
International Journal of User-System Interaction 17 (1) 2024, 25-36 © MatrixRom

Enhancing object classification accuracy by
incorporating tangent data in the model architecture

Dragos-Bogdan Tudor, Elena Pelican
Ovidius University of Constanta

Mamaia Blv 124, Constanta 900527, Romania
E-mail: epelican@365.univ-ovidius.ro

Abstract. This paper presents a method that aims to improve the recognition rate of
PointMLP (Xu et al., 2022) for the classification task with minimal impact on training and
inference speed by extracting and incorporating more information from the 3D objects used
during the training process. Firstly, when extracting the 3D point cloud from the 3D mesh,
besides sampling 3D points across the surface of the 3D objects and applying other common
preprocessings, our proposed algorithm also saves the normal of the triangle out of which the
3D point was sampled and calculates 2 orthogonal vectors that are tangent to the surface of
the 3D model in that point. Afterwards, the resulting vectors are incorporated into the
architecture of PointMLP through the addition of new layers to the calculation of the
embedding vector, so that the information about the tangents and normals is incorporated
into the model architecture. This effectively provides the model with more context about the
surface of the original 3D object, slightly improving the accuracy of the model with close to
0 impact on training/inference speed.

Keywords: 3D objects classification, PointMLP framework, tangents/bi-tangents/normals.

DOI: 10.37789/ijusi.2024.17.1.2

Introduction

Classification of 3D objects is crucial in many areas and across many
industries and domains, like automotives (for self-driving vehicles and
various systems for road safety), aeronautics (for many types of sensors and
flight guidance equipment), military (smart radars, guided missiles), video
games production (enabling some accessibility options), etc. One of the most
important metrics for the classifiers is accuracy, defined as the number of
correct predictions reported to the number of total predictions, as incorrect
predictions could confuse the systems that use the data from the classifier and

26 Dragos-Bogdan Tudor, Elena Pelican

lead to incorrect behaviors.
In computer graphics, 3D models are usually represented as unordered sets

of R3 floating point vectors, grouped by their indices into polygons
(commonly triangles or quads) that constitute the surface of an object. Whilst
this structure is useful for interpolating fragments for rendering the model, it
is not ideal for object classification. Classical approaches used on 2D images
cannot be used directly, as the data in this structure is unordered and irregular.
For this reason, the 3D models are usually transformed into structures that are
easier to process and learn from during the training process (Section 2). One
such data structure is the point cloud, which only keeps sets of R3 vectors
that represent 3D points located on the surface of a 3D object, eliminating
any connection between the vertices. Whilst this representation is popular for
capturing real-world objects and environments (as in Zeid at al. (2023)) and
is the representation provided by most capture devices (Wang et al. (2019)),
this structure discards a lot of the information provided by an artificial 3D
model (modeled by an artist, e.g.). This paper aims to propose an intuitive
solution to extract more information about the surface of an artificial 3D
object when converting it to a point cloud, with respect to the properties that
a point cloud has (unordered, e.g.) by integrating additional input vectors into
the point cloud: the normal vector, a vector perpendicular on the surface of
the 3D object on the parent polygon of the extracted vertex, and some tangent
vectors (vectors perpendicular to the normal vector). The necessity to extract
more information from the 3D object is given by the lack of annotated training
data available for 3D objects (Xue et al. (2022), Zeid at al. (2019), Qi et al.
(2023)) as learning more features from the 3D objects could decrease the
amount of necessary training data.

In mathematics, a tangent is defined as a vector that touches a curve or
surface at a specific point in space. For a 3D object, the number of tangents
to the surface is infinite, and we could theoretically choose any arbitrary
vector that is tangent to the surface of the object in the chosen point. However,
it is intuitive that if the tangent vectors are correlated with the tangents of
their neighbors (from a Euclidean distance perspective), results might have
higher accuracy. We have followed through with this intuition and extracted
the vectors in such a way that they are aligned with their UV projections,
similarly to how this process is done for game engines, where two orthogonal
tangent vectors are extracted from the model in such a way that that they point
in the direction of increasing texture coordinate U, respectively V. In 3D

Enhancing object classification accuracy by incorporating tangent data in the
model architecture

 27

graphics, this information is used for lighting calculations for improving the
aspect of 3D objects during the rendering process by faking the lighting of
bumps and dents.

