is insufficient to accurately summarize the locations of the 
3D points alongside with the other 3 vectors, or because the 3D position of 
the point cloud vertices should weigh more than the additional vectors. The 
intuition that the latter is more likely the culprit of the decreased accuracy 
was followed, and the location vectors of the points were separated from the 
others and processed independently. 

This results in two independent embedding vectors, that can be arbitrarily 
scaled to prioritize the embedding obtained from the location of the location 
vectors. Although fixed values could have been used to scale the vectors, a 



32 Dragos-Bogdan Tudor, Elena Pelican 

 

better result can be obtained by using two independent learnable parameters 
instead. The two now scaled vectors could theoretically be kept and processed 
separately throughout the model and combined later, but this approach would 
significantly increase the execution time for training and inference, defeating 
the purpose of this classifier, as PointMLP (and especially its elite version) 
was created with a lot of emphasis on execution speed. For this reason, the 
two vectors are combined immediately after their creation, through a 1D 
convolution operation. 

RESULTS 
 

The modified PointMLP was only tested for the classification task. 
Incorporating the tangents and the normals using the described methods 
resulted in a slight improvement in the accuracy of the model for the 
PointMLP classifier, using the recommended 80% training, 20% testing split. 
The training/inference speed is negatively affected by the additional 
operation, but not significantly. The results are depicted in Tables 1, 2, and 3, 
respectively, while Figure 1 is the confusion matrix for our classification 
problem. 

Table 1: PointMLPElite statistical results (average after training 3 times with different seeds) 

 w. modifications w/o. modifications 

Training time  
(1  epoch) 

32.916 s 32.751 

Inference speed 0.398 0.369 
Accuracy 92.52% 91.98% 

Table 2: PointMLP statistical results: w. modifications w/o. modifications 

Training time (1 epoch) 411.125 s 395.979 s 

Inference speed 4.4692 4.660 s 

Accuracy 93.15% 91.97% 
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Table 3. Classification report for the modified PointMLP (non-elite) classifier 

Object        Precision                                  Recall F1-score  Support 
airplane 1.00 

 
1.00 

 
1.00 

 
100 

 bathtub  0.98 
 

0.90 
 

0.94 
 

50 
 bed 1.00 0.99 0.99 100 

bench 0.85 0.85 0.85 20 
bookshelf 0.95 0.98 0.97 100 
bottle 0.98 0.97 0.97 100 
bowl 0.74 1.00 0.85 20 
car 1.00 1.00 1.00 100 
chair 0.98 1.00 0.99 100 
cone 0.95 0.90 0.92 20 
cup 0.72 0.65 0.68 20 
curtain 1.00 0.85 0.92 20 
desk 0.93 0.80 0.86 86 
door 0.95 1.00 0.98 20 
dresser 0.84 0.92 0.88 86 
flower pot 0.29 0.40 0.33 20 
glass box 0.97 0.96 0.96 100 
guitar 1.00 1.00 1.00 100 
keyboard 0.95 1.00 0.98 20 
lamp 0.85 0.85 0.85 20 
laptop 1.00 1.00 1.00 20 
mantel 1.00 0.98 0.99 100 
monitor 0.98 1.00 0.99 100 
night stand 0.89 0.77 0.82 86 
person 1.00 0.95 0.97 20 
piano 0.98 0.95 0.96 100 
plant 0.90 0.87 0.88 100 
radio 0.77 0.85 0.81 20 

range hood 1.00 0.96 0.98 100 
sink 0.88 0.75 0.81 20 
sofa 0.98 1.00 0.99 100 
stairs 0.95 0.95 0.95 20 
stool 1.00 0.85 0.92 20 
table 0.82 0.95 0.88 100 
tent 0.76 0.95 0.84 20 
toilet 0.98 1.00 0.99 100 
tv stand 0.87 0.91 0.89 100 
vase 0.85 0.82 0.83 100 
wardrobe 0.88 0.75 0.81 20 
xbox 0.94 0.85 0.89 20 
accuracy  
macro avg 
weighted avg 

0.93 
0.91 
0.94 

0.90 
0.90 
0.93 

0.90 
0.93 
0.93 

2468 
2468 
2468 
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These results were obtained after training for 300 epochs, as recommended 

in the original article.  
The GPU used for training is Nvidia Geforce RTX 4070Ti. 
Both the training and inference scripts were modified so that the model 

can train using mixed precision (so that FP16 tensor cores found on the GPU 
can be used). The model was evaluated on the ModelNet40 shape 
classification benchmark data set (as in Wu et al. (2014)). 

The accuracy results shown in this table reflect the results obtained during 
own testing, not the statistics from the original paper, where the accuracy is 
a bit higher. The likely culprit for this slight inconsistency is the version of 
the used dataset or the parameters and procedures used for extracting the point 
clouds from the said dataset. There are infinitely many valid point clouds 
representing the same 3D shape (Yan et al., 2022), and some might be better 
for training a certain architecture than others. 

CONCLUSIONS 
 

This paper showed the importance of extracting as much context as possible 
from the objects that we wish to classify, both during inference and training. 
This is important because training data for 3D object recognition is scarce; 
there are very few labeled datasets for 3D objects, and those that exist are 
small in size when compared to datasets used for 2D image recognition or 
other tasks. 
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Figure 1: Confusion matrix for the PointMLP (non-elite)  
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