As datasets of 3D objects available as of now do not include UV data, the
projection vectors must be generated. In order to create the UV projection for
a certain model, the model is placed in a 3D box with an edge of 2 units (after
the model is centered and the vertices are normalized), and it is projected on
the closest of the 8 sides of the cube. The projections are 2D vectors that can
be used as placeholders for the UV vectors, a common method used in 3D
graphics known as cube projection. There are other methods that can be used
to generate the UV vectors, but this one was chosen because it generates
vectors quickly and efficiently, which is important because when applying a
more complex method to an entire data set, the time to compute the vectors
quickly degenerates: the time required to calculate a cube projection for an
object with about 100.000 vertices takes less than a second on most modern
hardware, whilst more complex methods take a few minutes for the same
object, as per our tests (ex: Blender’s ”Smart UV Project”).

This article describes the methods used for generating the specified vectors
for each 3D point in the sampled cloud and effectively incorporate this
additional data in the architecture of the PointMLP classifier. This classifier
was chosen specifically because it is the most recent classifier that uses the
point cloud approach. However, this additional data could theoretically be
incorporated in most other point-cloud based classifier architectures.

Related Works

Recent research on 3D object classification usually follows one of these
approaches:
- conversion of the 3D object into voxel grids, followed by volumetric or

convolutional approaches (as depicted in Maturana & Scherer (2015), Liu
et al. (2021), Li et al. (2021), Zhang et al. (2021), Wu et al. (2015)). Being
the first types of 3D object classifiers, some of those are simply
generalizations over 2D image classifiers that extend well-known image
classifier architectures into the 3rd dimension. Those methods are less
efficient, as their memory requirements and computational power
complexity are cubic, which limits the resolution of the grid even on

28 Dragos-Bogdan Tudor, Elena Pelican

modern hardware. Because of the low resolution, the accuracy of those
solutions is usually lower than other approaches.

- rasterization of the 3D objects, followed by conventional methods used in
2D image classification (as in Tatarchenko et al. (2018), Su et al. (2015),
Gupta et al. (2014), Li et al. (2016), McCormac et al. (2016), Qi et al.
(2017)). Articles that use this method start by drawing/rendering or
otherwise calculating some form of projection of the object onto a plane,
either from one or from multiple angles with various rendering
techniques. Those images are stacked and are processed through various
methods. Although those methods usually yield better results than the
previous method, they are still limited because of the computationally
expensive process of rendering images and the high volume of data that
is costly to process.

- unified learning from multiple data representations (multi-modal
networks). Those methods merge various types of data (like 2D images
and 3D objects), which enables the model to learn from additional data.
3D object datasets are few and relatively small in size, which limits
learning of most models. This approach, however, aims to solve this
problem, and achieves better results than most other previous models.
Depending on the specific model, the additional data can be extracted
directly from the objects (e.g. rendering the 3D objects to generate
images) (Yan et al. (2022)) or from external datasets with other types of
data (Xue et al. (2022)).

- converting the 3D object to a point cloud and using the point cloud as
input (as in Xu et al. (2022), Qi et al. (2017), Xu et al. (2021), Liu et al.
(2019), Thomas et al. (2019), Zhao et al. (2020)). There are various
methods to extract/sample a point cloud from the surface of a 3D object
and even more methods of processing it for the task of object
classification, many of those however being limited by the irregularity
and sparseness of the data, as the classifiers does not have a lot of context
about the surface of the object. This paper expands on a classic way of
extracting this data, in an attempt to reduce this issue; but before
describing our own methods, we will expand for more context on two
well-known point cloud classifiers: PointNet, and PointMLP.

Enhancing object classification accuracy by incorporating tangent data in the
model architecture

 29

PointNet is the first multi-layer perceptron for 3D object classification, part
segmentation and semantic segmentation ever created that trains directly on
clouds of 3D points. This method was an important scientific breakthrough at
its time, as it respected the permutation invariance of point clouds, moving
away from classical approaches like convolutions that require highly regular
input formats. This method has 3 key modules: max pooling as a symmetric
operation to aggregate information from all the points, a local and global
geometric combination structure, and two joint alignment networks that align
both input points and point features (see Qi et al. (2017)).

PointMLP is a residual neural network (ResNet) used for classification and
part segmentation, built on top of the PointNet idea. It is a neural network
built with training and inference speed in mind that features a lightweight
affine geometric module, which significantly improves recognition rate and
with minimal impact on the performance.

The core of the architecture can be resumed using the following formula:

𝑔 = 𝜃௦ ቀ𝐴൫𝜃൫𝑓,൯, |𝑗 = 1,… , 𝐾൯ቁ

where 𝜃௦ and 𝜃 are residual multi-layer perceptron blocks, and ”A”
is an aggregation function (namely, the max pooling operation is being used).
The 𝜃 block is a shared block meant to learn shared local weights, and the
𝜃௦ block is designed to extract deep aggregated features. This equation is
repeated for a number of stages, in order to form a profound (deep) neural
network. The number of stages used is 4, and each of the 𝜃 and 𝜃௦ stages
have 2 residual blocks.

The architecture was augmented with a geometric module that transforms
the points via normalization while maintaining the original geometric
properties, as it was found that deeper architectures are harmful for the
accuracy and stability of the model (Xu et al., 2022).

Extracting Input Data for the Classifier

Our method directly consumes triangulated 3D objects, optionally UV-
mapped (in the absence of an UV map, one will be automatically generated).
Therefore, those objects are defined as data collections that carry the
following information:

30 Dragos-Bogdan Tudor, Elena Pelican

- sets of R3 floating-point vectors that represent the vertices of an object in

3D space, normalized and centered

- sets of R3 integer vectors that represent valid vertex indexes connected in
triangles that define the surface of a 3D object

- sets of R2 floating-point vectors that represent the UV coordinates of the

vertices from the first set.
Starting from this structure, we describe how to extract additional

information besides the point cloud and how to feed it to the PointMLP
classifier.

In order to extract the point clouds from the 3D objects, we apply the most
common algorithm for this task: randomly select a number of triangles (with
a bias towards triangles with a greater surface) (Qi et al. (2017)), and then
sample a random 3D location that sits on the surface of the triangle using
Devroye’s algorithm (Devroye (1986)). We are sampling 8192 points for
each model using this method, followed by a reduction to 1024 of the most
relevant vertices using the Furthest Point Sampling algorithm (see Eldar et al.
(1997)).

The approach used to calculate the tangent vectors is similar to the
methods used in 3D graphics for calculating the tangent and bitangent vectors
for normal mapping, but with a few differences.

The classical process consists of calculating two of the triangle edge
vectors (L1, L2) and rewriting them as combinations of the tangent vectors
(B1, B2) with the components of the UV vectors, obtaining a system that can
be solved using conventional methods (see Lengyel (2012)):

൜
𝐿ଵ = (𝑢ଵ − 𝑢)𝐵ଵ + (𝑣ଵ − 𝑣)𝐵ଶ

𝐿ଶ = (𝑢ଶ − 𝑢)𝐵ଵ + (𝑣ଶ − 𝑣)𝐵ଶ

Because we are trying to extract the tangent of a point that was randomly

sampled on the surface of a 3D object, there are multiple approaches to
extracting the tangent vectors that yield slightly different results. The simplest
method to extract the tangent vectors is to calculate the tangents of the nearest
vertex in the parent triangle, a trivial process using modern software.
However, the vectors obtained using this method are slightly inaccurate,
which might affect accuracy.

This is because in a smooth surface the tangents of the vertices are

Enhancing object classification accuracy by incorporating tangent data in the
model architecture

 31

interpolated for each triangle fragment (Lengyel (2019)). To obtain more
accurate tangent vectors, we could calculate them by interpolating the
tangents of the parent triangle; this method might yield better results
precision-wise, but comes at a cost: we have to calculate 3 times more
tangents for each triangle, which might affect the computation speed.

The method that was found to work best is to calculate the UV projection
of the newly-sampled point using the same weights that were used to generate
the randomly sampled 3D point. This provides the full 3D information needed
to form a new triangle by combining the extracted point with 2 points from
the original parent triangle. Using this triangle, we can now directly calculate
the tangent vectors.

Incorporating the Extracted Data in the PointMLP Model

The input data received in the forward propagation call is processed into an
embedding vector, which is then processed by the model. Naturally, the best
method to incorporate the additional extracted data into the model is to
modify the embedding vector. PointMLP uses for the calculation of the
embedding vector a simple 1D convolution on the point cloud that
summarizes an object’s point cloud to just a few numbers (a R64 vector, or
R32 for PointMLPElite), followed by a batch normalization and an activation
(commonly ReLU). This embedding is mainly used as a dimension reduction
method, as simply executing the forward pass on the entire point cloud data
would be expensive to compute even on modern hardware.

Initially, the input size of this operation was intuitively modified to allow
processing the additionally calculated data. However, this intuitive approach
proved to decrease the accuracy of the model, either because the size of the
embedding vector is insufficient to accurately summarize the locations of the
3D points alongside with the other 3 vectors, or because the 3D position of
the point cloud vertices should weigh more than the additional vectors. The
intuition that the latter is more likely the culprit of the decreased accuracy
was followed, and the location vectors of the points were separated from the
others and processed independently.

This results in two independent embedding vectors, that can be arbitrarily
scaled to prioritize the embedding obtained from the location of the location
vectors. Although fixed values could have been used to scale the vectors, a

32 Dragos-Bogdan Tudor, Elena Pelican

better result can be obtained by using two independent learnable parameters
instead. The two now scaled vectors could theoretically be kept and processed
separately throughout the model and combined later, but this approach would
significantly increase the execution time for training and inference, defeating
the purpose of this classifier, as PointMLP (and especially its elite version)
was created with a lot of emphasis on execution speed. For this reason, the
two vectors are combined immediately after their creation, through a 1D
convolution operation.

RESULTS

The modified PointMLP was only tested for the classification task.
Incorporating the tangents and the normals using the described methods
resulted in a slight improvement in the accuracy of the model for the
PointMLP classifier, using the recommended 80% training, 20% testing split.
The training/inference speed is negatively affected by the additional
operation, but not significantly. The results are depicted in Tables 1, 2, and 3,
respectively, while Figure 1 is the confusion matrix for our classification
problem.

Table 1: PointMLPElite statistical results (average after training 3 times with different seeds)

 w. modifications w/o. modifications

Training time
(1 epoch)

32.916 s 32.751

Inference speed 0.398 0.369
Accuracy 92.52% 91.98%

Table 2: PointMLP statistical results: w. modifications w/o. modifications

Training time (1 epoch) 411.125 s 395.979 s

Inference speed 4.4692 4.660 s

Accuracy 93.15% 91.97%

Enhancing object classification accuracy by incorporating tangent data in the
model architecture

 33

Table 3. Classification report for the modified PointMLP (non-elite) classifier

Object Precision Recall F1-score Support
airplane 1.00

1.00

1.00

100

 bathtub 0.98

0.90

0.94

50
 bed 1.00 0.99 0.99 100

bench 0.85 0.85 0.85 20
bookshelf 0.95 0.98 0.97 100
bottle 0.98 0.97 0.97 100
bowl 0.74 1.00 0.85 20
car 1.00 1.00 1.00 100
chair 0.98 1.00 0.99 100
cone 0.95 0.90 0.92 20
cup 0.72 0.65 0.68 20
curtain 1.00 0.85 0.92 20
desk 0.93 0.80 0.86 86
door 0.95 1.00 0.98 20
dresser 0.84 0.92 0.88 86
flower pot 0.29 0.40 0.33 20
glass box 0.97 0.96 0.96 100
guitar 1.00 1.00 1.00 100
keyboard 0.95 1.00 0.98 20
lamp 0.85 0.85 0.85 20
laptop 1.00 1.00 1.00 20
mantel 1.00 0.98 0.99 100
monitor 0.98 1.00 0.99 100
night stand 0.89 0.77 0.82 86
person 1.00 0.95 0.97 20
piano 0.98 0.95 0.96 100
plant 0.90 0.87 0.88 100
radio 0.77 0.85 0.81 20

range hood 1.00 0.96 0.98 100
sink 0.88 0.75 0.81 20
sofa 0.98 1.00 0.99 100
stairs 0.95 0.95 0.95 20
stool 1.00 0.85 0.92 20
table 0.82 0.95 0.88 100
tent 0.76 0.95 0.84 20
toilet 0.98 1.00 0.99 100
tv stand 0.87 0.91 0.89 100
vase 0.85 0.82 0.83 100
wardrobe 0.88 0.75 0.81 20
xbox 0.94 0.85 0.89 20
accuracy
macro avg
weighted avg

0.93
0.91
0.94

0.90
0.90
0.93

0.90
0.93
0.93

2468
2468
2468

34 Dragos-Bogdan Tudor, Elena Pelican

These results were obtained after training for 300 epochs, as recommended

in the original article.
The GPU used for training is Nvidia Geforce RTX 4070Ti.
Both the training and inference scripts were modified so that the model

can train using mixed precision (so that FP16 tensor cores found on the GPU
can be used). The model was evaluated on the ModelNet40 shape
classification benchmark data set (as in Wu et al. (2014)).

The accuracy results shown in this table reflect the results obtained during
own testing, not the statistics from the original paper, where the accuracy is
a bit higher. The likely culprit for this slight inconsistency is the version of
the used dataset or the parameters and procedures used for extracting the point
clouds from the said dataset. There are infinitely many valid point clouds
representing the same 3D shape (Yan et al., 2022), and some might be better
for training a certain architecture than others.

CONCLUSIONS

This paper showed the importance of extracting as much context as possible
from the objects that we wish to classify, both during inference and training.
This is important because training data for 3D object recognition is scarce;
there are very few labeled datasets for 3D objects, and those that exist are
small in size when compared to datasets used for 2D image recognition or
other tasks.

Enhancing object classification accuracy by incorporating tangent data in the
model architecture

 35

Figure 1: Confusion matrix for the PointMLP (non-elite)

References
Devroye, L. Non-Uniform Random Variate Generation, Springer, 1986, 569–570.

Eldar, Y., Lindenbaum, M., Porat, M., and Zeevi, Y.Y. (1997). The farthest point strategy

36 Dragos-Bogdan Tudor, Elena Pelican

for progressive image sampling, IEEE Transactions on Image Processing, 6(9):1305–
1315.

Gupta, S., Arbelaez, P., Girshick, R., and Malik, J. (2015) Indoor scene understanding with
rgb-d images: Bottom-up segmentation, object detection and semantic segmentation.
International Journal of Computer Vision, 112(2), 133–149.

Lengyel, E. (2012) Mathematics for 3D Game Programming and Computer Graphics,
Cengage Learning, 180–183.

Lengyel, E. (2019). Foundations of Game Engine Development: rendering, vol. 2. Terathon
Software LLC, page 38.

Li, Z., Gan, Y., Liang, X., Yu, Y., Cheng, H., and Lin, L. (2016) RGB-D scene labeling
with long short-term memorized fusion model. arXiv preprint arXiv:1604.05000v3

Li, Z., Wang, F., and Wang, N. (2021) Lidar R-CNN: an efficient and universal 3D object
detector. arXiv preprint arXiv:2103.15297v1

Liu, Y., Fan, B., Xiang, S., and Pan, C. (2019). Relation- shape convolutional neural network
for point cloud analysis, Proceedings of CVPR Conference, 8895-8904.

Liu, Z., Zhang, Z., Cao, Y., Hu,H., and Tong, X. (2021) Group-free 3D object detection via
transformers. arXiv preprint arXiv:2104.00678v2

Maturana, D. and Scherer, S. (2015) Voxnet: A 3d convolutional neural network for real-
time object recognition. In Proceedings of IEEE International Conference on Intelligent
Robots and Systems, 922–928.

McCormac, J., Handa, A., Davison, A.J., and Leutenegger, S. (2016) Semanticfusion: Dense
3D semantic mapping with convolutional neural networks. arXiv preprint
arXiv:1609.05130v2

Qi, C.R., Su, H., Mo, K., and Guibas, L.J. (2017). Pointnet: Deep learning on point sets for
3D classification and segmentation, Proceedings of CVPR Conference, 652-660.

.

